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A faire

Graph subtyping In the rule Wr-MIXIN, it is not necessary to check that the graph has sources
in I and targets in O, since more edges would not break safety.

Generativity What happens if datatype and record type declarations are not generative? Is
this the end of functional languages? Answer of Xavier: Harper et al. believe so, I don’t, I rather
believe that abstraction is important.

Generativity seen as effectful static operation Can the effects of Dreyer et al. be related to
Sewell’s interpretation of abstract types with v quantifiers? Types should be computed and v really
has the effect of creating a new variable that can be extruded to the top level. A question is where
exactly should the v computations be suspended, i.e. what are the lambdas for v, under which
nothing happens? Generative functors for sure, at least. Unfortunately, Sewell’s interpreteation
probably does not account for applicative ones anyway.

On Duggan and Sourelis The method of Duggan and Sourelis for proving the soundness of their
mixin modules could cause problems with recursive types, since nothing prevents type definitions
from being recursive. But in fact, only datatypes can be mutually recursive, so there are only
iso-recursive types.

Ohter problems in Sourelis’ masters thesis. The syntax does not mention the inner keyword. Type
strengthening is undefined on mixin module types, and wrong on functor types (corrected in the
papers). Signature constraint is present in the syntax, but not in the typing rules (corrected in the
paper), nor in the dynamic semantics (implicitely eluded because subj-red holds for the language
without abstraction).

Type inference for MML Polymorphism is not accounted for here. Type inference would not
be satisfactory, without changing a bit the syntax. We conjecture that grouping outputs in single
/ block definitions in the correct order solves the problem.

Xavier’s leitmotiv about recursive modules Lacks of expressiveness in Dreyer, Crary, and
Harper’s theory:

module rec A :
sig
type t
val £ : B.t -> ¢t
end
= struct



end

and B :
sig
type t
val x : t
val y : A.t
end

= struct
type t = int
let x =1
let y = A.f 2
end

This program is ill-typed since during the type-checking of y, there is no way to identify t, int and
B.t. Mixin modules provide a way to code such programs in a more flexible way.

Encoding labeled and optional arguments Labeled argument can be encoded in any mixin
module calculus in {CMS, m, CMS,,, MM, MML, ...}, as follows (here in MM syntax). A function
expecting n arguments 1 . ..x,, labeled l; .. .l,, and returning the result e, can be represented by
a mixin of the shape (I; > 1 ...l > x,; RES > e). Labels are mandatory in function applications
(e l;,:€4, .. .1, :€;, ), which are encoded as

(close(e + (€;1;, > ey, ... 1, >e; ))).RES

Optional arguments are added to the encoding by replacing composition with overriding in the
encoding of function application, and putting the default arguments in the function, with the
corresponding labels.

Subtyping mixin modules in a mobile code scenario: MoMiMo The nightmare paper by
Bettini, Bono, and Venneri [10] on depth subtyping for mixins in a distributed setting turns out
trivial with mixin modules. The problem with mixin classes is that their types do not take the
contravariance of methods into account. But it exists indeed: coercing a method specification to a
super type may be unsafe, because other methods may need the more precise typing. For instance,
assume a mixin class with two methods f and g of types 7 and 7, respectively, and assume g needs
f to be of type 7 at most. Covariant subtyping of methods can leed to giving f a type 7, super
type of 7. But then, f can be overrriden by a method of type 7", which makes the implementation
of g unsound. With mixin modules, the input type of f is subtyped contravariantly, so this problem
does not appear. Moreover, if subtyping points are clearly identified, as in MoMi, a mechanism
of implicit coercions allows to solve the issue with mixin modules, quite straightforwardly. Where
a mixin module is expected at type 7, insert a coercion to type 7. Graph subtyping and inputs
subtyping can be assumed to be implicit, since they have no incidence on the runtime. A coercion
to type (I;O;—) of any mixin module e is implemented by (e + (/;€)).dom(0)- It adds the missing
inputs at the right types, coerces the present ones to the right types, and hides the unexpected
outputs.

Other possible designs (in future work section) The thesis explores the solution of definition
reordering, but one could imagine a more restrictive, but perhaps more intuitive design where a
mixin module is a structure with holes, where definitions cannot be reordered. Composition then
attempts to just fill the holes, in a deterministic way. The idea would be: as definitions know exactly
their place in the mixin module, maybe it is not necessary to include dependency information in

types.



Extension of MML with additional type expressions In the style of Odersky et al. [60],
it would probably be beneficial to MML to feature type expressions such as My + M, and p.type
and close M.

Efficiency Splitting the close operator into a reordering operator and an instantiation operator
allows to perform reordering only once.

Extension of the result on letrec Ajouter une construction block(e,n) au calcul A, t.q.

block(O, n) est un lift context et un strict context,

Size(block(e,n)) = n,

block(v,n) — v, pourvu que Size(v) = n,

[block(e,n)] = [e], mais on perd la compltude, probablement.

References exemples Faire pointer les exemples du chapitre compil vers la section overview,
des qu’elle sera prete.

Order of evaluation Abstraire sur la fonction pour trouver un ordre d’evaluation correct etant
donne un graphe et les formes serait une bonne idee. On peut donner la fonction actuelle et la
fonction qui ne depend que du graphe en exemple, et dire dans la compilation qu’on choisit la
deuxieme pour ce chapitre.

Modularizing the proofs Modulariser la preuve de surete sur les regles d’Ariola, notamment
au niveau des dependances, clarifierait grandement le rapport entre les preuves de surete de MM
et de ;. De toute facon, pour A, faut la refaire, a cause de ces regles justement.

Headers Ajouter des headers, ca fait vachement mieux.

Separate compilation A paragraph explaining how to handle separate files as closed mixins,
and linking as a mixin composition followed by a closure.

Name spaces In some future work section, discuss the possibility of explicit name spaces inside
mixin modules. The idea is to have semantic sub-modules, but with less rigid boundaries. In
particular, closing a mixin modules containing name spaces would flatten them during computation,
and reconstruct them when building the final module. Thus access in name spaces works the same
as for modules, but dependencies can be finer. Motivation is found in the first attempt to implement
recursive polynomials.

Notations Throughout the thesis, side-conditions are written as premises for readability. [?]
means “please find a correct bibtex entry for this before giving the thesis to the referees” or
“please verify this information ...”. Insrer au premier endroit ou c’est utilis la notation 1 pour
les ensembles disjoints, la notation | - | pour le cardinal d’un ensemble et la longueur d’une liste.
Remplacer presque partout “variable” par “identifier”? La flche est parse droite. On utilise
plutt la syntaxe OCaml que la syntaxe SML. Substitution {z +— y} signifie que x remplace y.
Meta-galits : =g4ef signifie “is defined as” et = signifie “is syntactically equal to”. Homognit des
mots-clefs dans la section type-components et overview mixins. Quand est-ce que j’ai suppos qu’il
y a des types produits, trouver et le dire. Faire plusieurs passes pour vrifier que ces conventions
sont respectes. Remplacer les \\ \noindent par \linebreak. Priorits: dcrire au dbut les priorits
implicites, notamment la slection . a priorit sur tout.



A lire absolument Drossopoulou, Morrisett, Machkasova, Jones, Odersky, Parnas, Szyperski.
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Introduction: linguistic constructs
for code reuse

The increasing size and complexity of programs cause important pragmatic industrial problems.
Maintenance becomes a full time task, sometimes almost unmanageable, and safety or correctness
often happens to be impossible to prove. At the same time, more and more formerly human jobs
are done electronically, and it therefore becomes more important that programs really do what
they are expected to. An airplane pilot program, an underground driver program, or to a least
extent a train booking program, have to be correct. A natural idea to solve this problem — and it
essentially was born centuries ago is to divide problems into smaller, easier to solve ones, and to
exploit and share the results. In software engineering, this can be done at several levels.

Language abstractions A first level is provided by various forms of abstraction in the considered
language. As defined by Leroy [51]

“Modularization is the process of decomposing a program in small units (modules)
that can be understood in isolation by the programmers, and making the relations
between these units explicit to the programmers.”

Modules, functors, or classes for example, offer a way to modularize programs. But functions,
or extensible datatypes, may perfectly be seen as modularization constructs. Functions, for
instance allow to write code only once, whereas it otherwise ought to be inlined at every
place of use. This level has been and is still being widely explored by the programming
language research community. However, it only promotes code reuse at the level of one
program. With only functions or objects, one cannot reuse any code from another program,
whereas different programs often need the same kind of functionalities, such as graphical
interface tools. Sharing such code between them requires switching to the level of separate
compilation.

Libraries From [51] again,

“Separate compilation is the process of decomposing a program in small units (com-
pilation units) that can be type-checked and compiled separately by the compiler,
and making the relations between these units explicit to the compiler and linker.”

If a program is divided in several compilation units, some of these may be put in a repository,
from where other programs can use them. Such compilation units are usually called libraries,
and provide means of reusing code across programs. Nevertheless, this does not allow full
code reuse yet, because each kind of program has its particular best programming language.
If graphical interfaces are often written in object-oriented languages, this may not be the
case for CPU intensive probabilistic simulations for instance. However, a simulation program
would be perfectly wrapped in a graphical interface.

Components The idea of the third and last level is to allow that, and even more, to allow it across
different sites. As advocated by Mcllroy at the 1968 NATO conference [57], programs should
be mainly built by assembling off-the-shelf components — supplied by a software components

11



industry, without having to modify their source codes. (This is often called “black box”.)
The component-based approach bases on two main ideas.

e First, different parts of a program may be written in different languages, keeping some
sort, of compatibility between them, thanks to an common interface definition language.

e Second, components are accessible by various ways, including the internet. The program
may call procedures defined in a remote component, and even ask for some kind of
components more or less automatically.

In a component approach, critical parts of programs may be written in a very fast language,
whereas the user interface, or communication parts for example, can be written in a more
expressive — or even dedicated — high-level language. More than that, the program may rely
on previously written components, without having to bother with their locations or imple-
mentations. Nevertheless, safety properties of whole programs are difficult to prove, since it
requires the ability to analyze programs in different languages within the same framework,
and to model the protocols for accessing remote components. Eventually, as a matter of
fact, most component architectures are more or less object-oriented (see e.g. [49]), in that a
component looks very much like a class. This causes problems when writing components in
languages with drastically different programming paradigms, such as functional languages.

These increasingly ambitious proposals are very promising for what concerns code reuse and reduc-
tion of program sizes, but one has to consider them with respect to safety. The first level has been
extensively studied from this standpoint, specifically through the use of sound type systems: there
are well-known ways for ensuring statically (i.e. at compilation time) that an object-oriented or a
functional program will not crash (see e.g. [50, 78, 1]). The second level has been investigated, and
sound type systems have been set up, which are able to statically prove that a separately compiled
program will not go wrong [51, 40, 19, 56, 65, 70]. The component approach is its early phase of
formalization [69], and types or safety seem to hardly be under consideration yet.

We are concerned with the first and second level, mainly. The work on designs for safe separate
compilation [51, 40, 56] has lead to introduce linguistic constructs for considering compilation units
as special datastructures, called modules. Modules are therefore a bit ubiquitous, because they may
be seen either as language constructs, almost exactly as say, functions, or as a kind of interface
between the program and the real world, here the operating system. In the OCaml language
[55] for instance, compilation units are considered exactly as modules. In SML, they are closer
to structures (the contents of a module). A consequence is that a language with modularization
constructs is a language featuring separate compilation, provided the considered constructs support
it. This allows studies of linguistic modularization constructs supporting separate compilation to
be viewed as sudies about code reuse inside the considered language, and therefore to be notably
simplified. Indeed, instead of setting up a complicated framework where the file system, shell
commands, object files, are modeled, one may study linguistic modularization constructs, and
then argue that they support separate compilation, as done in [51, 65] for example. Two main
ideas for such linguistic modularization constructs have been explored, at least.

Classes and mixins Languages like Java [48] base their modularization process on classes and
objects. Objects are basically records, with a set of methods to operate on them. For example,
a window object would typically be a record of a position, a size and some sub-objects, with
methods moving it, showing it, etc. .. Classes are object generators, and the idea is that they
may be incrementally refined. Methods may be added and redefined as needed, thanks to
the complex mechanism of inheritance [48, 55]. In order to define a new class, the programer
can base on an existing class, without having to edit the initial code manually. Only the
modifications have to be written. Mixins are an extension of classes, where class extensions
are parameterized over the extended class, and thus may be applied to several base classes.
Important research has been done on such languages, and they are theoretically well-known.
However, this approach constrains the language very much: a module is a class, and all parts
of the program using this module have to be written in object-oriented style. This may

12



impede the efficiency, since object-oriented languages cannot pretend to compare with C on
critical domains, such as large probabilistic simulations, or symbolic computation. Moreover,
separate compilation for classes is rather limited, since for instance Java mutually recursive
classes cannot be compiled separately. Consequently, object-oriented languages often rely on
a system of packages in order to group related classes together.

Modules Another approach investigates modules systems. A module system wraps the program-
ming language, the core language, with a typically second-class module language. The module
language is in charge of all the gluing operations, and the core language handles real com-
putation. Most module systems are largely independent from the underlying core language
[54], thus not constraining in any way the employed programming paradigm. Furthermore,
modern module systems provide astract data types, thus allowing for full abstraction over
implementation details, and guaranteeing that invariants of a module are not broken outside
it. The main drawback of module systems is their lack of flexibility. There is a tension
between the need to preserve safety and the convenience of being able to write programs
according to the intuition. Early module systems such as the one of C are unsound, and lack
parameterization, since they entirely rely on the file system. But even modern and sophis-
ticated module systems, such as the one of ML, severely limit the programmer’s intuitions,
for instance in not allowing mutually recursive definitions to span module boundaries.

None of these two ideas really seems to be the ultimate modularization concept, although both
possess features that are necessary for such a concept. Classes allow very flexible incremental
programming, since they allow to specialize a class without editing its source code, and only writing
the modifications. Modules have the advantage to be independent of the underlying language, and
to provide convenient abstraction facilities.

This thesis examines an atlernative, hybrid idea of modularization concept, called mixin modules.
The original idea appeared in the early 90’s with Bracha, Cook, and Lindstrom [17, 16, 18], and
was further developed by Duggan and Sourelis [31], Flatt and Felleisen [36, 35], Ancona and Zucca
[3, 6], and Wells and Vestergaard [76]. It consists in a module language — a modularization con-
struct independent from the core language — with features for incremental programming, inspired
by classes and mixins. Basically, a mixin module is a collection of named definitions and declara-
tions. Declarations may be filled with definitions by composition with another mixin module. The
definitions of one mixin module then fill the corresponding declarations of the other one, according

to their names. Definitions are not statically bound to one another, and may be overridden.
The remainder of this thesis is organized as follows.

Chapter 1 describes known module languages and analyzes them from the viewpoints of flexibility
and safety. A collection of features is presented, that have been considered necessary somewhere in
the literature. Then, two widely used module systems are briefly recalled, which serves as a basis
for discussing their respective lacks of expressiveness in the last section.

Chapter 2 summarizes previous work on mixins modules, from Bracha’s seminal thesis [16], to the
latest theoretical formalizations [6, 76, 45].

Chapter 3 defines MM, our language of mixin modules, and its operational semantics. The seman-
tics is defined thanks to the introduction in the language of a new construct let rec for binding
mutually recursive definitions, which is more general than most such other ones.

Chapter 4 presents and proves sound a simple type system for MM, dealing with the recursion
problem in an elegant manner.

Chapter refsection-implementation elaborates an implementation strategy for the let rec construct.
Its presentation abstracts over the implementation of the rest of the language.

Eventually, chapter 8 examines the remaining problems and ideas for solving them.
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Chapter 1

Modularity and code reuse

1.1 Motivation

Encapsulation, abstraction, hierarchy, ... cf Bracha, Wells, Harper, ...

Transition: a consequence of modularization is that programs (or programmers if the constructions
for modularization are extra-linguistic) have to perform the assembly operations to construct the
intended code out of pieces. These operations are subject to failure, and it is difficult to set up
sound type systems for all of them. As a consequence, more flexible modularization constructs
(such as objects or components) provide less abstraction mechanisms and safety properties that
more sound ones (such as ML modules).

1.2 Safety versus flexibility

1.2.1 The diamond import problem

1.2.2 The extensibility problem

cf Flatt...

1.2.3 The modifiability problem

cf FOC

1.2.4 The recursion problem

cf ML

1.3 An overview of mixin modules

A characterization of mixin modules In [6], Ancona and Zucca give a semantic characteri-
zation of a system of mixin modules, in terms of a characterization of module systems, and some
requested features.

17



Definition 1 (Module system) A module system is a language dedicated to modularization,
built on top of a core language, and meeting the two following requirements.

e First, the module system must be as independent as possible from the core language. Ideally,
it can be instantiated over several core languages, in a systematic way.

e Second, a module should correspond to a compilation unit, thus providing for separate com-
pilation.

Typically, module languages are expected to feature parameterization (the ability to use a module
in different contexts). Then, a mixin module system is defined as module system providing two
particularly important features for modularization.

Definition 2 (Mixin modules) A module system supports mizin modules if it supports cross-
module recursion and overriding.

Presentation by example [Maybe split this in : here, example hiding the problems with let
rec, moving them to an overview subsection in the section on MM]

1.3.1 Mixin modules

A mixin module is an unordered, unevaluated, possibly incomplete module: it is a set of named
definitions and declarations.

Consider the following mixin module, in an OCaml-like syntax:

mixin A =
import
val x : int
val £ : int -> int
export
define y = (g 0) + x
define g z = . £
end

The declaration val x : int is used by the definition define y = (g 0) + x.

The declaration val £ : int -> int is used by the definition define g z = ... £ ...

The scope is mutually recursive, as illustrated by the definition define y = (g 0) + x, depending
on g.

The operator for linking mixin modules is composition +, which combines two mixin modules,
filling the declarations of one argument with the definitions of the other, and wice versa. Consider
the following mixin module.

mixin B =
import
val y : int
val g : int -> int
export
define x =y + 1
define f z = . g ...
end

18



The composition mixin C = A + B of A and B is equivalent to the mixin module:

mixin C =

import

export
define
define
define

M kb 09
N NI
N~
0q

(=]

g3

o+
Y

I
<

+ -
- .

define
end

The declarations of one mixin module are replaced with the similarly named definitions of the
other. The export section is the concatenation of the export sections of A and B. The code remains
unevaluated, so the evaluation of C does not go wrong. However, there is an ill-founded recursion
between x and y, and if we try to evaluate the code contained by C, a dynamic error will occur.
Fortunately, mixin modules feature late binding: one may delete the definition of x in B, thanks to
the delete operator |-.

mixin B’ =

import

val x : int

val y : int

val g : int -> int
export

define f z= ... g ...
end

A new definition for x may be defined in another mixin module:

mixin D = import
export
define x = 0
end

The mixin module E = A + B’ + D is equivalent to

mixin E = import
export

define

define

define

X oHh <
N N I
n ~
0Q

(=]

N

H 4+
"

1]
[«

define
end

Now, all holes are filled, and the mixin module can be instantiated. It is the role of the close
operator, which generates a module out of a mixin module without holes: module M = close E.
The semantics of close includes a reordering of definitions, in order to avoid references to a not
yet evaluated definition. The initial ordering is kept, as far as possible. Here, it results in only
moving the definition of y, because it needs the values of g and x (and possibly f) to evaluate. The
definition module M = close E is equivalent to:

module M = struct
let recgz= ... f

19



fz=...g ...

let x =0
let y = (g 0) + x
end

The evaluation of M consists in successively evaluating the definitions, and returning the evaluated
module:

module M = struct

let rec f z = . g .
and g z = f

let x =0

let y =V

end

(Where V is the result of (g 0) + x.)

We refer to [16, 6] for more details on mixin modules and other operators.

1.3.2 An extended binding construct

In MM, the definitions of x and y could not have been included in the mutually recursive definition
of £ and g. Indeed, the let rec construct of ML only allows to bind syntactic functions (or
constructed values in the case of OCaml). Therefore, in the case of more complex dependencies
between the definitions of a mixin module, instantiation would lead to nested let and let rec
bindings. In order to avoid this complication, our calculus features a slightly more powerful let rec
than that of ML, which is reminiscent of monadic recursive bindings [33]. It evaluates the definitions
from left to right, and basically only goes wrong when the value of a variable defined to the right
of the current definition is needed. For instance, the definition

let rec f x = g ...
gx=...f1%
x=0
y=(g0) +x

evaluates correctly: £, g, and x are already values, and y is defined last.

