What is a category?

Functors

Adjunctions (teaser)

Categories 1 Premières définitions et premiers exemples

What is a category?

Functors

Adjunctions (teaser)

A bit of maths

Objects	Morphisms
Sets	Functions
Monoids	Monoid homomorphisms
Groups	Group homomorphisms
Algebraic structures	Structure-preserving maps
Topological spaces	Continuous functions
Vector spaces over ${\mathbb R}$	Linear maps
Elements of a preorder	Pairs (x, y) such that $x \le y$

- For each line, identities are neutral and composition is well-defined and associative. (For the last line, identities = reflexivity and composition = transitivity.)
- Hence, each line of this table is a category.
- General definition ?

What is a category?

Functors

Adjunctions (teaser)

Definition of a category

Very formal. Don't try to read everything in detail. Just to convince you that it may be formalized.

Definition

A category is given by

- a set of objects Obj,
- a set of morphisms Mor,
- two functions dom, cod : $Mor \rightarrow Obj$,
- a function $id: Obj \rightarrow Mor$, and

a function

 \circ : {(*g*, *f*) ∈ Mor² | dom(*g*) = cod(*f*)} → Mor,

such that ...

What is a category?

Functors

Adjunctions (teaser)

Definition of a category (cont)

Definition

. . .

• For all objects A, B, and morphisms $f : A \to B$ and $g : B \to A$,

$$dom(id_A) = cod(id_A) = A$$
$$f \circ id_A = f$$
$$id_A \circ q = q.$$

 For all morphisms f, g, and h such that cod(f) = dom(g) and cod(g) = dom(h),

$$dom(g \circ f) = dom(f) \ cod(g \circ f) = cod(g) \ h \circ (g \circ f) = (h \circ g) \circ f.$$

(Notation : $f : A \rightarrow B$ for dom(f) = A and cod(f) = B.)

What is a category?

Functors

Adjunctions (teaser)

Definition of a category (cont)

Is everyone happy with this definition?

What is a category?

Functors

Adjunctions (teaser)

Definition of a category (cont)

Is everyone happy with this definition?

- The ambient meta-theory is unclear.
- Example : what did I mean by "set" and "function"?
- Several possible answers :

First-order logic sorts and function (or relation) symbols, Set theory sets and functions, Type theory, CiC types and functions (or relations), ...

- The properties fitting the formulation in first-order logic will be called *elementary*.
- Example : construction of functions in topoi.
- Don't necessarily try to write that down formally, we won't care too much in the following.

What is a category?

Functors

Adjunctions (teaser)

Yet another example of a category

Fact

A monoid is a category with one object.

Monoid	Category with one object
Elements	Morphisms
Multiplication *	Composition o
e * e'	$\bullet \underbrace{e'}_{e \circ e'} \underbrace{e}_{e \circ e'} \bullet$
Neutral element 0	Identity id
0 * <i>e</i> = <i>e</i>	• \xrightarrow{e} $\stackrel{id}{\longrightarrow}$ = • \xrightarrow{e} •

Very intuitive when the multiplication has a sequential flavor, e.g., the monoid of words over a given alphabet.

What is a category?

Functors

Adjunctions (teaser)

Functors

Fact

Monoid homomorphisms are in 1-1 correspondence with functors between categories with one object.

General definition of a functor?

What is a category?

Functors

Adjunctions (teaser)

Functors

Definition

Given two categories *C* and *C'*, a *functor* $F : C \rightarrow C'$ is a pair of functions

- $F_{Obj}: C_{Obj} \to C'_{Obj}$ and
- $F_{Mor}: C_{Mor} \to C'_{Mor}$,

(which we both write F, letting the context disambiguate,) such that

- $F(f): F(dom(f)) \rightarrow F(cod(f))$
- $F(id_A) = id_{F(A)}$ and
- $F(g \circ f) = F(g) \circ F(f)$.

What is a category?

Functors

Adjunctions (teaser)

A sometimes useful intuition about functors

A functor $F : C \to C'$ gives a picture of *C* in *C'*. Example : let **2** be the dumb category

A functor from it to any category C is a mere arrow in C.

What is a category?

Functors

Adjunctions (teaser)

We're done

That's it. Now you master all of the technicalities of category theory.

What is a category?

Functors

Adjunctions (teaser)

We're done

That's it. Now you master all of the technicalities of category theory. Almost.

What is a category?

Functors

Adjunctions (teaser)

We're done

That's it. Now you master all of the technicalities of category theory. Almost. Namely, we will need to explain

- natural transformations
- and adjunctions,

which are more complicated and powerful than categories and functors.

What is a category?

Functors

Adjunctions (teaser)

Examples of adjunctions

Left adjoint	Right adjoint	Comments
Δ	×	Def of internal product in
+	Δ	terms of the external one. Def of internal coproduct
		one.
Free group generated by a monoid	Forgetful functor	
×	\rightarrow	Cf. currying $(A \times B) \rightarrow$
8	- ^	$C \cong A \rightarrow (B \rightarrow C)$. The same, in a linear setting.
Forgetful functor	$\begin{array}{c} & A \\ A \mapsto & \delta \downarrow \\ & A \\ & A \end{array}$	Benton explaining linear logic through an adjunc- tion between the linear and non-linear worlds.

What is a category?

Functors

Adjunctions (teaser)

Examples of adjunctions (cont)

Left adjoint	Right adjoint	Comments
Ξ	Weakening	Lawvere's "quantifiers
Weakening	А	as adjoints",
=	Contraction	and other insights.

What is a category?

Functors

Adjunctions (teaser)

Organization of the course

- We want to cover
 - the categorical explanation of programming languages,
 - and basic considerations of categorical logic.
- Logic : deduction rules

```
over↓
formulas
over↓
terms.
```

- Term languages may be seen as minimal programming languages.
- We will thus start with terms, sometimes digressing to consider features that are unusual in logic, e.g., side effects.