Notice that the body of £ makes a reference to g, which is defined to the right of it. We call
such a reference a forward reference. A forward reference is syntactically correct if it points to an
expression of predictable shape. In the above example, the definition of g is a syntactic abstraction,
which is considered an expression of predictable shape. A forward reference is semantically correct
if it does not require the value of the referenced variable. In the above example, the definition of
g is already evaluated, so it doesn’t need to inspect the value of £.

1.3.3 Typing issues

Our let rec is not much more powerful than that of ML. Its main interest is that complex
series of sequential let bindings and mutually recursive let rec bindings are now written as
straightforward definitions. Its typing is much less straightforward of course, since it requires
the analysis of dependencies between the definitions. This analysis has to go beyond immediate
dependencies, as shown by the following example.
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Example 1 Consider the following binding, where braces enclose records and X and Z are record
field names.

let rec x = { X =2z }
y = x.X.Z
z={2Z=01%

There is a forward reference from x to z, but the definition of z is of predictable shape, so the
expression is syntactically correct. Moreover, there are no forward references needing the value of
the referenced definition. One could expect it to be a sufficient condition for the binding not to go
wrong because of dependencies. Unfortunately, the evaluation of the definition of y needs both the
values of x and z.

Roughly, the correct requirement is that no forward reference path starts with a strict dependency.
We say that a definition x = M strictly depends on another one y = N, when the evaluation of
M might require the value of y. What does “might require” mean here? It is a very restrictive
syntactic approximation: the only case where we detect that an expression M will not need the
value of one of its free variables x is when M is a value of predictable shape. In example 1, there is a
forward reference path from x to z, which does not end with a strict dependency, since { X = z }
is a value of predictable shape. However, this path extends to a forward reference path from y to
z, which starts with a strict dependency. Therefore, the binding is rejected by the type system.

We have seen that mixin modules are instantiated by the close operator, which generates a binding
out of them. In order to statically ensure that this binding is correct, the type system keeps track of
the dependencies between mixin components. The type of a mixin contains both type information
about its components, and a graph representing their dependencies. When composing two mixin
modules, the type system takes the union of their dependency graphs. When a concrete mixin (a
mixin with no declarations, only definitions), gets instantiated, its graph is required not to have
cycles with strict dependencies. This is sufficient: if there is no cycle with strict dependencies, then
an ordering of definitions can be found, such that no forward reference path starts with a strict
dependency. The close operator finds this ordering.

1.3.4 What is a mixin module not?
A functor

There are facilities to extend an existing functor with new fields. However, this kind of extension
differs in at least two important ways from the way a mixin extends another mixin.

First, existing fields will be shadowed by new definitions with the same name. With mixin modules,
depending on the operator used for the extension, a previous field with the same name either yields a
clash or is overridden. In other words, mixin components are late-bound together, whereas module
components are statically bound.

As an example, consider the following module:

module A =
struct

If we try to extend it with a mixin module, we define:
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mixin B =
import
export
define f x = x + 1
end

And then, we compose the two mixin modules by overriding (A <- B) to obtain a new mixin module
equivalent to

import
define x = £ 0
define f x = x + 1
end

The previous value of £ has been removed, and instantiating the result yields a module equivalent
to

struct
let £ x =
let x = 1
end

If conversely we try to extend it with a functor, we rather write:

module B’ (X : sig val x : int end) = struct
include X
let £ x=x+1

end

Then, we apply the functor (B’ (close A)). This time the result is equivalent to

struct

let £ x = x

let x=f 0

let f x=x+1
end

which evaluates to

struct

let x =0

let f x=x+1
end

Another difference between functors and mixin modules is that, a mixin module really extends
something, whereas a functor could rather be said to coerce it first, and then extend the result.
Indeed the argument of a functor is ascribed a signature, and during functor application, is coerced
to this signature. As a result, if an argument with more fields than expected is passed as an
argument to a functor (that extends its argument), the result will not mention the unexpected
fields.

Consider for example the functor
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module F(X : sig end) = struct
include X
end

and the mixin module

mixin A =
import
export
end

When applied to a module X = struct let x = 0 end, the functor F generates an empty module,
thus not extending X at all.

On the contrary, when composed with a mixin module X = import export define x = 0 end,
the mixin module A evaluates to a mixin module equivalent to X, thus really re-exporting all the
components of it.

A mixin class

A mixin class is basically a class extension parameterized over the superclass it extends. It is a
special kind of function over classes. At first glance, a first difference appears: mixin classes are tied
to the object-oriented programming paradigm. True, but not enough to make a clear distinction:
a class exports some definitions, as a module does, and field definitions require some computation
to happen at initialization time, which is pretty much the kind of interaction mixin modules have
with their clients.

A deeper difference is that (at least our) mixin modules feature component reordering according to
their dependencies, thus allowing to automatically rearrange almost any kind of program parts. On
the class side, no reordering of initialization computations is performed, so mixin classes are less
expressive in this respect. Further, mixin modules allow to specify the order in which computations
are performed, which is not the case with classes.

According to Bracha [16], mixin module operators express inheritance mechanisms in a finer way
than mixin classes operators. Specifically, they allow to resolve conflicts during multiple inheritance
more flexibly than with mixin classes. However, since then, new notions of mixin classes have

appeared, which could invalidate this claim [35].

On the whole, the underlying fundamental idea of any module system is conservativity. Conserva-
tivity is a semi-formal term designing the property that any running code obtained by combination
of modules could have been produced without the module system, by a monolithic program. This
notion concerns the structure of the program as well as the efficiency, and it requires that, as far
as possible, a module system only does modularization, and that it does not decrease the overall
efficiency of programs. Mixin class-based systems are extensions of class-based systems. In prac-
tice, it implies object-oriented programming, so mixin classes as a module system do more than
just modularize some monolithic code. In theory, one could use mixin classes as a pure modu-
larization construct, but as such they are not expressive enough. Indeed, they hardly allow more
than grouped, parameterized definition of functions with late binding and inheritance. This is
quite powerful already, and roughly corresponds to Jigsaw plus initialization (see section 2.1), but
is not flexible enough with respect to initialization. In programs, computations can be arbitrarily
interleaved with function definitions, and this should be reflected by the module system.

On the contrary, some class-based languages, such as C++ [73], allow to share some data between

all instances of a same class, through “static members” definitions, which mixin modules do not
support directly.
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Chapter 2

A brief history of mixin modules

2.1 Jigsaw

In his PhD thesis [16] and the related articles with Cook [17] and Lindstrom [18], Bracha presents
for the first time the idea of mixins as a modularity mechanism relatively independent from the
base language the Jigsaw “framework”. His mixins are partially defined records of named values
under a recursive scope. They are equipped with a set of novel operators on them, which express
in a very clean way multiple inheritance with enhanced flexibility, component sharing, renaming,

hiding, and redefinition (overriding).

We briefly give an idea of the language. Its syntax is in figure 2.1. We abstract over typing issues.
A module is a sequence of comma separated declarations (a label X), and definitions def, which
can be core definitions X = F or module definitions X = e. Definitions must bind values, and may
refer to one another and to declarations. Modules must be closed: they must not have any free
variable. This is really simple yet: no virtual definitions, no distinction between instance variables
and methods, no “friend” declarations, etc. .. The complexity and expressiveness of Jigsaw resides
in the operator suite.

Module composition || has the effect of filling the holes (the declarations) of both modules with
the definitions of the other, and wvice versa. For example, if label X was declared in e; and defined
in es, it is now defined in e || €2, as in es. Modules must not have any definition in common, only
declarations, possibly.

Module overriding is similar, but modules may define common labels. The ones from the right
argument replace the ones from the left argument. Definitions are late bound by default: assume
that in ey, the definition of X makes a call to Y, and that Y is defined in both e; and es. Then,
in any instance of e; « es, the one and only Y definition available is the one from ey, and X calls
it as well.

There is a way to make binding static, through the freeze operator. After freezing a label X
in a module, it is still available to the outside world, but the other definitions of the module
semantically rather refer to a local copy of it, which cannot be modified anymore. The dual
operator freeze_all_except freezes all labels but the given ones.

Name conflicts during a composition e; || e may be solved in several basic ways. Assume for

example that the label X is defined in both e; and es.

e If one of the conflicting definitions, say the one of e;, must be chosen as the final one for both
modules (overriding the one of es), then X may be deleted from es (e \ X). This can be
done another way, in the case where only a few definitions have to be kept from one module,
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Module: e ::= module binding,, . .., binding, end Basic module

| e1]|ea Composition
| e1 < ey Override
| e freeze X Freezing
| efreeze_all_except{X; ... X} Complementary freezing
e\ X Deletion
len X1... X, Projection
| e hide X Hiding
| eshow{X; ... X,} Show
| e[X1 — Xo] Renaming
| ecopy X asY Copy as
Instance: i ::= instantiatee
Definition sequence: binding ::= X | def Binding
def ==X =e|X=F Definition

Figure 2.1: Syntax of Jigsaw

by the projection operator, which deletes all definitions of a module, except the given ones
(ﬁ‘i 7TX1 .. XT,)

e If one of them, say X in ey, is the good one for the outside world, but the definition of X in
eo must still be referenced by the definitions of e; after composition, then X can be hidden in
e (e hide X). Other components will keep their anonymous copy of it, but it will not appear
in the interface of the module, which may safely be merged with e;. Similarly to deletion,
this can be done another way, in the case where only a few labels have to remain visible, by
the show operator, which hides all components but the given ones.

e If conflicting names have to be kept both, having different capabilities, then definitions and
declarations may be renamed (e;[X — Y]). The new names must not be mentioned in the
argument.

Of course these operators may be used for different purposes ; for example, renaming may be used
for plugging a definition of a module in an input label of another module, even if they do not
initially have the same names.

The last operator, copy, is not easy to understand ; especially, it is not easy to see why it is
important. Bracha takes the example of a mixin supposed to add borders to windows, in the
context of a window manager, and of an object-oriented core language. Let Border be a mixin
defining the functions display and display_border, and declaring only the missing function
display body. The function display successively calls display border and display_body.

Border = module
display_body,
display () =

display_border () ;
display._body ()
end

Now we dispose of another mixin defining the functions for windows. Assume it has been defined
as follows.
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Window = module
display () =

end

The reasonable intention is to plug window.display in border.display body, keeping the name
border.display. So a kind of renaming of display into display_body in window is needed. But it
is more complicated than that. Other references to display inside window should refer to the final
display function, i.e. border.display, and that would certainly not be the case with renaming;:
they would point to the renamed window.display function. The expression copy display as
display_body copies the body of display, giving it the label display_body. It is then possible to
override display with the definition from border, obtaining the expected behaviour.

Conclusion From the standpoint of design, Jigsaw is rather convincing: mixins are more powerful
than classes, without their traditional problems with binary methods, or multiple inheritance for
example. They move the expressive power from the basic construct to the operator set, resulting
in a more flexible design. But more generally, mixins are presented as being usable “to introduce
modularity into a variety of languages, regardless of whether they support first class objects”. More
than that, it suggests that highly epxressive mechanisms for modularization such as inheritance, late
binding, and so on, could be exploited outside the context of object-oriented languages. Indeed, one
of the main characteristics of objects is self application, which is not at all a necessity in Jigsaw.
Bracha did not push this aspect of his work as much as he could have: the only examples and
applications given, including a full fledged implementation of Modula-7 (an extension of Modula-
3 [20]), are object-oriented. The extension of non object-oriented languages is only informally
suggested.

The framework has official weaknesses of course, such as the lack of support for name based typing
(type abbreviations, generative types), or for abstract data types.

Other drawbacks of Jigsaw are:

e Modules do not contain any free variable.

e Modules contain only values, which almost reduces mixin-based module systems to libraries
of functions. For example, if instantiation of a mixin requires some initialization code to be
run, it has to be done manually, which breaks the abstraction power of mixins modules.

e The semantics of Jigsaw is given by translation to an untyped A-calculus with records, and
typing rules are given. The type system is pretended to be sound, but there is no attempt
to argue on that, and doubt remains about some oddities. For example, in the informal
description, mixins look like classes, with a global recursive scope, and in the formal definition,
they are translated as records of values. This leads to assume that the source level recursive
scope of modules will be translated as self access to components, by record label, but this
does not appear at all in the translation.

From the standpoint of implementation, interesting ideas are introduced, especially the notion of
dynamic and static offsets for compiling method calls. The implementation of the freeze operator
though, seems strange, since it does nothing, as if freezing would only act on the type system.
Nevertheless, it seems that this does not fit the semantics.

As a conclusion, Jigsaw is not really usable directly as a sound theoretical basis for mixin modules,
but its design must be a guideline for our investigations.
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Core identifiers Module identifiers Type identifiers Constructors

x € Vars s € DMVars t € TVars

x € Names s € MNames t € TNames ¢ € CNames
Path: pi=¢€l|s|ps
Module: My = struct M end | functor(structure ss : S;)M; | (M; : Sy)

'p|pp) [ M{(My)M | My ® M; | clos(M;)

Mixin body: My :=valfy = Ax.E | typety | tis® | My; My | €
Module body: M ::=structure ss = M; | typety |t =7 |tis® | M;M | D
Value definition: D=funfl = Ao By || ... || f# = A\oa B

|valzx = E | D;D | €

Core: E:=1|z|px|pc(E...E,) | EE| \x.E
|letDinE | case Eof Ry '|"..."|" Ry, | inner

Matching: R:=P=FE

Pattern: P:=x|pc(r...x,)

Module type: Sy ::=sig Send | funsig(structure ss : S;)S; | S¢(S)S

Signature: Su=typety |t =7 |tis® |valzy: T

| structure ss : Sy | S;5 | €
Core type: Tu=t|pt|m =
Data type definition: ® ==c¢(m...7,) | PU®

Figure 2.2: Syntax for DS
2.2 Duggan and Sourelis’ mixin modules

In [31, 32], Duggan and Sourelis introduce a language of mixin modules, which we will name DS
here. It is a proposal for making ML modules more extensible. Their work is quite different from
Bracha’s: they do not attempt to use his operators, except composition and instantiation. A
consequence is that their mixin modules do not feature renaming, deletion, or copy. However, they
feature a more powerful and more specific to ML version of composition. Indeed, when two
mixin modules A and B define and export a function f, and when this function is defined with
pattern-matching in both mixin modules, then the composition of A and B attempts to merge
those pattern-matchings, thus building a less partial f from the two initial ones. There are similar
mechanisms at the level of concrete data types, building a new data type with the constructors of
both arguments. Also DS features a limited form of late binding, as explained below.

2.2.1 Overview of the language

More formally, DS is defined by the syntax in figure 2.2. A distinction is made between names x, s,
t and variables z, s, ¢, respectively for the core language, for modules, and for types. A basic mixin
module A =4¢¢ M;((My)Ms is decomposed into three parts: the prelude M, the body My, and the
initialization My. The module bodies M; and M are usual ML structure bodies: they are lists of
named definitions, including any core language expression, mutually recursive functions, modules,
or types. Each definition is bound both by a name and a variable. In a mixin module, binding
variables are alpha-convertible, and binding names are not, because linking mixin modules is based
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on names, as we will see. In A, the body M} is a restricted form of structure body: only syntactic
functions and ML-like data type definitions are allowed. Mixin modules can be merged together
with the composition operator ®. The prelude and initialization parts of the two arguments are
sequenced one after another, and the bodies are merged, in the following sense.

e Two functions definitions Az.E; and A\y.E> bound to the same external name (which are then
required to have the same internal variable), are merged into one function Az.E{inner —
)\'[/EQ}

e Two data type definitions ®; and ®» bound to the same external name (which are then
required to have the same internal variable), are merged into a single data type definition
&, U &5, provided no constructor names are defined twice.

Thus, the composition of two basic mixin modules M ((M; )M, and M7 ¢(M7Z)M3 is
(M7 My)G(My & My) (M3 My),

where ® denotes the above described merging. Apart from the mixin bodies, the two arguments’
components should not interact, and their binding variables are required to be pairwise disjoint.

Mixin modules contain unevaluated code, and the close operator clos allows to evaluate them, and
create a proper module with their exported components. Other syntactic entries include the ones of
the ML-module language, namely basic modules struct M end, functors functor(structure ss : Sy) M
(where S; is a mixin module type). The core language is a toy functional language with pattern
matching, and two special constructs:

e the | “undefined” construct, which arises in case of an expression matched by none of the
proposed patterns ;

e and the inner construct, which calls a future extension of the considered function.

2.2.2 Expressiveness and limitations
Main expressiveness example

The DS language allows to more intuitively modularize interpreters, and by extension any program
operating on structures similar to abstract syntax trees. The idea is demonstrated by writing an
interpreter for a toy language in DS, as sketched hereafter. The particularity of the interpreter
is that it is implemented as a set of mixin modules that only have to be composed together to
build the complete program, even though these mixin modules split cyclic definitions. For instance,
numerical constants are treated by the following Num mixin module.

Num =ger (( type tterm; tis Const(int)
type vyalue; v is Num(int)
type €env; e = string — v
eValeval = Ax.\env.casez of
" Const (i) = Num(i)
'|' 2 = (inner z env))

The Num mixin module defines the Const constructor for the type term of terms, and the part
of the eval evaluation function which evaluates it to the corresponding Num constructor, bound
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to the value type for values. The mixin module may be composed with the mixin module for
functions and applications, defined by Func:

Func =qer ( fun bindpina = Az.Av.Aenv. \y. if £ = ythenvelse(env y)

C( type tyerm; tis Var (string)
UAbs (string,t)
UApp (1,1
type Vyame; vis Clos(t, e)
type éenv; e = string — v
evaleval = AT.Aenwv.casex of

"I" Var(s) = (enwv s)
'I" Abs(s, term) = Clos(Abs(s, term), env)
' App(f, term) =
(case eval f env of
'l" Clos(Abs(s, fbody), env') =
eval foody (bind s (eval term env) env')
x = raise Error)
'I' z = (inner z env)))

I‘I

Similarly, Fun define the constructors and the evaluation related to the handling of higher-order
functions in the interpreted language. The composition of Num and Fun yields a mixin module
equivalent to

Interp =qet ( fun bindpina = Az.Av.Aenv. \y.if z = y then v else(env y)

¢( typeterm; tis Var (string)
U Abs (string, t)
U App (t,1)

U Const(int)
type tyalue; vis Clos (t,e)

UNum (int)
type €env; e = string — v
evaleval = AT.Aenwv.casex of

'l" Const (i) = Numy(i)
"I" Var(s) = (env s)
'I" Abs(s, term) = Clos(Abs(s, term), env)
' App(f, term) =
(case eval f env of
'I" Clos(Abs(s, fbody), env') =
eval foody (bind s (eval term env) env')
x = raise Error)
z = (inner z env)))

l‘/

l‘/

Here Interp is observationally equivalent to the composition of Num and Fun, but in DS, the
merging of the two eval functions would rather appear as a first matching on the Const constructor,
and another, nested one on the remaining constructors, replacing the initial call to inner.

Notice also that in DS, strictly speaking, the env type could not be shared during composition as
in Interp, since only data type definitions are allowed in mixin bodies. A workaround would be to
inline the definition of env in the mixin bodies, and possibly to export it in the initialization section.
Alternatively, an extension of DS, allowing any type definition in mixin bodies, and merging type
abbreviations when equal, would probably not be too difficult to formalize.

Other observations on expressiveness

Generalized abstraction As Bracha’s mixins, mixin modules in DS allow to abstract over
some module components in another way than with functors. Indeed, putting a definition ff =

30



funz.(innerz) in the body of a mixin module s; has the same effect as abstracting over fr. The
advantage is that the mixin module sy providing the definition for fr could perfectly have abstracted
over another definition gg, which s; would provide. However, in DS, as in Jigsaw, this abstraction
mechanism does not work with mixin modules, since they are not allowed in mixin bodies. The only
way to abstract over them is by functor abstraction. This makes the above example of abstraction
impossible to implement directly with mixin modules instead of functions. In other terms, mixin
module specific features in DS do not concern nested mixin modules.

Extension In [32], mixin modules are slightly extended with extensible data types constructors.
This means that during composition, two type constructors with the same names, respectively

expecting two lists of types 7i .. .T,rl“ and 72 .. .77212, are merged. The result is a type constructor
expecting the list of types 7{ ...7} ;77 ...72 . The extended calculus is used to show how to

tTny? n

implement interpreters for domain-specific languages in a modular way [30].

Overriding The DS language features a limited form of overriding, for components defined in
the body of the considered mixin module. Indeed, a function f, exported by a mixin module A can
be overridden with the new definition E, not mentioning inner, by composing A with the mixin
module B =g ((fun fr = E), obtaining B ® A. The definition of f in B® A is E{inner — Ey},
where FEj is its definition in A. And it is equal to E, since it does not mention inner. At close time,
other definitions will refer to the new definition.

Typing The DS language is equipped with a type system based on manifest types [51, 40], and
featuring type abstraction. Soundness is known to be difficult to prove in the presence of type
abstraction. Indeed, an expression supposed to be of an abstract type t only evaluates to a value
of its implementation type, say int for example. The equational theory of types does not contain
the equality ¢ = int, and therefore subject reduction does not hold. For DS, soundness is proved
in a non-standard way. First, a new type system is defined, as the initial one, but without type
abstraction. Basically, the types of modules in the second system are types of the first one, but are
required to only export manifest types. It is then showed that a term of type S; in the system with
type abstraction is necessarily well-typed in the one without type abstraction. Finally, soundness
is proved for the type system without type abstraction, which entails soundness for the one type
abstraction (see also [56]). Notice that this is a proof of type soundness, in the sense that well-
typed programs do not go wrong, but it does not guarantee that abstraction is preserved during
reduction. Indeed, it does not prove that during reduction, values of abstract types will not be
used at other types.

Conclusion

DS contains many interesting ideas for the design of a highly modular, ML-like language. However,
all its features are expressed through the single composition operator. Bracha aimed at splitting
the complexity of modularity into specific, simpler operators. The language DS does not follow
this recommendation. Moreover, it ties the module language to the particular core language ML,
and specifically to extensible pattern matching and data types. Extensible pattern matching and
data types are certainly useful, but not in every case, and we prefer to consider their treatment
as orthogonal to the module system. Finally, the fact that mixin module specific features are
restricted to a dedicated area, where only datatypes and functions are admitted, seems a bit ad
hoc, and we would prefer a cleaner treatment.
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2.3 Units

The “Programming language team” (PLT), specifically Felleisen, Flatt, and Krishnamurthi, have
widely studied the subject of language designs for increasing the reusability of software components.
The component-based and object-oriented approaches have been investigated, but what interests
us here concerns the modular approach.

2.3.1 MzScheme

An important result of their work is of practical nature, and consists in the extension of the
programming language MzScheme with units. MzScheme [34] is an implementation of the pro-
gramming language Scheme, a dynamically typed, functional and imperative language, originating
in Lisp. Units are a language construct dedicated to modularization. The idea comes from the
observation that if packages were not hard-wired to their imports, then they would be extensi-
ble. What is intended by “hard-wired” here is that packages syntactically refer to fixed external
imports. Flatt’s idea consists in making these imports abstract, i.e. parameters of the package,
and making all further links between packages explicit to the programmer: if a package A provides
the value f, and the package B imports a value g, and if the programmer estimates that A’s £
corresponds to what B’s g is expected to do, then they may be linked together by an expression
such as (simplified)

(compound-unit

(import ...)
(export ...)
(1ink (A)

(B (A £))))

specifying that B’s import if filled by A’s £.

The language is designed according to Flatt’s principle of external connections [35]:

A language should separate component definitions from component connections.

In MzScheme, a unit is a completely standard data structure, resembling a record of possibly
mutually recursive named definitions, and initialization expressions. The thing is that definitions
can be empty ; in other terms, the record has holes. Some of the record definitions may be just
declared, instead of defined.

As an example basic unit, consider the following unit DB, defining a database structure, parame-
terized over the way the client wants to report errors.

(unit
(import error)
(export new insert delete)
(define new ---)
(define insert ---)
(define delete ---))

Nothing special here, it resembles a function. But now, let GUI be:
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vo=unit|c|fnz=e
e ::= compound-expr | invoke-expr | letrec-expr | e;e | z | ee | v
unit-expr ::= unit import variable-mapping™
export variable-mapping™
definitions e

compound-expr ::= compound import y*
export y*
link e link and e link
invoke-expr ::= invoke e with value-invoke-link”*
letrec-expr ::= let rec definitions in e
definitions ::= value-defn”
value-defn = valx = v
link ::= with y* provides y*
variable-mapping =y = x
value-invoke-link ==y =e
x = variable
y := linking variable
¢ ::= primitive constant

Figure 2.3: Syntax for Unitq

(unit
(import insert)
(export open error)
(define open ---)
(define error ---))

defining the user interface for the previous database. Recursion is allowed to span unit boundaries,
so DB and GUI may be connected to form a compound unit PROGRAM. As we have both DB depending
on GUI through error and wice versa through insert. This solves the recursion problem from the
standpoint of expressive power, but not with respect to safety, since nothing ensures that the
recursion is well-founded.

Units are pieces of unevaluated code, and triggering the evaluation of a complete unit is done by
the invoke form, as in invoke PROGRAM. This triggers a left to right evaluation of all the clauses
in the unit body.

Units are first-class values, and this makes the language particularly expressive. In particular, units
directly account for dynamic linking, since a choice between several units may be made at runtime.
As a demonstration of expressive power, Flatt [35] elegantly solves an instance of the extensibility
problem with units and classes, through a straightforward encoding of mixins, as units importing a
class and exporting the modified class. Units do not feature overriding of definitions, and therefore
a solution to the modification problem with units probably would use class inheritance for this.

2.3.2 Theory

In his thesis [35], Flatt formalizes a theory of units, in three calculi. Unitq, the first unit calculus
more or less models the behavior of MzScheme. The next two ones (Unit, and Unit,) successively
add constructed types and type abbreviations to Unitg.
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| Yi > T |
r=u s
X . Pﬁ.--'

| Ye — Te

€2

1 = U1
To = U9
€1;€2

reduces to Ye > Te

| Ye H> Te |

Figure 2.5: A compound unit and its reduction

The Unitg calculus The syntax for Unity is defined in figure 2.3. A unit is a quadruple of a
list of imports, of the shape y; = x1 ...yn = T,, a list of exports, of the same shape, a list of value
definitions z; = vy ...z, = v,, and an initialization expression e. Roughly, a unit is an incomplete,
unevaluated program, and it may be combined with other units, almost arbitrarily. The import and
export sections serve to mediate the internal name space of the unit with its environment, through
the use of linking variables. A syntactic distinction is made between linking variables, denoted by
y, and plain variables x. Linking variables act as external names for definitions. Indeed, we will see
that during the composition of two units A and B, plain variables from A must be different from the
ones from B (and vice versa), except if they are imported or exported as the same linking variable.
A pictorial view of a basic unit is given in figure 2.4. Dotted arrows indicate a possible dependency
of the target on a plain variable defined by the source: apart from free variables, the definitions are
allowed to refer to themselves and to imported variables. The initialization expression is allowed
to refer to both definitions, imported variables, and also external, free variables. The plain arrow
requires the internal variables of the target to be included in the ones of the source: the exported
variables must be defined within the unit (with arbitrary external names).

The compound construct composes two units A and B as follows.

compound
import y;
export y,
link A with 7,1 provides 71
and B with 7,5 provides J.a

The notation § represents a sequence of linking variables. Two intermediate layers of variable
mappings are introduced: the import layer ¥,1 Jw2 and the export layer ye1r Yez. Their role is
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to make connections between both arguments and with the external interface of the result. The
arguments are expected to evaluate to basic unit expressions, and the semantics of composition
then simply merges the sets of definitions and sequences the two initialization expressions. The
difficulty is that all layers must agree on internal variables, as indicated in figure 2.5. The arrows
represent inclusion of variable mappings: the target variable mapping must be included in the union
of the source variable mappings. Moreover, intermediate variable mappings allow to statically have
an estimation of imports and exports of both arguments, even when they are not syntactic basic
units. Besides, they enable to resolve some name conflicts. Indeed, if the two arguments export
a variable y, it is possible to ignore one of them, by simply not putting it in the corresponding
export layer. We will see below that this enables a form of subtyping.

The invoke form transforms a unit into a let rec as expected, and the rest of the calculus, featuring
functions and let rec bindings, is exactly as expected.

Restrictions The calculus indeed models MzScheme, with some restrictions.

1. Packages are not modeled (thus restricting separate compilation to single units).

2. The composition operator is binary instead of n-ary and that it does not allow renaming
during composition.

3. Definitions must be values.
Simultaneously, it extends MzScheme’s units on two points.

1. Linking in compound units is done by name, instead of position.

2. In unit bodies, definitions are separated from initialization expressions, and during linking,
they are all put after all definitions.

Extensions should be a good thing. The first one has been introduced in MzScheme, with signed
units. The second one has not, to our knowledge.

We will not argue here about the first two restrictions, since they would probably be easily over-
come.

But let us examine a bit the consequences of the third one. Restricting definitions to values consid-
erably simplifies the semantics of invoke, since it becomes a mutually recursive definition (let rec)
of values, followed by a unique initialization expression. In contrast, without this restriction, an
operational semantics would have to specify the order of evaluation and to feature a more powerful
let rec construct for describing this evaluation. As a consequence, the programmer must explicitly
evaluate all its definitions before building a unit, with the inconvenient that they cannot be re-
exported, since variables are not values. This is probably not too restrictive, since units are first
class, but in some cases, it is annoying, as shown by the following example.

Example 2 Assume that we are supposed to write a unit which prints ML-like type variables:
they are represented as records, but are unnamed, and the unit must therefore choose names ’a,
’b, etc..., and provide a reset function.

In OCaml, this is done with the functor of figure 2.6, with an internal reference, which the print
function increments, and the reset function resets. With Unit 4, it seems that either the reference
would have to be defined outside the unit, which might break the abstraction, or a better workaround
has to be found. A possibility can be sketched as follows

let PrintTyVar = fn() =
letz = ref ’a’in
unit import error eq
export print_tyvar
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module PrintTVar
(Base : sig
val error : string -> ’a

end)
(TVar : sig

type t

val eq : t -> t -> bool
end) = struct

let vars = ref ([] : (TVar.t * string) list)
let current_name = ref ’a’
let reset () = current_name := ’a’ ; vars := []

let new_name () =
let ¢ = !current_name in
let n = Char.code ¢ in
if n > 122
then Base.error "cannot print that many type variables. "

else
let ¢’ = char_of_int (n + 1) in
current_name := c’;

"om ~ (String.make 1 c)

let string_of_tyvar v =
try
snd (List.find (fun (v’, name_v’) -> TVar.eq v v’) !vars)
with
| Not_found ->
let s = new_name () in
vars := (v, s) :: !vars;
s

let print_tyvar fmt v =
Format.fprintf fmt "¥s" (string_of_tyvar v)

end

Figure 2.6: Printing type variables in OCaml
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(let x = el in e2 is syntactic sugar for (fn x = e2) el.) It consists in wrapping the unit
inside a function that defines a local reference and returns the unit, which may use the reference,
without breaking the abstraction. The restriction of definitions to values seems therefore reasonable,
but still a bit ad hoc. It clearly would be preferable to allow any expression as a definition.

In the other sections, we examine the other aspects of units independently of this important
drawback, and of the restrictions.

2.3.3 Types

Still in Flatt’s thesis [35], two successive extensions of Unitq with types are presented. Unit,

3

introduces constructed types in a simplified form. Declarations of the shape
typet=alzln | 22,23 momxy,

are allowed, and should be read as the declaration of a type with two constructors z. : 71 — ¢ and
z2 . 7y — t, two destructors z} : + & 7 and 2% : t —» 7, and a filter z,,, which takes a value of

Cc
type t as argument and returns true if it is of the form (21 v) and false otherwise.

Types may be exported (as abstract types), thanks to type linking variables s. The programmer
may decide to export the constructors and destructors for his type, or not. In contrast with the
manifest types [51] translucent sums [40] systems, there is no mechanism for externally selecting
components, so every use of values related to constructed types are in their unit of definition, or
in a unit importing them. As a consequence, there is no need for the usual intricate tricks for
referring to abstract types: they are syntactically bound by imports. A type system is presented,
which is proved sound, except for variant errors: a term such as z);(22e) is well-typed.

The second extension concerns type abbreviations. The only difficulty is to prevent recursive type
definitions, which is done by keeping track of type dependencies in the the unit types, and detecting
cycles at composition site. Exporting type abbreviations as manifest types is not possible yet, but
it seems to be easy to add.

Subtyping There is no subsumption rule in the typed unit calculi (for algorithmic reasons), but
subtyping is inlined in the composition and invoke rules. The well-known problem for subtyping
extensible records with symmetric concatenation [42] does not cause trouble here. Symmetric
concatenation takes the union of two records, provided labels do not clash. The problem basically
is the following. The intuitive subtyping relation between extensible records is that a record defining
more labels, with finer types, than another record may safely replace it. This intuition is wrong,
because a record with more labels than expected may entail label clash during concatenation.
Here, the composition operator coerces its argument in one go to the expected type. Indeed, the
intermediate layers (see figure 2.5) avoid unexpected label clashes.

A new idiom for modularization Semantically, modules are not nested, and there is no con-
struction for accessing a definition inside a module. Instead, the idea is that the whole program is a
let rec definition, followed by initialization expressions, but that units allow to split it into parame-
terizable fragments, which may be separately distributed and used. This significantly departs from
traditional modules, which are more or less assimilated with records. Module evaluation allows to
define a record, and after that, other parts of the program have access to its definitions, through
the selection operator. Here, idiomatically, the program structure is less hierarchical: in order to
use a definition exported by a unit, the programmer has to merge his code with it, to produce a
new unit, which stays flat. (More than that, as only values are allowed as definitions, compound
units cannot be defined inside units, thus restricting the possibilities of unit nesting.)

As a canonical example, from [35] again, the diamond problem becomes more or less meaningless
with units. In ML, assume for instance a Symbol module, used by functors Parser and Lexer,
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Symbol : SYMBOL

functor Lexer

type t
: LEXER functor Parser : PARSER
(Symbol : SYMBOL) = (Symbol : SYMBOL) =
type sym = Symbol.t type sym = Symbol.t
functor Reader ( Lexer : LEXER)

(Parser : PARSER
with type sym = Lexer.sym)

Figure 2.7: An example diamond problem, with functors

Symbol = unit
export type sym

Lexer = unit
import type sym

Parser = unit
import type sym

export lex : str — sym export parse : sym — expr
Reader = unit import type sym
lex : str — sym
parse : sym — expr
export read : str — expr

Figure 2.8: An example diamond problem, with units
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both of which are later used by the main functor Reader, as in figure 2.7. Type sharing allows to
specify that the Symbol module imported by Parser and Lexer has to be the same, in order for the
main program to be correct (cf the type sharing specification “type sym = Lexer.sym”). Moreover,
the linking is performed by first building the real lexer and parser, by applying each functor to
Symbol, and then applying Reader to the results. With units, there would be units for the symbol,
lexer and parser entities, but instead of referring to an imported unit Symbol, the lexer and parser
would refer directly to its definitions, as sketched in figure 2.8. Similarly the Reader unit directly
imports the type sym and the functions lex and parse. Linking is done by composing the four units
together. (It is not really possible in the unit calculi because of the various restrictions, but the
idea should be clear.)

This formalism is an interesting aspect of the PLT work, because it reveals that the complexity
introduced by the need for exporting data types and use them outside of their initial scope, as
in traditional module systems, might be overcome by different design choices, without loosing
expressive power. Given the depth of this complexity [28], the issue is worth exploring. A drawback
of this approach might arise from the lack of a structured name-space. The dot notation [21] has
no meaning with units. One could argue that the name space is even more structured with units,
since the internal names are irrelevant to the meaning of the unit, especially during composition.
Therefore, the programmer may call variables exactly as she wishes according to the context, linking
variables making the connections. However, as argued by Szyperski in [74], it is often convenient to
feature both static linking, as when using library functions, so hard-wired imports are still useful.
From this perspective, it is interesting to notice that the package system of MzScheme remains,
even in the presence of units.

24 CMS

After the work of Bracha et al., a contemporary work to those of Duggan et al., and Flatt et al. is
Ancona’s PhD work on a semantic characterization of mixin modules [3]. He defines mixin modules
with the tools of category theory. After this, Ancona and Zucca reformulated and improved this
definition in terms of a calculus with an operational semantics, called CMS [5]. At the same time,
Wells and Verstergaard developed their m-calculus [76], which is similar to CMS in many ways.
These two contributions are less pragmatic and more foundational than previous work on mixin
modules. We give an overview of both of them, and compare their respective merits, beginning
with CMS in this section. For both calculi, we change notations and names a bit for homogeneity
reasons.

2.4.1 Syntax and semantics

Syntax CMS [5, 6] defined by the pseudo-syntax in figure 2.9. Contrarily to Flatt and Felleisen’s
work, the distinction between a-convertible variables and fixed external names is here syntactically
enforced: variables are ranged over by x,y, z and names are ranged over by X, Y, Z.

CMS is parameterized over an arbitrary core language, with some conditions, not explicited here,
since they are very intuitive, see [5] for details. C denotes a core expression. In CMS, a core
expression must be wrapped in an explicit substitution p in the style of [2], which must cover the
whole set of its free variables, and not be recursive (FV(cod(p)) L dom(p)).

CMS basic modules are constructed by the [i; 0; p] form. The meta-variable ¢ ranges over input

assignments, which are lists of bindings from variables to names, written z; & X;. The notation is
used also below for output and local assignments, in the same sense. Assignments must correspond
to surjective finite maps and the z;s must be different. Qutput assignments o map names to
expressions, and represent the definitions exported by the module. Local assignments p map
variables to expressions, and are the hidden definitions of the module. The scope of the variables
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Expression: FE ==z Variable

| Clp] Core expression

| [¢; 05 p] Basic module

| Ey + E Sum

‘ ot ‘E‘Uc Reduct,

| freeze, s (E) Freeze

| E.X Select

Finite maps: &= x; S X; Input assignment

0:=X; sy E; Output assignment
p=x; & E; Local assignment
o= X; & YZ-,YJJGJ Renaming

Figure 2.9: CMS syntax

bound by ¢ and p is the whole mixin module. A basic module is well-formed if ¢ and p do not bind
any variable in common. Composition oy o g9 is defined on finite maps, only if cod(o2) C dom(ay).
Union o7 + 09 is defined on finite maps oy and o9, provided dom(oy) L dom(os).

Module operators include composition, here called the sum, which links two modules together. The
reduct operator ,.|E|,., is roughly a powerful renaming operator, but not only, since it expresses
definition hiding. Here o' and ¢” are renaming, which syntactically are pairs of an assignment
mapping names to names and a list of names, which we call the unused names. The unused
names must not be in the codomain of the assignment. In other terms, renamings are finite maps,
as assignments, but they are not forced to be surjective. CMS also includes a powerful freezing
operator, for making some definitions early bound, and the usual selection operator.

Variables are a-convertible in basic modules, and we will consider expressions modulo a-conversion.

Semantics The semantics of CMS is defined as the least contextually closed relation respecting
the rules in figure 2.10. The rules only apply when both sides of the — symbol are well-formed
expressions. The strength of CMS is the way inputs and outputs are kept separated, which allows
for very powerful yet simple operators.

By rule AZ-CORE, the reduction relation — of CMS includes the transitive closure of the re-
duction on core expressions —¢, which is a parameter of the system. Moreover, sometimes the
evaluation of a core expression C[p] can require the value of a variable z, explicitely bound in the
surrounding substitution p. Then, by rule AZ-SUB, if the expression to which z is bound has the
form C'{p1}, then z is replaced with C' in C, (thanks to the core substitution, which is also a
parameter of the system,) while the pending substitution now includes the bindings in p;, and no
longer binds z.

Rule AZ-SuMm simply takes the unions of the present finite maps, provided no clash or variable
capture occurs. Specifically, writing o1 + 05 implies that 0, and o, have disjoint domains. Inputs are
shared, but variables mapping to the same name are kept different. Another operator, called the
left preferential sum E; « Es is also defined, which does not require the outputs to be disjoints, but
rather gives precedence to outputs coming from the right. It is defined by the following reduction
rule:

(dom(i1) U dom(py)) L (FV([e2; 095 p2]))
(dom(12) U dom(p2)) L (FV([11;01 + 05 p1])) dom(o) C dom(os)

([t1;01 + 05 p1] = [12; 095 pa]) — [11 + L2501 + 025 p1 + p2]

(AZ-OVERRIDE)
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Rule AZ-REDUCT describes the action of the reduct operator .| Ej,.. In fact, it could be divided
into two operators, one for reducing input ,.| E, and one for reducing outputs Ej,.. Both actions
are similar though. Each of them bases on a renaming ¢* and ¢, respectively. Input renaming
changes the input names, but not the corresponding variables, and possibly adds new (unused)
input variables. This is done by composing the renaming with the former input assignment. For
instance, if a name X is renamed into another name Y, then ¢* includes a binding X — Y, and
¢ includes a binding  — X. Then, the composition of ¢+ and ¢* has a binding x — Y. If the
renaming has unused names, or if dom(c*) contains names not in cod(r), then a fresh variable is
associated to each of them, thus adding dummy inputs. If the renaming is not injective, then some
inputs get shared. Similarly, output renaming composes the renaming with the output assignment,
possibly forgetting some exported names. Renaming X to Y as above would here be done with a
binding Y — X, the initial output assignment having a binding X — FE. The renamed output,
oo ¢”, then has a binding Y — FE.

The freeze operator, described by rule AZ-FREEZE, makes some definitions early bound in a mixin
module. As an additional argument, it takes a renaming from some input names to some output
names. The finite map tells which definitions must be associated to the frozen input names. The
internal variables corresponding to the frozen names are definitely bound as local definitions. As
an example, consider the following mixin module

freezex sz y—z([X —» 2,Y —» y; Z — E;])

which reduces to

[Zw— E;zw— E,y— E].

As a side observation, CMS does not at all bother with sharing computations.

Finally, a mixin module without any input is ready to be used by the outer world.

Definition 3 (Concrete and open mixin modules) A mizin module is said concrete if it does
not have any input. Otherwise, it is called open.

Rule AZ-SELECT selects a definition out of a concrete mixin module [;0; p], with p = x; & E;.
One cannot simply copy the body E = o(X), because it might contain references to the local
definitions. Such internal calls are implemented as follows. Each free occurence of x; € dom(p) in
FE is replaced with a kind of closure: the local definitions p of the mixin module are put in a new
mixin module, which only exports a name Y, bound to the definition E;. x; then corresponds to
selecting Y in this mixin module.

The operational semantics of CMS is confluent, as stated by the following theorem by Ancona and
Zucca [5].

Theorem 1 (CMS is Church-Rosser) If E —* E; and E —* E», then there exists E' such
that B, —* E' and E; —* E'.

2.4.2 Types

CMS is equipped with a type system that reflects the distinction between input and outputs. Core
expressions have core types, and mixin modules have types of the form [X*; ¥°], where X* and X°
are signatures, i.e. finite sets of pairs of a name and a type. X* is the input signature, representing
the requirements put on inputs, while ¢ is the output signature, declaring the capabilities offered
by the output definitions. Typing judgments are parameterized by the corresponding judgments
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Figure 2.10: Reduction rules for CMS

on core expressions and types. The typing rules are presented in figure 2.11. Qur presentation is
a bit different from that of Ancona and Zucca, in that we do not use type annotations to guide a
possible typing algorithm. In a sense, our presentation could be viewed as the Curry-style version
of their Church-style presentation.

By rule AZ-T-VAR, a variable has the type it is assigned in the environment. By rule AZ-T-CORE,
the explicit substitution construct is typed as a let binding. The bound expressions F; must have
core types. They are added to the environment to type the final core expression C, thanks to the
core type system.

Rule AZ-T-BAsic describes the typing of a basic mixin module. A type has to be guessed for each

bound variable, those of the input ¢ = z; sy X; and those of the local definitions p = xy = Ey,
say x; : TZEIUK. With these types, the local definitions can be checked to have the expected types
T,I:GK, and the exported definitions can be typed TJJGJ. The final type of the expression can then be
formed: it has the input types as an input signature, and the export types as an output signature.

This type must be checked well formed, which means that the signatures are finite maps.

Rule AZ-T-SuM describes how the sum of two mixin modules is typed. Provided the two outputs
do not, define any name in common, the sum takes the union of the input types and of the output
types. Thus, some common inputs can be shared during composition. The result type must be
checked well formed, as for instance two similarly named inputs could have different types in the
two input signatures.

Rule AZ-T-REDUCT, given that the argument mixin module has type [X*; ¥°], guesses two signa-
tures X' and X°' such that the input and output renamings respectively map % to £*' and X° to
¥.°, preserving types, as witnessed by the side-conditions ¢* : £* — £¢' and ¢° : £¢' — X°. Notice
that the renamings are allowed not to be surjective, which lets some choice to the type system in
attributing types to the names that are not present in the original type.

Similarly, rule AZ-T-FREEZE checks that the freezing map o/ maps some input specifications to
output specfication, preserving types, and removes the frozen declarations from the input signature.

Finally, in the case of a selection, rule PROJECT choose the type associated to the selected name.
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Figure 2.11: Typing CMS

2.4.3 Expressiveness and inconvenients

Encodings In [6], Ancona and Zucca present encodings for the untyped A-calculus, which ac-
counts for an encoding of ML-style module systems, an encoding of Abadi and Cardelli’s ACC
calculus of objects [1]. This accounts for the computational power of the calculus. We informally
present the two encodings.

The A-calculus is easily encoded by using the abstraction facility provided by mixin modules: choose
two reserved names ARG and RES, and encode any function A\z.e, as [t — ARG; RES — [e];]
(where [-] denotes the encoding function). Function application ejes can then be expressed as

(freezearcesarc([el] + [ ARG — [e2];])).RES.

During application, the ARG field is filled with the translation of the argument, and then frozen.
Computation is then triggered by selection of the RES field from the result. The usual a conversion
and S reduction are modeled by this encoding.

Encoding Abadi and Cardelli’s ACC calculus of objects is more difficult, so we do not detail it here.
Basically, the SELF parameter is modeled as a deferred component, and each method is defined as
an output component. Overriding is trivial to implement with the left preferential sum of section
2.4.1. For method calls, the SELF input has to be filled with a definition. The adopted solution,
introduced in [1] already, consists in filling it with the object itself. The result can then be frozen
and the needed method selected. A method call e.l is then encoded as (freezesprr—surr([e] +
[ SELF s [e];]))-l.

CMS as an implementation language and other operators Also, CMS is further used as an
implementation language for DCMS, a typed surface language with mixin modules. The interest
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is that the power of CMS is used to encode more usual operators. The fundamental difference
between CMS and DCMS is that mixin module types are divided into deferred, virtual, and frozen
components. Virtual components correspond to CMS components present both as inputs and as
outputs, whereas frozen components are those that are only outputs. This allows for a refined
overriding policy: frozen components cannot be deleted in DCMS, whereas virtual ones can. This
policy is only enforced by typing, since the dynamic semantics of DCMS is given by translation to
CMS.

Additionally, the operators are not exactly the same as in CMS. For instance, the reduct operator is
split into more atomic operators. For instance, restriction allows to delete some virtual definitions,
and freezing only allows to map input components to virtual components of the same name. In
fact, renaming is not possible at all anymore. We think that it should have been maintained,
maybe as a separate operator. Hiding takes some virtual and frozen components, freezes the not
already frozen ones, and deletes them from the result. Thus, other definitions will continue using
the hidden definitions even if at some point the corresponding names are defined again, differently.
Finally, selection allows to select a component from a mixin module that still has some virtual
components (which semantically corresponds to first freezing those components before to perform
the selection).

The type system of DCMS does not guarantee that frozen definitions of a mixin module will remain
the same whatever use can be made of it, as is the case for final class methods in Java [48]. It
does not seem too far from it though: probably, only the hiding operator breaks this property.
According to the authors !, frozen components are closer to static methods in Java than to final
methods. However, it should not be difficult to encode final methods with a refined typing policy.

CMS is call-by-name In call-by-name or lazy programming languages such as Haskell [?], mod-
ules are basically finite sets of definitions, i.e. unevaluated code. In that sense, CMS concrete
mixin modules are rather similar to modules. The operational semantics given by Ancona and
Zucca does not model the sharing taking place with the lazy strategy for instance, but it is rather
a matter of level of abstraction or of presentation than a semantic inadequacy. Moreover, compu-
tational aspects of modules, especially with respect to monads, can be easily introduced in CMS,
as shown by Ancona et al. [4].

On the contrary, in call-by-value languages, a module is rather a piece of code at first, which is
evaluated, and results in a set of values. The definitions contained by a module are thus evaluated
prior to be used by other parts of the program. As an example, consider the very simple module
(in OCaml-style syntax)

struct
let £ x=x + 1
let res = £ 0
end

Intuitively, this module should be represented in CMS as [f — F,res — RES;F — Ar.x +
1, RES — f0;]. However, there is no hope that this mixin module reduces to the expected value,
ie. [f— F,res » RES;F — Az.x + 1, RES — 1;]. Indeed, in CMS modules, one definition
is never allowed to use definitions of the same mixin module. And this is coherent with the late
binding semantics: if we override F' above, the definition of RES must use the new definition. As
a consequence, in our quest for a call-by-value language with mixin modules, we need a mechanism
for triggering module evaluation, reminiscent of Duggan and Sourelis’ clos() operator, and of Flatt’s
instantiation operator. In the following, we call this operation close. Mixin modules have to contain
unevaluated code, because of the late binding semantics, but they must be mapped somehow to
the usual call-by-value notion of modules, by evaluating their definitions.

!Flena Zucca, personal communication, 2003
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z,y,z € Vars Variable
XY, Z € Names Name
L:=X|_ Label
B:=c¢]|e Body
d:=Lvx=208 Definition
bu=d;...d, Binding (n > 0)
e,fu==x Variable
| (b) Mixin module
led f Linking
le._x Hiding
| e. X Selection
|let rec b in e Let rec

Figure 2.12: Syntax of the m-calculus

Hint 1 (Close operator) In a call-by-value setting, mizin modules should contain unevaluated
code, and the language must feature a close operator for triggering this code, thereby transforming
concrete any mizin module into a module, the definitions of which can then be selected by the rest
of the program.

Types, recursion, and call-by-value In call-by-value languages, it is usual to restrict recursive
definitions to syntactic functions [58], possibly with some extensions [55]. Such restrictions rule
out some ill-founded recursive definitions, and that they allow more efficient compilation.

Nevertheless, with respect to recursive definitions, mixin modules go farther than conservativity.
Indeed, arbitrary recursive definitions can appear at runtime, as we saw in section 1.2.4. It is
undesirable that mixin modules force language designers to restart writing their compilers from
scratch, or to forget about their useful optimizations.

Therefore, it is important to find a way of statically ruling out forbidden recursive definitions,
which the type system of CMS does not provide.

2.5 The m-calulus

In [76, 75], Wells and Vestergaard present the m-calculus. It is presented as a calculus for linking,

3

but according to definition 2, it features mixin modules. We describe it briefly in this section.

2.5.1 Syntax and semantics

Syntax The syntax of the m-calculus is presented in figure 2.12. Syntactic conventions are similar
to those chosen for CMS: variables x,y,z € Vars are distinguished from names X, Y, Z € Names.
A mizin module (b) in m consists of binding b. A binding is a list (d; ...d,,) of definitions d;. A
definition d = (L >x = B) binds a label L and a variable x to a definition body B. A label is
either a name X or the anonymous label _, which allows to write local definitions. A body is either
an expression e or the empty body e, which allows to write input definitions. An expression can
be a variable x, a module (b), the linking of two expressions e & f, the hiding of a name in an
expression e._ x, the selection of a name in an expression e. X, and the mutually recursive binding
of expressions in another one, let rec b in e.
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Syntactic correctness Some conditions are required for syntactic correctness.

e First, bindings should not bind the same name or variable twice.
e Second, bindings in let rec should be anonymous and non-empty, i.e. of the shape _>z = e.

e There are no unnamed, empty definitions.

Contrarily to CMS, input, output, and local definitions are here mixed in the same binding. We
recover the same structure though: inputs are named, empty definitions, outputs are named, non-
empty definitions, and locals are unnamed, non-empty definitions. Bindings can be seen as finite
maps from pairs of a label and a variable to bodies. We will use standard operations on finite maps
on them, such as the union +. By slight abuse of notation, we denote by b »- (where N is a set of
names) the restriction of the finite map b to definitions named with an element of N. Similarly, we
denote by b\ » the restriction of the finite map b to anonymous definitions and definitions named
with an element out of N. We do the same abuse of notation for variables, in particular, for
designing the definition associated to a variable z in a binding b, we write b(z).

Structural equivalence Variables in mixin modules and let rec are a-convertible, as usual.
Moreover, expressions are considered equivalent modulo commutation of the arguments to a linking,
and modulo the order of definitions in a binding.

Dynamic semantics The dynamic semantics of m is defined as the least contextually closed
relation respecting the rules in figure 2.13.

The main and most complicated rule is the WV-LINK for linking two mixin modules (b) and (b').
First, the definitions bound by the same names in the two bindings are isolated, the other ones
being copied straightfowardly into the result mixin module. The notation DN(b) denotes the set of
names defined by a binding, so N' = DN(b) N DN(¥') is the set of names defined in common by the
two mixin modules. Let those common definitions be b » = (X1 > 21 = By ... X, > 2, = B,) and
Viny = (X1>2 = Bj...X, >z, = B)). Then, for each pair of similarly named definitions, the
function PickBody choose the non-empty body if any, and otherwise denotes e: PickBody(e,e) =
PickBody(e,e) = e and PickBody(e,e) = e. In the case of two non-empty bodies, PickBody is
undefined, and thus if the rule applies, it implies that no such conflict occurs. Notice that contrarily
to CMS, variables binding the same names in the two bindings are assumed to be equal here. It
can be reached by structural equivalence, of course, exactly as the condition imposed by CMS.

Rule WV-ISuUBST (for internal substitution) describes the use of a definition to evaluate another
definition in the same binding. If a definition is of the shape L; >21 = C[z2], and 25 binds another
definition Ly > zo = e, it is allowed to copy e into C[zz], provided no capture occurs and the
second definition does not risk to depend on the first one. This is formalized by considering the
dependency graph — 4y of our binding b. This graph has the variables defined by the binding as
nodes, and its edges are built as follows. If the body of a definition L; > 7y = e; is non-empty
and has zy as a free variable, then there is an edge x2 —(y x1. Moreover, an input definition (a
definition with an empty body) potentially depends on all the named definitions of the binding,
so there are edges from each of the variables binding named definitions to all empty definitions.
We say that a definition di depends on a definition dy if the reflexive, transitive closure of the
dependency graph has and edge from the variable binding ds to the one binding d;. To sum up,
rule WV-ISuBsT allows substitution outside of dependency cycles. The reason for this restriction
is that confluence would be lost otherwise, as noticed by Ariola and Klop in [8]. Notice that rule
WV-ISuBST applies as well in mixin modules as in let rec.

In let rec, however, the values defined in the binding can also be used in the body of the let rec, as
stated by rule WV-ESUBST. The side-condition just ensures that no variable capture occurs, and
that the occurence of = in the body of the let rec actually refers to the considered binding of z.
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N =DN(b)NDN®F) by =(Xipz =B...Xyp 2, = B,)
b"/\[: (X] > I :B{ X b, :B;l)
V'=(Xiva =B)...Xpvw, =B;) V1<i<n,B/ = PickBody(B;, B))

(b) & (b') — (byw + by +0")

(WV-LINK)

b= (L] > T :(C[CUQ],LQ > o :e,b')
Capt,(C) L ({z2} UFV(e)) T1 (T2

b—)(Ll > I :C[ﬁ‘],LQD.’EQ :ﬁ‘,bl)

(WV-ISUBST)

Capt,(C) L {z} U FV(b(x))
let rec b in Clz] — let rec b in C[b(x)]

(WV-ESUBST)

DN()=0 DV(') LFV(h) b #e¢
(b+ by — (b)

(WV-GC-MODULE)

DV(H) L (FV(D) UFV(e)) B #e
let rec b+ b in e—>letrec b in e

(WV-GC-LETREC)

let rec € in e — e (WV-EMPTY-LETREC)

b #e DY(b) 1 (DV(b')IU FV(b")) (WV_Crosurs) X ¢ DN(b)
let rec b in (b) — (V' + b) (b).—x — (b)

(WV-HIDE-ABSENT)

(X>z=B+b). x —(>x=B+0b) (WV-HIDE-PRESENT)

Figure 2.13: Reduction rules for m

The WV-GC-MoODULE rule describes the garbage collection of a non-empty set of unused local
definitions, and similarly, the WV-GC-LETREC rule describes the garbage collection of a non-
empty set of unused definitions in a let rec.

The rule WV-CLOSURE describes the elimination of let recs. What happens when an argument of
a linking operation turns out to evaluate to an expression of the shape let rec b in (b')? The rule
WYV-LINK does not apply directly. Contrarily to Ariola et al. [8, 7], who lift the let recs to the top
of the expression, Wells and Vestergaard choose to merge the let recs into the mixin module, as
formalized by the WV-CLOSURE rule. The expression above reduces to (b+ b'). This treatment of
let rec resembles explicit substitutions [2], and is possible because all strict operators expect mixin

modules as arguments.

Finally, rules WV-HIDE-ABSENT and WV-HIDE-PRESENT define the semantics of definition hid-
ing. By rule WV-HIDE-ABSENT, hiding an absent definition does nothing, whereas by rule WV-
HipE-PRESENT, hiding a present definition replaces its name with the anonymous label.

Properties of the reduction relation The reduction relation is confluent, and enjoys the
strong finite developments property [75]. Roughly, this means that reducing all the redexes present
in an expression and their residuals in any order leads to a unique normal form.
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2.5.2 Expressiveness and inconvenients

Wells and Vestergaard [75] show encodings for even more features than Ancona and Zucca. Besides
record operations, first-class functions, and Abadi and Cardelli’s object calculus (ACC), Wells and
Vestergaard show encodings for C-style modules, packages (Haskell style), higher-order ML style
modules, at least of their type-free aspects. Finally, they compare the expressiveness of m with
other calculi for linking, including first-class contexts [44], first-class environments [68, 67], and
CMS. An encoding of CMS is given, which is not exactly a simulation, but is conjectured to
preserve observable behaviour. This encoding is interesting because m initially features neither
definition renaming nor late binding, and the encoding shows that they are in fact present in the
calculus, in a quite intuitive way.

Late binding The set of names can be partitioned into input names written here with the
superscript i, as in X' and output names written here with the superscript o.

A virtual definition of CMS named X, i.e. a couple of an input z — X and an output X — e
can then be represented by a couple of an input definition X' > 2 = e and an output definition
X°p>y = e. The variable y must not be used by any definition. This way, the WV-ISUBST never
applies for virtual definitions, thus preserving the late binding semantics. Overriding can then be
implemented by first hiding the definition of X°, then garbage-collecting it (since y is unused), and
finally linking with a mixin module defining X° again.

Definition renaming A positive atomic renaming in m is a pair of names, written X Ly 1t
is used for renaming output definitions, and applied to an expression e by

(ed(Xpx=e0Y>y=121))_ x.

The effect is that the definition provided by e is bound to x and re-exported as Y. When X is
then hidden, Y still exports the right definition, and has semantically replaced X in the interface
of the mixin module.

A negative atomic renaming X := Y allows to rename input definitions, by a dual mechanism. It

is applied to an expression e by applying the inverse positive atomic renaming, i.e. X Ly,

A more complicated notion of simultaneous renaming is given, which follows the same idea, but is
slightly more powerful since it allows to duplicate output components and to merge input compo-
nents.

Additionally (atomic) renaming has an action that recalls freezing. If an input name is renamed
to an output name, this has the effect of resolving the input with the output, as shown by the
following example reduction.

(Xprx=e0Yby=¢c)X:=Y]
=({(Xpzx=e0Yby=c)d ¥ ry=Xvr=y))._x
—(Xvzr=y,Y>y=e)_x
—{rrx=y,Y>y=e)

The result mixin module is observationally equivalent to (_>z = e,Y >y = e), which corresponds
to the result of freezing X as Y.

Thus, m and CMS offer similar features, from the standpoint of dynamic semantics. It is interesting
to list the differences, and record what they bring to the theoretical study of mixin modules.
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2.5.3 Comparison with CMS

Shape of the basic mixin modules and subtyping Basic mixin modules in the m-calculus
are very close to an acceptable concrete syntax, because deferred, local, and exported definitions
can be interleaved. Furthermore, this gives an intuition about a possible order of evaluation of the
definitions. However, the shape of C'MS basic mixin modules provides more information about the
status of definitions. In particular, in CMS, a definition can be exported without being imported
(i.e. without being bound by a variable). In the m-calculus, this information is hidden in the fact
that the variable binding the observed definition is unused.

This has consequences on typing, especially in the presence of depth subtyping, which will probably
appear more natural in CMS. Depth subtyping is likely to work well with mixin modules, because
the inputs are contravariant, whereas the outputs are covariant, and the distinction appears in
types. (Width subtyping for mixin modules has to do with extensible records subtyping [42, 63, 11],
and is not concerned here.) With CMS-like basic modules, it is intuitive to specify the import
type of a virtual component X, even if it is different from the type of the definition. For instance,
a typed mixin module like [z — X : T; X — e;] would have a type like [X : T; X : T'], where T"
is the type of e. The constraint is that 7" must be a subtype of T'. It is then possible to delete X,
and replace it with a definition of type T", as long as it is also a subtype of T. In the m-calculus,
the shape of basic mixin modules suggests that an exported definition will only be specified by one
type, which compromises this kind of feature. Of course, this is just syntax, and a distinction on
input and output can be made for types, even if it does not appear in expressions.

We conjecture that this form of subtyping allows for a great simplification of a paper by Bono et al.
on subtyping mixins in a mobile setting [10]. Indeed, in their framework, the subtyping points are
clearly located at receive time, which allows for automatic coercion insertion, with width subtyping.
More precisely, for width subtyping, a mixin module E of type [X*; 3X°] can be coerced to the type
[X¢;2°'], provided the following inclusions hold: X* C ¢/, ¢ € X°. The coercion is .| E|yo,
where ¢ and ¢° are the canonical injections from dom(X*) to dom(¥') and from dom(%°") to
dom(X?), respectively.

Independence with respect to the core language The most obvious semantic difference
between both calculi is that CMS features second-class mixin modules, explicitely abstracting over
an almost arbitrary core language. The standpoint of m is rather to have first-class mixin modules,
and rely on the expressiveness of the mixin module language to account for other core language
features.

Partly because of the parameterization over the core language, CMS seems more difficult to
adapt to a call-by-value setting. In CMS, when the evaluation of a core expression uses a
recursive definition, it can be represented by selecting a component out of a mixin module,
and storing it in a closure. Consider the following example, where the core language is as-
sumed to include integers, arithmetic operators, and an if ... then ... else ... operator. Let
C =gef Az.if £ =0 then 1 else fact(z — 1), and Ey =qer Clfact — fact], which injects C into the
mixin module language. Then, the mixin module E; =qef [; FACT — Ejy; fact — Ep] exports a
function FACT that computes the factorial of an integer argument. Suppose now that we want to

compute the factorial of 0.
Here is how the reduction proceeds

(fact 0)[fact — E;.FACT)]

— (fact 0)[fact — (Ep{fact — E,.FACT?})] (by rule AZ-SELECT)
= (fact 0)[fact — (C|[fact — E,.FACT])]

— (fact 0){fact — C}[fact — E,.FACT] (by rule AZ-SuUB)

= (C 0)[fact — E,.FACT)]

— 1[fact — E,.FACT)
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In CMS, the obtained expression is not a value and loops, trying to evaluate the closure. However,
one could imagine a garbage collection rule for unused bindings in closures. Unfortunately, in a call-
by-value setting, the reduction would evaluate the E;.FACT in the closure first, and unfortunately
this would not terminate, since the same expression appears again after one reduction step. In this
thesis, we will choose the m way, and rely on the mixin module language to express usual core
language features.

From concrete mixin modules to modules In m, a mixin module without input definitions
and without dependency problems can be evaluated, thanks to the WV-ISUBST rule. What we call
a dependency problem is a case where one or more definitions would need to copy the value of each
other in order to evaluate. For instance, an expression such as (X > 2 = x @ z) has a dependency
problem. Nevertheless, all the common recursive definitions behave well in the m-calculus. A
recursive definition of functions, for instance, is perfectly evaluated and can be further used by
other definitions, in the same binding. In this respect, m is not as call-by-name as CMS. In CMS,
a concrete mixin module (see definition 3) with unevaluated definitions never further evaluates.
This fact leads to the conclusion that m is close to a language of call-by-value mixin modules.

Indeed, if mixin modules are represented as explained by the encoding of section 2.5.2, we have seen
that the late binding semantics is preserved. Call-by-value mixin modules could then be defined
by restricting the reduction relation to a call-by-value strategy. Roughly, this could be done as
follows.

e Refine the notion of value. Open mixin modules are values (do not evaluate inside open mixin
modules). Only fully evaluated concrete mixin modules are values.

e Restrict both substitution rules WV-ISUBST and WV-ESUBST to copy only values,
e Restrict selection to value concrete mixin modules.

e (Maybe this could also require to modify the handling of let rec bindings.)

The obtained calculus respects hint 1, by distinguishing open mixin modules from concrete ones,
only allowing evaluation inside the latter, and selecting components only from evaluated concrete
mixin modules. The close operator is not directly in the language, but its role can be played by
freezing. If we call virtually concrete mixin modules the ones such that all input names correspond
to an output name, closing a virtually concrete mixin module can be done by freezing all its
components.

The obtained language still remains unsatisfactory though, in at least two aspects.

e First, there is a need for a polymorphic close operator. Indeed, the above solution only
encodes close locally, for a mixin module whose shape is known.

e Second, once a virtually concrete mixin module has been closed (by freezing all its input
components), evaluation remains undeterministic (as the evaluation of let rec is).

The first point is not too hard to solve: closing a virtually concrete mixin module consists in
replacing the input variables with the corresponding output variables, and removing the input
declarations, thus making the mixin module concrete and ready for evaluation.

The second point is more problematic however. Making evaluation deterministic turns out difficult.
Indeed, in m, bindings are considered equivalent modulo reordering of definitions. But given a
binding, evaluation has to find a unique correct order of evaluation for definitions, that does not
violate dependencies. The uniqueness comes from the requirement that in a call-by-value language,
side-effects must appear in a predictable order. In usual call-by-value module systems, the order of
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evaluation is given syntactically, but here, in some cases, it does not exist. For instance, consider
the binding _.>x =1+ 2,_>y = 2 1. There are two possible orders of evaluation.

A first idea to solve the problem is to stop considering bindings equivalent modulo the order of
definitions, and specify an order of evaluation inside them, say from left to right. However, this
breaks the definition of linking. As an example, consider the two mixin modules e; =ger (X >z =
.Yy =2x+1)and es =qer (X >z = 0). According to the semantics of m, e; & ey can be either
(Xpx=0,Ypy=xz+1)or (Y>oy =2+1, X>z = 0), alternatively. Assume that we define linking
to remove empty definitions when a non-empty one is provided, so that non-empty definitions do
not change their relative positions. (A semantics remains to be given for the case where two empty
definitions meet, but this informal discussion does not specify it.) The above linking then results
in (Yoy=2x+41,X >z =0), whose evaluation fails, because the value of z is needed to evaluate
z+1,and X >z =0is to the right of Y by =z + 1.

in many cases, this will appear too rigid.
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Part 11

Dynamic and static semantics
of call-by-value mixin modules
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Chapter 3

Dynamic semantics: the MM
language

3.1 Syntax

The syntax of MM is defined in figure 3.1. The meta-variables X and z range over names and
variables, respectively. Variables are used as binders, as usual. Names are used for accessing to
definitions in mixin modules, as an external interface to other parts of the expression. Figure 3.2
recapitulates the meta-variables and notations we introduce in the remainder of this section.

Expressions include variables x, records (labeled by names) {X; = e;...X,, = e,}, and record
selection e. X, which are standard.

MM features mutually recursive bindings of the shape let rec b in e (where b is a list of definitions
Ty =e€1...T, = ey). Note that there is no restriction to binding only value forms.

Expressions also include structures. A structure is a pair of an input ¢ of the shape X pxq ... X,,bxy,
and of an output o of the shape d; ...d,,. + maps external names imported by the structure to
internal variables (used in o). o is a list (the order matters) of definitions d. A definition is of the
shape L[z, ...z,]>z = e, where the label L may be either a name X or the anonymous label _ and
e is the body of the definition. The possibly empty finite set of names z; ... x, is the set of fake
dependencies of this definition on other definitions of the structure. (This allows the programmer
to force an order of evaluation.)

Finally, MM follows the literature about mixin modules [16, 6, 45] in its set of operators, including
composition e; + ez, closure closee, freezing e! X, projection e|x, . x, , deletion e|_x, . x,, showing
€.x,..x,, hiding e._x, . x,, and renaming e[X; — Y7 ... X,, = ¥,]. There is a new operator called
splitting ex,y. We let op range over the set of operators (see figure 3.2), and denote by ople] the
application of op to the expression e.

Syntactic correctness Renamingsr = (X; — Y7 ... X, = Y,), inputs ¢t = (Xypx; ... Xpn>xy),
records s = (X1 = e1...X,, = ey,), bindings b = (1 = ey ...z, = €,), are required to be finite
maps: a renaming is a finite map from names to names, an input is a finite map from names
to variables, a record is a finite map from names to expressions, and a binding is a finite map
from variables to expressions. Requiring them to be finite maps means that they should not bind
the same variable or name twice. Renamings and inputs are required to be injective. Outputs
o= (dy ...d,) are required not to define the same name twice, and not to define the same variable
twice. Structures are required not to define the same name twice and not to define the same
variable twice. Fake dependencies in a definition must be bound in the same structure.

a5



x € Vars

X € Names
Expression: e:=ux
‘ {X] = €1 anen}
| e.X

|let rec 21 =ey...2, =€, in e
‘<X1I>.’171...an>.’17n;d1...dm>

| e1 +es | closee | e! X
\ €1X:1...X,, | €l-Xy... X,
\ €:X,...X,, \ €. X1.. X,

Variable

Name

Variable

Record

Record selection

let rec

Structure

Composition, closure, freezing
Projection, deletion

Showing, hiding

le[Xi » Y ... X, » Y] Renaming
| exsy Splitting
Definition: d:= X[zy...z,]pz=¢€ Named definition
| fz1...xn]px=¢ Anonymous definition
Figure 3.1: Syntax of MM
s:=X1=¢1...X,, =€, Record
bi=xz1=€1...2, = €, Binding
ti=Xox ... X, >, Input (injective)
0o:=d...dy Output,
rao=X1=>Y"...X,—=Y, Renaming (injective)
ople] i=e.X Record selection

| closee | e! X
\ €1X1... X, | €l-Xy... X,

‘ €:X:.. X, ‘ €.-X,..X,
‘P[Xl l—)YlXT, I—)Yn]

\GX>Y

Closure, freezing
Projection, deletion
Showing, hiding
Renaming

Splitting

For a finite map f, and a set of variables P,

dom(f) is its domain,
fi p is its restriction to P,

cod(f) is its codomain

and f\p is its restriction to Vars\P.

Figure 3.2: Meta-variables and notations
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Value: vi=ax | {sy}
| (X] > T an>$7“d] dn)

Answer: a:=wv|letrec b, in v
Value sequence: s, = X; =v;...X1 = v
by i= 1 =01 ...2, = U

Figure 3.3: Values in MM

(125 02) and
(11501).
(11501) = (19; 02) means that for all (L>z) € dom({11;01)),

) (11;01)
) =
x € FV(o02) U Variables({t2; 02)) = (L > x) € dom({t2;02)) and L € Names.

(12 02)

~
~

(t1;01) = (12;02) means {

Figure 3.4: Definition of <

In a let rec binding b = (z1 = e1 ...z, = €,), when for some 1 <i < j < n, z; € FV(e;), we say
that there is a forward reference from z; to x;. Forward references in bindings are syntactically
forbidden, except when they point to a certain class of expressions, the class of expressions with
a predictable shape. We approximate that the shape of an expression is predictable if it is a
structure, a record, or a binding followed by an expression of predictable shape. Formally e, €
Predictable ::= {o} | (1;0) | let rec b in ey.

Sequences Outputs may be viewed as finite maps from pairs of a label and a variable (L, z)
to pairs of a finite set of variables (z; ...z,) and an expression e. Renamings, inputs, records,
bindings, and outputs are often considered as finite maps in the sequel. We refer to them collectively
as sequences, and use the usual notions on finite maps, such as the domain dom, the codomain
cod, the restriction | p to a set P, or the co-restriction -\ p outside of a set P. Notice that the
codomain of an output o, restricted to pairs of a name and a variable (no anonymous label), may
in turn be viewed as an input, since it is an injective finite map. We denote it by Input(o).

Structural equivalence We consider the expressions equivalent up to alpha-conversion of bind-
ing variables in structures and let rec expressions. In the following, we assume that no undue
variable capture occurs.

3.2 Semantics

The semantics of MM is defined in two steps: a contraction relation describes the action of the
operators, and a reduction relation extends it properly to any expression.

Values As defined in figure 3.3, an MM value is either a variable z, or an evaluated record {X; =
v1 ... X7 = w1}, or astructure (;0). A valid result of the evaluation of an MM expression is a value,
possibly surrounded by an evaluated binding. It thus has the shape let rec 1 = vy ...z, = v, in v.
The meta-variables s, and b, respectively range over evaluated record sequences and bindings.
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dom(b) L FV(L)
Llet rec b in €] ~».let rec b in L]e]

L
(L1eT) {Xi=v... X, =0, }. X~ v

(150)|—-x,..x, ~e (1, Input(0) (. x, 3i0\{x1..x,}) (DELETE)
(1;0)1x,...x, ~c (1. Input(0)\ (x,  x.110/{_x,..x,}) (PrOJECT)
(4;0).%,..x, ~c (1;Show(o,{X1...X,})) (SHow)

(t;0).— x,...x, ~¢ (t; Show(o, Names\{X; ... X,,})) (HmDE)

(t;or, X[y* vz =€,00) | X ~. (1;01, [y*]| >z =e,00, X >_=2) (FREEZE)

Names({1;0)) L (cod(r) \ dom(r))

(RENAME)
(1;0)[r] ~e¢ (1fr}; ofr})
(t;01, X[2*] >z =€,00) xry e (1, X Dm0, Y[2¥] > =e,090) (SpLiT)
(t1;01) = (12;09) Names(01) 1. Names(02) (Suw)
um
(t1501) + (125 09) ~¢ (11 Uta) \ Input(o1,09); 01, 02)
Bind(0) is correct
(CLOSE)

close(; 0) ~~. let rec Bind(5) in Record (o)

Figure 3.5: Computational contraction relation
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The contraction relation The contraction relation is defined by the rules in figure 3.5, where
for any sets P, ... P,, P, L ... L P, means that the P;’s are pairwise disjoint.

The first rule LiFT describes how let rec bindings are lifted up to the top of the term. When the
evaluation of a sub-expression results in a let rec binding, MM lifts it one level up, as follows. Lift
contexts I are defined as

L == {S}|oplO]|O+e|lv+D
S Sy, X = 10,8.

Rule LIFT states that an expression of the shape L[let rec b in e] evaluates to
let rec b in L[e], provided no variable capture occurs.

The record selection rule SELECT straightforwardly describes the selection of a record field.

The rules for mixin deletion DELETE and projection PROJECT are dual. Rule DELETE describes
how MM deletes a finite set of names X ...X,, from a structure (;;0). First, o is restricted to
the other definitions, to obtain o\(x,...x,} (which is shorthand for o\x, . x,}xvars). Second, the
removed definitions remain bound as inputs, by adding the corresponding inputs to ¢.

Rule PROJECT describes how MM projects a mixin to some finite set of names X; ... X, from
a structure (1;0). First, o is restricted to the corresponding definitions and to the local ones, to
obtain o/ {_x,..x,} (Which is a shorthand for o;{_x,..x,}xvars). Then, the removed definitions
remain bound as inputs, by adding the corresponding inputs to .

Rules SHOW and HIDE are dual. Rule SHOW allows to hide all the exported names of a structure,
except the given ones. It proceeds by making the other definitions local, as defined by

Liy*lvz=eif Le N
Jy*] >z = e otherwise.

Show(L[y*|>vx =e,N) = {

Rule HIDE symmetrically hides the given names in a structure. It proceeds by showing the other
ones.

Rule FREEZE describes how a name X is frozen in a structure (i;0). First, the corresponding
definition X[y*] >z = e is made local, by replacing X with the local label _. Then, a new definition
is added at the end of the output. It is named X, is bound to a fresh variable (denoted by _ in the
rule by abuse of notation), and is defined by referring to x.

Renaming of a structure (1;0) by a renaming r, defined by rule RENAME, replaces the names in
¢t and o with the new ones. Formally, for N' C Names, we define ry by r U id| Ar\dom(r) and for
a finite map f with dom(f) C Names, we define f{r} by f o (rgom(s))"'. The finite map f{r} is
well-defined provided rg,m(s) is injective, which holds as soon as cod(r) N dom(f) C dom(r) or in
other words dom(f) L (cod(r)\ dom(r)). By the side-condition Names((t;0)) L (cod(r)\ dom(r)),
this is the case for 1{r}. (We denote by Names({i;0)) the set of names bound by the structure, i.e.
dom(i) U dom(Input(o)).) Finally, we define o{r} by 00 (rNames(o), idvars) ", With the order kept
from o, and where (f1, fo)(z1,22) = (fi(z1), f2(x2)). Notice that when composing two functions
f o g, we consider a function whose domain is g~'(dom(f)) and on this domain is f(g(x)). In the
rule, o{r} is well-defined, thanks to the side-condition. Syntactic correctness is preserved, since
T'Names((1;0)) 18 injective. So, after renaming, no name is defined twice.

The SpLIT rule introduces a new operator “split”. If there is a definition X [2*]>x = e for the name
X in (i; 0), the split operator (i; 0) x,y splits it into an input X >z and a definition Y[z*]>y = e
(with a fresh y). References to x continue referencing it as an input, but the former definition e
remains exported as Y. The operation is different from renaming X to Y or deleting X.

The SuM rule defines the composition of two structures (11; 01) and (i2; 02). The result is a structure
(1; 0), defined as follows. ¢ is the union of ¢; and ¢, where names defined in 0, or 0, are removed. o
is defined as the concatenation of 01 and 0y. The side condition (i1;01) < (12; 02) checks that both
structures agree on bound variables, and that no free variable is captured. It is defined in figure
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Multiple lift context:

Evaluation context: F == 0O|L[F]
E == T |letrec b, in F |letrec B[F] in e Binding context:
Lift context: B == b,,z=0,0b
L == {S}|op[O0]|O+elv+D Record context:
S = s, X=0,5s

Figure 3.6: Evaluation contexts

(let rec b, in F)(z) =b,(z) (EA) (let rec by,y =F,b in e)(z) = by(z) (IA)

Figure 3.7: Access in evaluation contexts

3.4, where dom((t;0)) = ¢ U dom(o), and Variables({t;0)) denotes cod(:) U {z | (L,z) € dom(o)}.
Lastly, 01 and o0y are required not to define the same names.

Eventually, the CLOSE rule describes the instantiation of a structure (z; 0). ¢ must be empty. The
instantiation is in three steps. First, o is reordered to o, according to its dependencies, to its fake
dependencies, and to its default ordering. Second, a binding Bind(o) is generated, defining, for
each definition d = L[y*] >z = e in o, the definition z = e, in the same order as in 6. Third, the
named definitions of ¢ are put in a record Record(o), with, for each named definition X[y*]>z = e,
a field X = z, and this record is the result of the instantiation. The side condition ensures that the
generated binding is syntactically correct, especially that there is no forward reference to bindings
of unpredictable shapes.

The reduction relation The reduction relation is defined by the rules in figure 3.8, using notions
defined in figures 3.6 and 3.7.

Rule CONTEXT extends the contraction relation to any evaluation context. Evaluation contexts
are defined in figure 3.6. We call a multiple lift context F a series of nested lift contexts. An
evaluation context E is a multiple lift context, possibly inside a partially evaluated binding, or
under a fully evaluated binding. This unusual formulation of evaluation contexts is intended to
enforce determinism of the reduction relation. The idea is that evaluation never takes place inside
or under a let rec, except the topmost one. Other bindings inside the expression first have to be
lifted to the top by rule LirT, and then merged with the topmost let rec if any, by rules EM and
IM. In the case where the topmost binding is of the shape b,,z = (let rec by in e),bs, rule IM
allows to merge by with the current binding. When an inner binding has been lifted to the top, if

__ e d (CONTEXT) ENJ) =v (SusT)
E[e] -+, E[e] E [N [z] -+ E[N[v]
dom(by) L {x} U dom(by,bs) U FV(by,bs) U FV(f) ()

let rec by, x = (let rec by in €),by in f~s.let rec by, b1,z =e,by in f

dom(b) L (dom(b,) U FV(b,))

let rec b, in letrec b in e--+_.let rec b,,b in e

(EM)

Figure 3.8: Reduction relation
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there is already a topmost binding, then the two bindings are merged together by rule EM. As a
result, when the evaluation encounters a binding, it is always possible to lift it up to the top and
then merge it with the topmost binding if any.

Eventually, rule SUBST describes the use of bound values when needed. The notion of a needed
value is formalized by need contexts, which are defined by

N u=op[O] |O+ v |v2a+ 0O (v2 is not a variable).

In MM the value of a variable is copied only when needed for the application of an operator, or
for composition. The value of a variable z is found in the current evaluation context, by looking
for the first binding of x above the calling site, as formalized by the notion of access in evaluation
contexts in figure 3.7. There are two kinds of accesses.

e In the case of a context of the shape let rec b, in I, if the called variable x is bound in the
topmost binding b, then b,(z) is the requested value, provided the two capture conditions
are respected. First, no variable free in b, (z) should be captured by F. Second, x should not
be captured by F either, because this would mean that another binding is concerned, inside
F.

e In the case of a context of the shape E[let rec b,,y = F,b in e], if the called variable z
is bound in the binding b,, then b,(z) is the requested value, provided the two capture
conditions are respected. First, no variable free in b,(x) should be captured by F. Second,
2 should not be captured by F either, because this would mean that another binding is

concerned, inside F.

In figure 3.7, the capture conditions are formalized with the Capt function. Capt,(E) is the set of
bound variables above O in E. If O is filled with another variable, then it is free in the obtained
expression.

Instantiation The CLOSE rule makes use of a reordering operation on outputs 0, which we
define in this section. This operation takes four aspects of its argument into account: its internal
dependencies, its fake dependencies, the shapes of its definitions, and its original ordering. Internal
dependencies and fake dependencies are considered imperative requirements on the final ordering: if
a definition d might call another definition d’, then d’ must be put before d in the final ordering. The
shapes of the definitions are examined in order not to generate a binding with forward references to
definitions of unpredictable shape. The original ordering is only used as a hint, in the case where
no constraint forces one definition to be put before the other.

Remark 1 (Warning) The criterion on bindings mentioned in section 77, forbidding forward
dependency paths starting with a strict edge, will look reversed here. Indeed, when a definition d;
calls another definition do, it is also possible to see it as a constraint on their ordering, such as
“the definition do must be put before the definition d”. As we will use this relation on definitions
as an ordering for generating a binding, the second way is more intuitive. A consequence is that
the criterium now forbids backward dependency paths ending with a strict edge.

More formally, the dependency graph of an output is defined in figure 3.9. For each pair of
definitions L[y*]> 2 = e and L'[z*] > 2’ = ¢’ in o, there may be two kinds of edges.

e If 2’ is free in e, then an edge is drawn from z' to z. This edge is labeled with a degree
X € {©,®}. x is determined by Degree(z',e), where the Degree function is defined for

x € FV(e) by
Degree(z,(1;0)) = ©
Degree(z, {s,}) = ©
Degree(z,e) = @ otherwise.

The Degree function is simple, and could be extended as in [12, 45].
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Figure 3.9: Dependencies in an output

+ ¢ ¢
Z‘—)Xl z Z—)XQy Z‘%y
T T

Figure 3.10: Transitive closure of —

e If 2’ is mentioned in y*, then an edge from z' to z is drawn, with degree ®. Fake dependencies
act as real strict dependencies.

The transitive closure of this relation is defined in figure 3.10, by defining the degree of a path as the

degree of its last edge. The relation g)j‘ gives a conservative approximation of which definition
needs the value of which other one in Bind(o). Reordering o according to —, it is not enough
though, because the generated binding might be syntactically incorrect. Indeed, it is forbidden
to make forward references to definitions of unpredictable shape inside a binding. Strict forward
references to definitions of unpredictable shape already correspond to edges labeled ® in —,, and

. . . ®
are therefore taken into account when reordering according to —} . Weak forward references
to definitions of unpredictable shape correspond to edges labeled ® in —,, and are therefore not

taken into account when reordering according to 9)2‘ Let =,= {(z1,%2) | 1 ©, x2,0(x1) ¢
Predictable}. This relation exactly puts weak references to definitions of unpredictable shape in
the right order.

We define the binary relation >, by the lexical ordering », = (( 9)3‘ U >=o)T, >0), where >, is

the initial ordering in o. If >, contains no cycle, o is said correct. This is written - o. In this case,
0 denotes o reordered by >,.
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Chapter 4

Static semantics

4.1 Type system

In this section, we present a type system for MM.

Types are defined in figure 4.1. There are only two kinds of types, record types {O} and mixin
types (I;0; G), where I and O range over finite maps from names to types and G is a finite graph
over names, labeled by degrees. Such a graph is called an abstract dependency graph. (Remember
that dependency graphs over the whole set of nodes are called concrete.) An environment T is
a finite map from variables to types. We write ['(I') for the map where the bindings of I have
overridden the ones from I

Remark 2 Graphs are considered equal modulo removal of isolated nodes, and modulo the follow-
ing rewriting rule:

X1
NN > Ny X (4.1)
X2

where N gives the most dangerous of two degrees:

XiAX2 =0 if x1=x2=0
X1 A x2 = @ otherwise

In figure 4.2, the type system is defined by means of a set of inference rules.

The first rule T-STRUCT concerns the typing of basic structures (1; 0). Given an input I (which is
arbitrary here, we do not consider type inference or type-checking issues) corresponding to ¢, and
a type environment I', correponding to o, it checks that the definitions in o indeed have the types
mentioned in I',.

M € Types == {0} [([;0;G)

1,0 €  Names 22 Types

G Crin {X Xy | X,Y € Names, x € Degrees}
Fin

r € Vars — Types

Figure 4.1: Types
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Expressions:

dom(t) = dom(I) FI FT, F = (o) [(Ior 'WIl,)Fo:T,
L'k (50) : (I;T, o Input(o); [ = ;00 ])

(T-STRUCT)

LWO; = I W05 FGLUG, F|—€11<11;01;G1> FF@25<I2;O2§G2>
Tk er +es: <(I] UIQ) \ (O] UOQ);O] L‘UOQ;G] UGQ)

(T-Sum)

L'ke:(I;0;Q) X € dom(0O) I'ke:(0;0;G)
(T-FREEZE) _
Fte! X :(I;O; |G X]) '+ closee : {O}

(T-CLOSE)

F'ke:(l;0;G)
Thex,..x,  TWO\x,. . x,1:0{x:..x.3:G{x,..x0})

(T-PROJECT)

F'ke:([;0;G)
Che x,.x, TWO x,. . x,3:O\(x1..x,1: G| {x1..X,.})

(T-DELETE)

IT'ke:(I;0;G) {X:...X,} C dom(O)
ke x,.x, {L;Oyx,. .x.3; |G (x,..x.3])

(T-HIDE)

F'ke:(I;0;G) {X:...X,} C dom(O)
Crhex, . .x, (O x,. . x.3: |Gyx,..x.3])

(T-SHow)

F'ke:({[;0;G) (cod(r) \ dom(r)) L (dom(I) U dom(O))
Tke[r]: (I{r};0 o {r};G{r})

(T-RENAME)

F'ke:(l;0;G) Y ¢ dom(I) U dom(O)
F'kex,y : JW{X:0X)};0{X » Y} Gxry)

(T-SprIT)

Vze{ln}Fl—ezMz
FH{Xi=e1..Xp=€,}: {Xq1: M ...X,,: My}

(T-RECORD)

F'te: {0}

_ T-RSELE
TFex:o(x) @ Rseeer)

Fb KT, T Fb:T, T{)ke:M z € dom(T)
: (T LetReC) —— "
Chletrec bine: M Ckx:T(x)

(T-VARIABLE)

Sequences:

'e: M I'o:T, 'te: M 'Fo: Ty
Cke:0 'k (Lz* vz =e0): {z: M}WT, F'kF(z=eb):{x: M}yT,

Figure 4.2: Type system
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Lift
Transitive closure through local components

N]X—1>:v :UX—2>DN2 N]i)NQ
JSPRSEECR A N 57N,
Lift

L_)J = _>D\Names>< Names
Sum G] + G2 - G] U G2
Freeze G!X = G{X «z}U{z ©, X} (x not mentioned in G)
Project G\J\/ = G\ Names X N x Degrees
Delete G\*J\/ = G\ Names X N x Degrees
Hide G_x,.x, = GXi—az...X,,=»zx,} (21...2, fresh)
Show Gx,.x, = G Tagets(G\{X1.. X}
Rename G{r} = {(N{r}, No{r}, x) | (N1, Na, x) € G}
Split Gxsy = (G\Gu.xy)U{(Z,Y,x)|(Z,X,x) € G}

Figure 4.3: Graph operations

x = Degree(a’, e) (L', z") € dom((1;0)) (L[z"]px=¢) €0
Node(L', ') 1><,,;0> Node(L, z)

(L, ;) € dom((t;0)) (L[xy...zn]>z=¢€) €0

Node(L;, x;) g)w,,) Node(L, x)

Figure 4.4: Dependencies in a structure
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FI FO dom(I) L dom(O) Targets(G) C dom(O) FG FO
- (I;0;G) {0}

VX € dom(I) F I(X)
FI

Figure 4.5: Well-formed types

The condition = —,,,y requires some explanation. We saw in section 3.2 that dependencies in
an output are represented by its dependency graph —,. For structures (which are incomplete
outputs), the corresponding notion is the concrete dependency graph. A concrete dependency
graph is a graph over nodes. A node N is an element of Nodes = VarsU Names. The dependency
graph of a structure is defined in figure 4.4. It records dependencies in the structure (as was
done for outputs), but takes external names into account, when possible. Named definitions are
represented by a name, and local definitions are represented by their variables. In order for types
not to mention local components, we introduce a lift operation [—(,,0)], which, as described in
figure 4.3, first ensures to keep track of local components by shifting their dependencies to the next
exported components, and then erases them. The result is an abstract dependency graph.

Finally, the rule checks that the imported types are well-formed, which would otherwise not be
forced, with the following notion of well-formedness.

Definition 4 (Correct graphs) A graph — is correct iff g)* 1S an ordering on its nodes
(written F— ).

Definition 5 (Well-formed types) Figure 4.5 defines the sets of well-formed types an inputs
(or outputs), as the least relation respecting the rules. A mizin type (I;0;G) must import and
define disjoint sets of names, the targets of G must be defined, and G must be correct.

The second rule T-SuM types the sum of two expressions. It verifies that names are bound to
the same types in both expressions (relation = overloaded to types), that the union of the two
dependency graphs is still correct, and that two names are not defined twice (i.e. are not in the
two outputs). The result type shares the inputs, where defined names have been removed, and

takes the union of the outputs and of the dependency graphs.

The third rule T-FREEZE introduces a new operation G!X >z on abstract graphs, which is again
defined in figure 4.3. To freeze a name X, it first replaces X with a fresh local variable z, making
the graph temporarily non-abstract. Then, it adds a strict link from x to X. This follows closely
the semantics of freezing from figure 3.5, first making all other components call the local component
z instead of X, and then re-exporting X as x exactly. The link is forced to be a strict one by
hypothesis 2.

The T-CLOSE rule transforms a mixin type with no input into a record type. It looks very simple,
but to prove it correct, we must show that well-ordered outputs yield well-ordered bindings by
contraction rule CLOSE.

The mixin projection rule T-PROJECT, exactly as the corresponding contraction rule, keeps in the
output types only the selected ones, reporting the other ones in the input types. The abstract
graph is modified accordingly by the operation G\(x,.. x,}, which removes the edges leading to
unselected components. The T-DELETE rule is its dual again.

The T-HIDE removes the given names from the output. Additionally, it acts on the abstract graph
G as described in figure 4.3. It first replaces the given names by fresh variables, and then lifts the
result, in order to obtain an abstract graph. Rule T-SHOW is its dual, as expected.
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Rule T-RENAME, given a mixin e of type (I;O0;G), deduces that e renamed by 7 has the same
type, with input I and output O redirected to use the new names (cod(r)). As the contraction
rule RENAME, it makes use of the rj function, composed with I and O. The abstract graph is
renamed as well.

Given an expression e of type (I; O; G), according to rule T-SPLIT, the type of ex,y is as follows.
X is added to the input, with the type it had in O. X is renamed to Y in the output. The graph
G is modified according to figure 4.3. G|{_x} is the set of edges leading to X in G. Basically,
these edges are redirected to Y.

The T-RsSeLECT and T-RECORD rules for typing record construction and selection are standard.

The T-LETREC for typing bindings let rec b in e is almost standard, except for its side-condition:
the binding must be well-ordered with respect to its dependencies. The dependency graph of a
binding b is defined via the dependency graph of the equivalent output Output(b) = Output(z; =
e1...tp =ey) = ([|pm =er... []>x, = e,). We define >4 by >ou¢pue(s)- A binding b is said
correct with respect to an ordering > (written >k b) if > (the definition order in b) respects >
(in other words >C>;). We abbreviate > - b with  b.

Eventually, the typing of outputs and bindings is straightforward, since it consists in successively
typing their definitions.

4.2 A theory of dependency graphs and degrees

For proving the soundness of MM, we will have to prove some properties of the operations we use
on dependency graphs. Such operations will be used later in this thesis, so we abstract over the
current definitions in order to make the proofs valid for further use.

We begin with a characterization of the properties needed for degrees.

Definition 6 (Degrees) A set Degrees has a structure of degrees iff it is a complete lattice, and
its elements are divided into positive and negative elements, compatible with the ordering.

We fix an arbitrary structure of degrees Degrees for this section, whose elements are denoted by y,
ordering is denoted by >, greatest lower bound operation is denoted by A. We denote by Positive
and Negative the sets of positive and negative degrees, respectively. The compatibility condition
means that for all y; € Positive and x» € Negative, we have x; > xo.

Definition 7 (Dependency graph) A dependency graph is a finite, oriented graph, labeled with
degrees.

The nodes of dependency graphs are not relevant to the properties we want to establish, so we do
not constrain them at all. We denote them by N, and denote finite sets of them by . We denote
the set of nodes of a graph — by Nodes(gD).

Definition 8 (Transitive closure) We define the transitive closure on dependency graphs as
the fized-point of the operation that adds an edge Ny “2> N3 for each pair of edges Ny - No and
N REN N3 in its argument —.

This fixed-point is always well-defined, since the considered operation does not introduce any
degree, so the number of edges of the generated graphs is bounded. The transitive closure of a
graph — is written —*. Its reflexive transitive closure is written —*.

Some notions on paths are defined as follows.
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Definition 9 (Paths) A path of the dependency graph — is a possibly empty list of consecutive
edges. Its length is its number of edges. If its length is strictly positive, then its degree is defined
as the degree of its last edge. A cycle is a non-empty path whose the source and target nodes are
the same.

We denote paths by §. The concatenation of two consecutive paths is written §1;6,. For a de-
pendency graph —, a path is also an edge of —*. The degree of a non-empty path is defined as

+
the degree of its last edge. We write N; = N, for a non-empty path of degree y. Also, the
+
concatenation of a non-empty path NV X7 N, and a possibly empty path ¢ from N» to Nj is

+ *
written Ny 2% Ny; N, 22 | where x5 is x1 if 6 is empty, and the degree of § otherwise. Finally,
when the two ends of successive paths or edges are syntactically the same, we merge them. For

*

+
. . . X1 X2
instance, the concatenation above could have been written Ny =—— Ny ==

Let us introduce two notions of correctness for dependency graphs. It relies on the notion of a safe
cycle: a cycle is safe if all its edges are labeled with positive degrees. Otherwise, the cycle is said
unsafe.

Definition 10 (Correctness) A dependency graph — is said correct if its transitive closure does
not contain any unsafe cycle. We write it -—.

This notion is related to the following notion of ordered correctness, which relies on an order on

nodes. Orders on nodes are denoted by the symbol >. Their strict versions are denoted by >. For

any dependency graph —, let Negagive 1o the set of edges of — that are labeled with negative edges.

Definition 11 (Ordered correctness) A dependency graph — is correct with respect to the or-
Negative
der >, or respects the order >, if —7T s compatible with >. We write it b (—,1>) (orF (—,)).

We have the following equivalence.

Property 1 F— iff there exists an ordering > on Nodes(—) such that b (—,>).

For proving it, we introduce the notion of a backward edge and a backward path.

Definition 12 (Backward edges and paths) Given a dependency graph — and an order > on
nodes, a edge N, X, Ns, or a path N, X is said backward if Ny > Nj.

Proof

e If F (—,>), then F—. By contrapositive. Assume — has a cycle with an edge of degree

X € Negative. Let N be the target of this edge. Then, the transitive closure =% of — has
Negative
+
an edge N X" N which is backward, so —* is not compatible with >, and therefore

F (—,>) does not hold.
e If F—, then any topological sort of — gives an order such that the only backward paths are

Negative
in cycles, but as — is assumed correct, these paths all have positive degrees, so —1 s

compatible with >.

O

Now, we prove two properties that we will directly use later in soundness proofs. Their names are
related to the reduction rules they correspond to. Each of them is associated with a picture that
is supposed to help the reader understand them.

Property 2 (External merge)
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4.3 Graph soundness

In section 3, we presented MM with concrete, simple instances of IsDefinedSize() and Degree. We
now axiomatize the minimum conditions that they must satisfy.

Hypothesis 1 (Shape)

e z ¢ Predictable.

(1; 0) € Predictable and {s,} € Predictable.

Let o be a variable renaming. e{oc} € Predictable iff e € Predictable.

If E [z] € Predictable, then E [v] € Predictable, for all v.

If e — €' and e € Predictable, then e' € Predictable.

If e € Predictable and €' € Predictable, then for any context E
E [e] € Predictable iff E [e'] € Predictable.

We require the degree function to meet the following condition.

Hypothesis 2 (Degree function)

e If Degree(z,e) = ©, then e € Predictable.

e If e — €' and Degree(z,e) # ®, then Degree(x,e') # ®.

e Ifx € FV(e) \ Capt (E[N]), then Degree(z,E [N[e]]) = ®.

e Ify ¢ FV(v)\ Capty(F), then Degree(y,F [v]) = Degree(y,F).

e If for all x € FV(e), Degree(z,e') < Degree(z,e), then for any context E, for any = €
FV(E[e]), Degree(z,E[e']) < Degree(z, E [e]).
e Vo ¢ dom(b), X #Y,Vx € {x| X l)ggw;{,) N, o0 = (Output(d),Y > _=¢€)},

Degree(x,let rec b in e) < x.

4.3.1 Modeling the reduction with graphs

Definition 13 (Mixin redex) Mizin redexes ey are defined by

er = (t1;01) + (t2;02) | op[(e;0)].

The graph operations on abstract graphs defined in figure 4.3 are trivially generalized to concrete
graphs. These operations are used to guess the concrete graph of a mixin redex.

Definition 14 (Graph of a mixin redex)

00 (ioz) = usor) T (eas00)

= op[(1:0)] = o0p(=(0))

Proposition 1 (Graphs operations model contraction) If ey~ e, then —., = —..

Proof By case analysis on the reduction.
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Sum. We have e+ = (11;01) + (12;02) and e = (1501, 02), with ¢ = (11 Uto) \ Input(o1, 02). Trivially,
ey = ?(11501) U (13;02) = T{101) U —(1;00) by <L1;01> = <L2; OQ)' Then, —(1501) U —(1309) =
(101,02

Freeze. Let er = (1;01, X[y*| bz = f,00) | X, and e = (101, [y*] >z = f,00, X > _ = z). First
consider the structure e’ = (1; 01, _[y*]>x = f,00). Its graph is exactly the same as the one of
e except that instead of the node X, we find the node Node(_> ), which is 2. Then, append
the component X >y = z with a fresh y. This adds a strict dependency from X to zx, so the
result is exactly —.,.

Other cases similar.

4.3.2 Subject contraction for graphs

The goal of this section is to ensure that abstract graphs detect all errors in the underlying concrete
graphs. We write & for paths in graphs. The minimum degree of a path d = X 25Ny ... Ny 25Y
is x = /\ Xi-

1<i<n

Proposition 2 (Lift preserve paths between names) Letd be a path for the — relation, start-
ing with name X , ending with name Y, and having minimum degree x. Let G = |—|. There exists
a path from X to Y in G, with the same minimum degree.

Proof Let § = Ny X% Ny ... N,,_; 22 N,,. We proceed by induction on the number of names in
the path.

[m]
Base. Two names, 6 = X 5 21 ...2, 1 -2 Y. An easy induction on n proves that X % Y,
and therefore (X,Y,x) € G.

Induction. By induction hypothesis.
O
Corollary 1 If 9>+ has a cycle with at least one name, then |— | ®+ ulso has one.

On the other hand, lifting commutes with the other operations on graphs.

Proposition 3 (Lift commutes with operators) Let —1, =2, and — be concrete dependency
graphs (i.e. graphs over Nodes).

e [f the variables from —1 and the ones from —o are disjoint, then |—1 U —2| = | =1 |U|[—>2].

o lop[=]] = op[|—=]], for op € {!X,_n, 1\, (7], NN, x>v ) (with cod(r) L Nodes(—)).
Proof

Sum. It is obvious that |—1| U |—=2| C |—=1 U —2], since =1 C—1 U —5 and lift is monotone.

Now, an edge between names X and Y in |[—1 U —4 ], implies the existence of a path between
X and Y through variables only, in —; U —2, but as variables cannot interact, this path is
entirely in either one of the two subgraphs.
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Freeze. Let x be a fresh variable. By definition, we have to prove that |— ! Xbz| = ||= !X bz].

Let
-1 = —=!'Xvbx and — = [—]
= =) =L = = Xbux

=y = [=3]

First, notice that both in =} and —/, no edge starts from X, and edges arriving to X come

from paths to X through z with degree ® in —; and —%, respectively, so they have degree
®.

o —HC—.

~ Let Y %) X, with X # Y. Necessarily, y = ©.
This implies that there exists a path of —, of the shape

Xo.' X1’ Xn ' @
Y 5, S,z o 2, X,

because x is the only variable in —Y.

n could be zero, in which case we would have Y 9>'2 X.
But this means that we have Y X%, X X X ... X%, X
So by definition of ||, we have ¥ 240 X X400 x Xm0 x

So, we have Y X% 0 X504 X—">1E‘xg)1X7
and therefore Y g)'] X.
~ Let Y %) Z, with Y and Z different from X. Then

Xo ' X1 ' Xn '
Y =, —,2...0 /=, 7

)

because x is the only variable in —Y.
We have x = /\ Xi- n could possibly be 0, in which case the path would rather
0<i<n
look like V X% Z.
We can deduce Y %, X X5, X... X %, 7,
soY X8 x Xyo x| x XYmooz
and therefore Y 250 ¢ X0 5 g X500 7
So we have YV X Z.
o | C—y.
~ Let Y %, X, with Y # X. We have

Xo O X1 0O Xn 0O
1

®
Y =72 =7 z...0 /=] z —, X,

where for all 7, ﬁ)? does not go through z.

As above, we have x = ® and n could possibly be 0, in which case the path would
rather look like Y 258 2 9)1 X.

This implies that Y %2 X X408 X X X540 X,

Therefore, vV 2%, X X, X ... X X%, X,

1 1 n ! ®/
So, V X%) 2 X8l o X, 2 =, X,

and so Y Q);’ X.

~ Let Y %) Z, with Y and Z different from X.
We deduce Y X570 ¢ 250 ¢ . X0 7
where for all 7, X—>1E‘ does not go through =z.

As above, we have y = /\ x:i and n could possibly be 0, in which case the path
0<i<n
would rather look like YV 2% 7 Z.
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Then, Y %0 x X0 x X X0 7
andsoV 2%, X X, X ... X 2%, 7,

which leads to V 2%, & X5, z...x0 X%, Z,

1"
andso Y 5, Z.

Other cases. Easy.

O

Corollary 2 If F—, then F op(—). If F—1, F—o, Variables(—1) L Variables(—3), and - |—
J U |_—)2J, then "—)1 U —.

Proof

Freeze. Assume op = !X >z. This operation first replaces X by z in —, which does not introduce
any cycle, and then adds one-way edges to X, which cannot create any cycle.

. et . .
Sum. Let -=—1 U —5. Assume there is a cycle in — . First notice that if there were no named

node in it, as variables from both graphs do not interact, the cycle would come entirely from
one of the two graphs, which are supposed correct, therefore contradicting the hypothesis.
Otherwise, by lemma 3, |—| = |—1]| U |—2]. Moreover, there is at least one named node X
in our cycle, so by lemma 2, our cycle is a path from X to X, so it appears in |—| with the
same valuation, which contradicts its correctness.

Other cases. Easy, since they do not add any edge to the dependencies.

O

Proposition 4 If T F ey : (I;0;G), then G = [—.,].

As a consequence, if a mixin redex is well-typed, then the structure(s) in it have a correct graph,
and by typing the redex also has a correct graph.

Corollary 3 IfI'eq: M, then b —.. .

Lemma 1 IfT'F ey : (I; O;G) and ey ~. e, then e is a structure and - =, and G = | —.].

We have proven that structures obtained by reduction are correct, which means that their depen-
dencies do not have strict cycles. It is now necessary to prove that this property is enough for a
structure without inputs to be closed. In other words, it is necessary for our type system to be
sound that an output with a correct dependency graph generate can be reordered.

Lemma 2 (Typing is enough for close) If+ —,, then F o.
Proof Assume there is a cycle in », = (=, U g)j’ )*. This cycle cannot contain only >, edges,

since for all nodes Ny, No, N3 such that Ny =, No =, N3, by definition N; 9)0 No 9)0 N3, with
o(Ny) ¢ Predictable and o(Ny) ¢ Predictable, and by definition of >, and hypothesis 2, we have
o(Nz) € Predictable, which is a contradiction.

So there is at least one g)j’ edge in our cycle. But >, is included in go , so this is a cycle for

(&)
—+ too. O
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4.3.3 Manipulation of recursive bindings
Definition 15 (Graph comparison) We define —1<—4 by

e for all Ny 9)2 Ny, there exists Ny g)f N>

e for all Ny 9>2 Na, there exists Ny =5, Nj.

In particular, if =-9C—, then —;<—4 ; and if for all edge in —- there exists an edge with the
same ends and an inferior degree in —;, then —; <—,. Notice that this relation is transitive.

Definition 16 (Binding comparison) A binding by is more restrictive than a binding by (writ-
ten b1 < bs) iff they have the same domains (dom(b1) = dom(by)), they define variables in the
same order (>p=>y ), the dependencies and shapes of by are more restrictive than those of bs
(—b, < —by, and for all x € dom(bs), if b2(x) ¢ Predictable, then by (z) ¢ Predictable).

The desired property is that if a binding is well-ordered for the ordering induced by a more restric-
tive binding, then it is well-ordered.

Lemma 3 (Relax) Ifb' <b and >y b, then - b.

Proof We proceed by contrapositive. First notice that > F b implies >, F b, since they define
variables in the same order. If >, F b does not hold, it implies that there is a right-to-left edge in
(™ Output(s) U 9)2— )*. So, there exists ¢ = e and y = f defined in b in this order, such that either

@ 4
Y >Output(b) TOory —, xT.

o If ¥ > Output(v) T, then y g)b x and b(y) ¢ Predictable. By definition of b’ < b, this implies

that b'(y) ¢ Predictable and y 1),), . Whatever y is, it is a right-to-left edge in >, which
contradicts F b'.

o Ify g);r x, by definition of " < b, this implies that y g;ﬁ z, so it is a right-to-left edge in
>y, which contradicts - b'.

O

Lemma 4 Ift — (., then - Bind(0).

Proof Bind(o) is in the same order as 6, and its graph does not take fake dependencies into
account. Lemma 3 allows to conclude. O

Our computational reduction relation manipulates let rec constructs as blocks of data, not worrying
too much about dependencies issues. The soundness proof requires some properties to be verified,
especially concerning the IM rule, which merges two nested bindings. We want to be sure that
merging two well-orderd internally nested bindings — i.e. the second binding appears in one of the
definitions of the first one — yield a well-ordered new binding (corollary 4).

Definition 17 (Paths) For a path 6 = (N Xy 2% N,), we define the degree of 8 as xn, and
we write 6X for a path of degree x, and § C— if § is a path of —.

Eventually, we write edges as triples (source, target, degree), and paths as lists of paths such that
the target of one is the source of the next one, separated by commas, as in 6", (z,y,x), 05>

73



Proposition 5 (Let rec internal dependencies)
For all y, for all z € FV(e) \ dom(b), Degree(x,let rec b in e) < Degree(z,e).

For all y, for all z € FV(b(y)) \ dom(b), Degree(z,let rec b in e) < Degree(x,b(y)).

Proof

Let X 2Y ., b= (z1 =e€1...2, = ey), and o = (Output(h),Y > _=e).

e For the first point, as x € FV(e), there is an edge X L(Xbm;o) Y, where x = Degree(z,e).
By hypothesis 2, Degree(x, let rec b in e) < yx.

e The second point is similar. Suppose y = z;, and f = b(y). There is an edge X L(Xbm;o) Tig
where x = Degree(z, f). By hypothesis 2, Degree(z, let rec b in e) < x.

O

Proposition 6 (Merging nested bindings)

Let b = (by,z = let rec by in e,b3), b’ = (b1,be,x = e,b3), with F b and dom(by) L dom(b) U
FV(bi,b3).

Let § a path of —yp, from x1 to o, of degree x.
; +
1. If x1, x5 € dom(b), then xy =, 5, with ' < x.
; +
2. If z; € dom(b), z, € dom(by), then z, 2, =, with x' < x.
3. If 1 € dom(bs),zo € dom(b), then if x = ®, then x5 € ({z} U dom(bs)).

4. If 1,2 € dom(by), then either § C —y,
1 +
orxz X5, x for some x' < x.

Proof By induction on the length of §.

Base § is an edge.

1. 21,25 € dom(b). If 2y # x, x = Degree(z1, (z2)) = Degree(zy,b(x)), s0 21 ~3p .
Otherwise, x = Degree(z,e€).
But as z; ¢ dom(bs), by lemma 5, Degree(xy,let rec by in e) < Degree(z;,e€), so we
have an edge X—I>b x, with ¥’ < .

2. 21 € dom(b), x2 € dom(by). Let ba(x2) = f. We have x = Degree(xy, f), so similarly by

lemma 5, X' = Degree(z1, let rec by in e) < Degree(z;, f), so we have an edge 2, = ,
with ¥’ < x.

3. x1 € dom(by), z2 € dom(b). We have x; € FV(b'(22)) and x5 € dom(b), so x2 = z, so
z2 € ({x} U dom(bs)).

4. 1,29 € dom(by), we have of course § C —,.
Induction step § is of length n > 1.

1. 1,29 € dom(b).
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e If § only has nodes in dom(b), let (3, z2, x) be its last edge. By induction hypothesis
there is a path (ﬁ‘l from x5 to x» with ¥’ < x in =4, and a path 5;‘” from x; to 3,
SO 5{(”,551 C —p, with degree x' < x.

e Otherwise, let 5 be the last node of § in dom(by). The next node is necessarily .
Let 23 be the last node of ¢ in dom(b) before x5. Let x4 be the next node. (It is in
dom(by).) We have

0= 5%“:($3=$4=X4)=5§27(3357337)(5):5%(37

with 8X* C —,. Let now o = (Output(b2),Y > _ = e) and consider the struc-
ture (X > ZL’3,0>. Its concrete dependency graph is —(xpa,;0) and contains a path
(X, %4, X4), 057, (5, Y, X5)-
So by hypo‘rhems 2, we have x{ = Degree(xs,let rec by in e) < x5, so there is and
edge x3 &b
Then, applylng the induction hypo‘rheqm to d; and d3 if not empty, we obtain two
paths (5”“ and 4} X of —, and so 6’X‘ (w3, m,x%), 04 Xs ig path of =, with a
degree xt < x5 if (53 is empty, and a degree X5 < X3 o‘rherwme.
2. x1 € dom(b),x2 € dom(by). Let x3 be the last node of § in dom(b), and x4 the next
one. ¢ is of the shape dY', (73,74, x3), 05, with the nodes of d; in dom(by). 6; and &y
could be empty. As above, by lemma 5, we have x4 = Degree(zs,let rec by in e) <

Degree(xs, ba(x4)) = X3, so we have an edge z3 &n, T.

e If 5 is empty, n > 1, so §; is non-empty, and applying induction hypothesis to d;,
we obtain 6’1’(,1 with same ends, and therefore obtain a path in —; with same ends
as 0, and with degree x4 < x3 = x.

e Otherwise, 52X C —p,. Let X #Y, 1 = X b 23, and o = Output(hs),Y > _ = e.
We obtain a path (z3, x4, x3), 2% in =,y with same ends as §, and with degree
X2 = X- So, if d; is empty, we have in both cases a path from z3 to z in b, with
degree x4 < x. Otherwise, by induction hypothesis, we obtain (5’1)‘/1 with x] < x1,
and reason exactly as above.

3. 1 € dom(by),x2 € dom(b). Assume x = ®. The first node of § not in dom(bs) is
necessarily z. Let 23 be the node just before it. ¢ has the shape 6}, (z3,z, x3), 05>.
If 05 is empty, we have o = z which is clearly in {z} U dom(bs). Otherwise, apply
induction hypothesis to obtain a path (55"; with the same ends as dy and x < x2. But

here x = x2 = ® 50 x4 = ®. As Gy F b, 29 must be defined after z in b, so it must be
in dom(bs).

4. 1,79 € dom(by). If all the nodes are in dom(by), then § C —, directly. Otherwise,
the first node not in dom(by) in § is necessarily . Let x3 be the node just before
it. § has to continue after x, because it has to go back to a node in dom(bs), by
hypothesis. Let x4 be the node just after the first occurence of . ¢ has the shape

é?(l ) (21337 z, X3)7 (337 Tq, X4)= 63(2
e If 05 is empty, then as Degree(x,ba(x4)) = x4, by lemma 5 there exists an edge

T &n, x, with xjy < x4. But here x4 = x, so we are in the second case and
L+
z 2%,z with x; < x.
e Otherwise, by induction hypothesis on (x,z4, x4), 5}, we obtain a path §,X> C —,

.+
from z to x and ! < x2, which means that x X—2>b z, and that is enough.

O
Corollary 4 (Correct internal merge)

If b= (b1, = let rec by in e,b3), b b, F by, dom(bs) L dom(b) U FV(by,b3), and b' = by,by, z =
e, bs, then Fb'.
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+
Proof We want to prove that if g)b, x9, then x1 >p x9 (21 is defined before x4 in b').

+
e If 21,29 € dom(b), by lemma 6, there is a path x; g)b To,and as - b, £ >p T2, SO X1 > Ta.
® +
e If 1 € dom(b),z2» € dom(bs), by lemma 6, there is a path 1 —, z, so 1 >, = and therefore

xr1 >y Ta.

If z; € dom(by), x2 € dom(b), by lemma 6, then x2 € {z} U dom(b3), so z1 >p xa.

If 21,22 € dom(bs), by lemma 6, we are in one of the following two cases.

. et
— There exists a path z; —>yp, T2, and as F ba, 1 >p, T2, SO T1 >y Ta.

. e e R
— There exists a path x —, =, which is impossible, since F b.

O

There is a similar property for merging two externally nested bindings —i.e. the second one appears
right under the first one.

Lemma 5 (Correct external merge)

If dom(by) L (dom(by) U FV(b1)), - b and & by, then with b= by, by - b.

Proof Let 6© be a path of —;. We prove that it goes from left to right in b.

e If it is a path of —4,, then by hypothesis, it goes from left to right.
e If it is a path of —,, then by hypothesis it goes from left to right.
e If it goes from a node defined in b; to a node defined in by, ok, it goes from left to right.

e It cannot go from node defined in by to a node defined in by, because dom(by) L FV(by).

4.4 Soundness

We first state the two traditional type well-formedness and weakening lemmas.

Proposition 7 (Types well-formed) If the types in ' are well-formed, and T'F e : M, then M
is well-formed.

Proof By induction on the typing derivation.

Struct. e = (1;0) and M = (I; O; G). By syntactic correctness, dom(t) L Names(o), so dom(I) L
dom(0). Moreover, the targets of GG, by construction of —(,.,), and —)8}_{)), are in dom(0),

and by typing - Gy, so = G. Eventually, - T is given by the typiné rule, and F O is
obtained by induction hypothesis.

Sum. Assume e =¢e; + ey, ['Fey: (I1;01;G1), T Fea: (In;09;Ga), F G1 UG2, and
M = ((I; UI) \ (01 W 02); (01 W03); Gy UG,). By induction hypothesis the types of e;
and ey are well-formed, so I U I, and O; W Oy are as well. By construction, the inputs are
disjoint from the outputs, the graph is correct, and its targets are in dom(O; & O3).
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Freeze. e =€/ ! X, ' F e : (I;0;G), and M = (I;0;G! X). The only difficulty is to show that
the targets of G ! X are in dom(O), but the ones of G are by induction hypothesis, so it is
the same for the ones of G!X v x, and therefore for the ones of G.

Close. Simple by induction hypothesis.

Project and delete. Easy by induction hypothesis. For projection for example, everything is
trivial, except maybe that Targets(G|x) C dom(O) x), but by induction hypothesis
Targets(G) C dom(0O), and as Targets(G|y) = Targets(G) N N, we have Targets(G|n) C
dom(0) NN = dom(O) y).

Show and hide. Assume I' F e: (I;0;G), and by rule T-SHOW,
I'Fex,.x,:  (;0x, . x,;Gx,..x,) By induction hypothesis, (I;0;G) is well-formed,
soF I, F O, G, dom(I) L dom(O), and Targets(G) C dom(0O). We can deduce that
(IO x,..x,;G.x,..x,) is well-formed, since Targets(G.x,..x,) C {X1... X, } and by typing
{X1...X,} C dom(O). The other conditions are easy, and hide is similar.

Rename. e =€'[r], T F e : (I;0;G), (cod(r) \ dom(r)) L dom(I) U dom(O) (1),
and M = (I{r}; O{r}; G{r}).
By induction hypothesis, dom(I) L dom(O), Targets(G) C dom(O), v I, - O and + G.

Furthermore, I{r} and O{r} are well-defined individually, but it is not trivial that they do
not define the same name twice.

To show this, first remark that dom(I{r}) = (dom(I) \ dom(r)) & r(dom(I)) and
dom(O{r}) = (dom(O) \ dom(r)) & r(dom(0)).

But by induction hypothesis, we know that dom(I) L dom(O), so

dom(I{r}) N dom(O{r}) C ((dom(I)\ dom(r)) N cod(r))
U ((dom(0) \ dom(r)) N cod(r))
U (r(dom(I)) N r(dom(0))).

But by (1), both (dom([I) \ dom(r)) N cod(r) and (dom(O) \ dom(r)) N cod(r) are empty.
Finally, as r is injective and dom(I) L dom(0O), we have r(dom(I)) L r(dom(O)).

Moreover, by induction hypothesis, Targets(G) C dom(O), so
Targets(G{r}) C r(Targets(G))U(Targets(G)\dom(r)). But Targets(G)\dom(r) C (dom(O)\}}
dom(r)), so

Targets(G{r}) C r(dom(0O)) U (dom(O) \ dom(r)) = dom(O{r}).

Split. Assume I' e : (I;0;G), and by rule T-SpLIT,
F'ktex,y : JW{X:0(X)};0{X —» Y};Gx,y). By induction hypothesis, Targets(G) C
dom(0O). But Targets(Gx,y) = Targets(G) \ {X} U {Y} C dom(O){X — Y}. The other
conditions are easy.

Other cases. Easy.

O

Lemma 6 (Weakening) IfT'Fe: M and dom(IT") L FV(e), then T(T') F e : M.

Proof Simple induction on the typing derivation. Clashes of dom(I") with bound variables of €’
are not a problem because in the rules, new bindings override previous ones. O

Now, typing is preserved by the computational contraction rules.

Lemma 7 (Subject contraction) Ife~s.e' and'Fe: M, thenT Fe' : M

Proof By case analysis on the contraction step.
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e SUM. Assume e = (11;01) + (12;02), and I' + e : M. By typing we have T' F (11;09) :
<I];O];G]>7 '+ <L2;02> : (IQ;OQ;GQ), and M = <I,O,G) with I = (I] UIQ) \ (O] UOQ),

0 =0,U0,, G=G UG2, and - G. We have e’ = (1;0), where 1t = (11 U12) \ Input(o1, 02)
0= 01 =, 02, with (11;01) T (12;02).

3

By lemma 1, F =, and G = [—.].
Then we deduce easily that I' - e’ : M:

— dom(t) = dom([) is trivial.
— We have seen that = —,.,y.

— By typing there exist correct I'; and 'y such that T'(I; o Lfl W) ko : Iy and
(I 0 L;1 W) F og : T's. So it would be enough to derive IV F o : (T'y WIy), where
I = F(IO Lil ] F] ] Fz)

First Variables(o1) L Variables(0s), so dom(T'y) L dom(T5).

Then, [ = I W I, with I} = I; \ Oz and I} = I\ (I; U O;) and we obtain I o/~ ! =
(Tor )6 (Tor )= (Il o) (I oY)

Moreover, with P = cod(11)N Variables(os), we have I'y = I'y| pWI's\ p, and by (i1;01) <
(12;09), for all z € P, there is a name X € dom(i;) N Names(o) such that (X > z) €
u N Input(o2), so id| p = Input(os) o 17", and therefore

Fg‘p = Fgo(id‘p)

Ty o Input(oy) o 1]
(T3 o Input(oy)) o1} !
05 o Lf]

02\ dom(u1) © L;l

(02 n I]) o L;l.

So, we obtain I'y = (02 N 1;) o Lf] W 'y p and so

I" = TM WL \O) o, W (Ihow' )w(hNOy) ot W o\ p)
= I(TiWhoy ' w(Ijouw, ")yl p).

By compatibility, this weakening does not concern free variables of 01, so we obtain by
lemma 6: I I 01 : 'y, and by symmetry I'' F oy : Ty, s0 TV Fo: Ty Wy,
e LIFT.
Let e =L[let rec b in e1], and '+ e: M, dom(b) L FV(L), and ¢ = let rec b in L[e;]. By

case on .. For example . = O + e5, we have a derivation of the shape

FT, kb T Fb:T, Ty Fe : M, : 180, = 15O,
I'kletrec b in e; : My I'key: M,y FGLUGs

Tk (letrec bin e;)+es: M
Where M] = (I];O];G]), M2 = (IQ;OQ;GQ),
and M = <(I] UIQ) \ (O] UOQ);O] O] OQ;G] UGQ).

By hypothesis, dom(T'y) = dom(b) L FV(es), so by lemma 6, we have T'(T'y) F ey : My, and
we can reconstruct the derivation as follows:

L O, & I, W0y . .
Ty : FG UG, (Ty) F ey : My L(Ty) ey : Mo
Fb F(F(,)l—btrb F<F5>F€1+€2:M
T'Fletrec b in e +ey: M
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e FREEZE. Assume e = (;;0) ! X and e’ = (1;0'), with 0o = (01, X[y*] >z = f,02), and
!

o' = (o1, [y*]>x = f,00, X by = x), with a fresh y.
By typing, we have a derivation of the shape

LT FT, Vz € Variables(o),[{I o1t ' W T,) F o(z) : T(2)
dom(t) = dom(I) F =0 Flor 'wl)ko:T,
Tk (1;0) : {[;0;G) X € dom(0)
Fke:([;0;|G!X])

with O =T, o Input(o) and G = [ —(,;0)]-
Let Ty =Ty{y — T'y(x)). By weakening, we can derive

Vz € Variables(o') \ {z,y},T{(Tot " W) F o' (2) : T (2).
For 2 and y, we easily derive too that
T(Tor 'wll) k- f: T ()
[{Ior 'wWI)Fa: T (y).
So we have

Vz € Variables(o'),['(I o1 ' WT.) - o'(2) : T (2).

Moreover, by lemma 1, we have F —. and |—. | = |[G! X, so we can derive
FT T Vz € Variables(o'),T{I o1 ' WI') F o' (2) : I (2)

dom(t) = dom(I) F—e T(Tor 'wl)ko T
CE(;0):{I;0;|G'X])

DELETE. Let e = (1;0)|_x,..x,, with N = {X; ... X, }, we have

dom(t) = dom(I) FI FT, F = (o) [(Iov'wl,)Fo:T,
L'k (;0): (I;0;G)
F'e: M

with M = (I'; O'; G') = (I 8 Oy nr; O\w; G—n) and G = [—(,,5y]. But necessarily, we have
e ="0) = (/,,Input(o)‘N;o\N).

So, Tou tWl, = (IWO, v) O(/,,Input(o)‘N)’l) W, with I, = o\, and so (1€ O} xr)
(L,Input(o)‘N)’l) W) o : Ty,

Moreover, we have by lemma 1, - =, and G' = |—./], so we can derive

dom(') = dom(I')  FI' FT, ko T'od 'WI)ko T
ke (I'0"GY

PROJECT. Let e = (1;0)x,..x,- Let N = {X;... Xy}, N/ = Names(o) \ NV, and e’ =
(t;0)|—ar. We have in fact that e ~ €', because of the duality of delete and project.

So if we show that T'F €' : M, we can reproduce exactly the delete case as above.

By typing, we have 'k (1;0) : (I;0; G), and M = (I'; O"; G"), with I' = TU O\, O" = O}y,
and G' = G|y -

But we can derive T' = e"” : (I"; 0"; G"), with I" = TUO|xn = TUO\y =1I', 0" = O\n» =
On =0'" and G" = G|_n» = G|i = G', so we derive I' - e : M, and may apply the same
process as above to deduce I' - e’ : M.
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e RENAME. Let e = (1;0)[r]. We have e’ = (1{r}; o{r}), and by typing:

I FT,
F =0 dom(I) = dom(:) [{Iov 'wl,)Fo:T,
T'F{(s0):{I;0;G)
(cod(r) \ dom(r)) L (dom(I)U dom(O))
'e: M

with M = (I 05G') = (T{rk; O1rk G{r}), G = | o,
and O =T, o Input(0).
We may write e’ as (1';0') = (1{r}; o{r}), and Input(o') = Input(o) o r;]almes(o), o

r',o Ilelt(O’) =I,o0 Ilelt(O) °© T;I;mes(o)

_ -1
=0o rNames(o)

—1
=0o T dom(0)
=0

For inputs, we have I' o /' = I{r} o ({r})' =To rgolm(,) o Tdgom(y ot " =Tou ' so
D(I'od "W Fo : T,

Moreover, it is easily seen that dom(I') = dom(:'), - I', and by lemma 1, we have, with
F =0y and G’ = [ = (1,0, s0 we can derive

FI'RT,
F =y dom(f) =dom(I')y  T(I'o/ 'wT,) ko :T,
LE 50y (150G

e CLOSE. Let e = close(e; 0). We have e’ = let rec Bind(o) in Record(o), and + Bind(3), and
by typing

F F{, _)<e;o) F<F0> Fo: F{,
T F {(e;0): (0;0;G)
'te: M

with M = {0}, G = [ (0], and O =T, o Input(o).

Let
O:dl...dn

b= Bind(o) = (z1 =e€1...2, = €y)
s = Record(o) = (X1 = x,01) - - - Xon = Tp(m))
where p: {1...m} = {1...n} injective
and for all 1,X; = L.
We have ' = let rec b in {s} andlet T, ={z; : M; |i € {1...n}}.
We have

— I(T,) Fb: T, (easy with I[',) Fo:T,),
— b, by lemma 4,

— I'(T,) F {s} : {O}, since for all i € {1...m}, [([o) b x5 : Do(wpue), and To(z,i)) =

so it is ok.
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e SHOW. Assume e = eg.x,.. x,, with eg = (¢;0). Then, ' = (1;0'),
and o' = Show(o, X7 ...X,). Let N = {X;...X,,}. The typing derivation is of the shape

H1 FT,
F =0 dom(I) = dom(t) FIor 'wWl,)Fo:T,
Lkeg:(;0;G) N C dom(0)
Tke:(I;05:G")

with G = |__><L;0)J; G'=|G.n],

and O =T, o Input(o).

By lemma 1, we have - -, and G' = |G |.

The typing of o' is exactly as the one for o, so we obtain that e’ has type (I;0'; G'), with
0" =T, o Input(o'). But Input(o') = Input(0), 5, so O' = Oy, which is the expected result.

e HIDE. As for delete and project, we obtain the expected result by reasoning dually to the
SHOW case.

e SPLIT. Let ey = (1;0) and e = egx,y, with o = (01, X[2*] >z = e1,02). We have ¢’ =
(;0") = (1, X > z;01, X[2*] >y = e1,09) for a fesh y.
The typing derivation is of the shape

I FT,
F =0 dom(I) = dom(v) [(Ior 'Wl,)Fo:T,
T'keo:(I;0;G) Y ¢ dom(O) U dom(I)
F'kex,y : JW{X:0X)};0{X » Y} Gx>y)
with G = [ = (,;0)], and O =T, o Input (o).
By lemma 1, we have = — /.,y and [— (0] = Gxsy-

Moreover, the environment I, corresponding to o' is T',{z — y}, and it is easy to reconstruct
the derivation for ¢’ (by a weakening).

O

It is now possible to prove that if a well-typed expression reduces to another expression, then this
expression has the same type, which is known as the subject reduction property.

First we prove that typing is compositional at the level of lift contexts.

Lemma 8 (Lift context) IfTFL[e]: M, TFe:M' andTFe' : M', then T FL[e']: M.

Proof By case on L.

e L ={S}, with S =s,,X = 0O,s. We have a derivation of the form

VY =f)e (sv,-s),Fl-f:O(Y) Fl—e-:M'
T+ {Se]}: M

with M = {OU{X : M'}}.

By hypothesis we have T' - ¢’ : M’, so we can reconstruct the derivation

VY =f)e (sv,-s),F Ff:O®) r+ e; M
T+ {Se]}: M
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e L. = op[O], for op € {close, [r],!X, _x, x,,x,..x,}- We have a derivation of the shape

TkFe: M side conditions
T'ke:op[M'

with M = op[M'], and op deduced from the typing rules. The only side conditions appearing
in the rules are X € dom(O) for freezing and cod(r) L dom(I)Udom(O) for renaming, which
do not use the shape of e, so we can reconstruct the derivation in a compositional way.

e L = O+ e;. The derivation is of the form

I]U‘JO]QIQ@OQ l_G]UGQ F"@Z(I];O];G]) Fl‘@g:([g;Og;Gz)
F|_€+€2 : ((I] UIQ)\(O] UOQ);O] U‘JOQ;G] UGQ)

Similarly, we can reconstruct the derivation compositionally with e’.

e L = v+ O. Similar.

O

This property is true for multiple lift contexts as well.

Lemma 9 (Multiple lift context) IfTFFle]: M, TtFe: M', andT €' : M', thenT FF[e] :
M.

Proof By trivial induction on F. O

Corollary 5 (External substitution) If T Fov:T'(z), and T FF[z]: M, thenT - F[v] : M.

Proof Trivial. O

For evaluation contexts, typing is not exactly compositional, since in the let rec case, it depends
on the shapes of the bindings. However, we have this slightly less general property.

Lemma 10 (Evaluation context) Assume I' - Ele] : M, with a sub-derivation (") F e : M'
in place of the hole. Assume also that T(T') F €' : M', that e € Predictable and e¢' € Predictable,
and that for all x € FV(e'), x € FV(e) and Degree(x,e) < Degree(z,e').

Then T +-Ee']: M.

Proof By induction on E.

e E =F. By lemma 9.

e E =letrec b, in F. The derivation has shape

F b, (T, ) F by : Ty, Ty, ) FFle] : M
Lt letrec b, in Fle] : M

By lemma 9, we have T' - F[e'] : M, so we can reconstruct the derivation compositionally.
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o E =letrec B[F[e]] in f, with B =b,,2 = 0,b. The derivation has the shape

where b = B[F [¢]].

By induction hypothesis, we derive I'(T';) - F[e'] : T'y(x).

Let ' = B[F[e']]. There only remains to prove that  b'.

As b, we have >, F b, since they define the same variables in the same order.
Obviously, we have >,=>.

By hypothesis and hypothesis 1, we have F [e] € Predictable iff F[e'] € Predictable, so b and
b’ are equivalent with respect to shapes.

For dependencies, we know that the edges with a target different from z in — stay the same

in = . For the edges towards z, we know that FV(FF [¢']) C FV(F [e]). Let y € FV(F[e']) N

dom(B ). By hypothesis and hypothesis 2, we have Degree(y, F [e]) < Degree(y, F [e']), so that
+ +

. ® ® . .
if y —, 2z, then y —, 2. Therefore, the constraints imposed on the ordering are weaker
than in b, and by lemma 3, the order of definition stays acceptable.

O

Lemma 11 (Evaluation context) Ife~.e', and T'FE[e]: M, then T F E[e'] : M.

Proof By lemma 10. O

Now that we have proven that typing is preserved by the CONTEXT rule, the last difficulty for
proving subject reduction concerns the SUBST rule. Indeed, replacing a variable with its value
might change the shape of a binding. We first prove that if the variable is defined above the
current context, it does not change the typing.

Now, we check that substituting a variable with its value, defined in the current binding does not
change typing either.

Lemma 12 (Internal substitution preserves correct ordering) Let B = (b,,y = 0O,b1),
b=B[F[N[z]]], ¥ = B[F[N[v]]], by(z) = v, and Capt,(F[N]) L FV(v) U {z}. IfF b, then
Fb.

Proof Assume F b. Then, b and b’ define the same variables in the same order. So, > - b'.

By hypothesis 1, if F[N[z]] € Predictable, then F [N[v]] € Predictable, so the shapes of b’ are less
restrictive than in b.

For this, by lemma 3, it is enough to show that —, < —.
For this we remark that
sy C =3 U{z Sy |z e FV(F[N[]]), x = Degree(z, F[N [v]])}

But by hypothesis 2, among the variables z € FV(F [N [v]]), we can distinguish two cases.

e For variables z € FV(v) \ Capt,(F [N]), we have y = ®.
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e For variables z ¢ FV(v) \ Capt,(F[N]), we have x = Degree(z,F[N]).

Therefore, we have

—y C =y
{z &y | 2 € FV(v) \ Capt.(F[N])}
U{z X, y|z e FV(FIN[v]]) n (FV(v) \ Capty(F[N])), x = Degree(z,F[N])}

Let —" be the right member of the above equation.

For each edge in {z 9) y | z € FV(v)\ Capt,(F[N])}, as z € FV(v), there is an edge z -, z. But
by hypothesis 2, Degree(z, E [N [z]]) = @, so there is a strict path from z to y in —.

For each edge in {z 5y | z € FV(F[N[v]]) N (FV(v) \ Capt,(F[N])),x = Degree(z, F[N])}, we
have Degree(z,F[N[z]]) < x. (This can be deduced from hypothesis 2.)

So, we have —, <—", and by transitivity of graph comparison, we get —; < —p.
O

We can eventually verify that reduction through the SUBST rule preserves types.

Lemma 13 (Access) IfE[N](z) =v and T F E[N[z]] : M, then T F E[N[v]] : M.

Proof By induction on E.

e E =T, impossible.
e £ =letrec b, in F. By corollary 5.

e E =letrec B]F] in e. Let b =B[F[N[z]], ¥ = B[F[N[v]]], and B = b,,y = 0O, b;.
The derivation has the shape

Fb Yy € dom(b,,b1),T(Ty) F B (y) : T'(y) I(Ty) F F[N[z]] : T'(z)
F'FE[N[z]]: M

We have b, (z) = v, and by lemma 12, F b'.

Eventually, we have I'(I'y) F v : T'(z), so by corollary 5, we can derive I'(I'y) F F[N [v]] : T'(z),
and therefore

Fo Yy € dom(b'), F'(Fb) Fb':Ty(y)
F'FE[N[]: M

O

Type preservation along the IM rule is proven.

Lemma 14 (Internal merge)

If e = let rec b,,z = (let rec by in e1),by in f e =letrec by,b1,z=e1,by in f, and " Fe: M,
thenT e’ : M.
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Yy #x

Proof

We have a derivation of the shape

F Ty,

: Fby  D(OW)NDy, ) b by : Ty, D(D)(Ty,) F ey : Ty(x)

T(Ty) F b(y) : Th(y) [(T'y) - let rec by in ey : Tp(x)

F(Fb> Fb: Fb

T(C) F f: M

FTy
Fb

[k let rec b,,z = (let rec by in e1),by in f: M

where b = b, x = (let rec by in eq),bs.
Let b = b,, b1,z = e1,by. By corollary 4, we have - b'.

Moreover, by weakening, we have

W T F () To(y)

and with T'yy = T, W Ty,

and we have

Yy € dom(b")

T({Ty) Fb'(y) : Tw(y) L{Ty):f: M

- Ty
- b

Tkletrec b in f: M
O

Next, rule EM is examined.

Lemma 15 (External merge)

If dom(b) L (dom(b,) U FV(by,)), then T'Fej: M.
eg = let rec b, in letrec b in e,
e, = let rec b,,b in e and
Theg: M

Proof The typing derivation for ey, has the shape

l_b F(F])(Fz)"brz F(F])(Fz)l_erz
Fb, T(T)Fb,:Ty [(Ty) Fletrec b in e: Ty
They: M

By lemma 5, we have F b,,b.
So by weakening we can reconstruct the derivation.
O

We can now state the subject reduction property.
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Lemma 16 (Subject reduction) Ife — ¢’ and T Fe: M, thenT e’ : M.

Proof By immediate induction, with lemmas 7, 11, 13, and 15. O

Eventually, we prove that if a term is well-typed and is not a result, then either it reduces to
another term, or it is stuck on a free variable. This is known as the progress property.

Lemma 17 (Progress) IfT' F e : M and e is not a result, then either e = E[N[z]] with = ¢
Capt  (E[N]), or there exists €' such that e — ¢'.

Proof By induction on e.

1. If e is of the shape L[eg], and e is not a value. If g = let rec b in f, then the L1FT applies.
Else, by induction hypothesis we are in one of the following cases.
e ¢ = E[N[z]] with z ¢ Capt (E[N]), and e is stuck on z too, i.e. e = L[E[N][z]]].
e Otherwise, if ey — €, we reason by case analysis on the applied reduction rule.

— EM. Then the LIFT rule applies for e.
— SuBST or CONTEXT. Then ey = E[f] and e = E[f']. By case analysis again, on

E:
x f E = 0or E =F, then e reduces by the same rule, since L [E] is an evaluation
context.
x If E = letrec b, in Fgor E = let rec B[F] in g, then the L1FT rule applies
for e.

2. If e is of the shape N[z], there is nothing to show (z is necessarily free in N[z]).
3. e=letrec b in f.

(a) Else, if b is evaluated. b = b,. If f is a result, it has the shape let rec b," in v (or e
would be one), and rule EM applies.

Otherwise, by induction hypothesis, we are in one of the two following cases.

e f— f'. By case analysis on the reduction:
— EM. Then rule EM applies for e as well.
— SUBST or CONTEXT.
We have f = E[g]and f' = E[g']. fE = let rec b,' in F'or E = let rec B[F] in g,
then rule EM applies, and otherwise, the same rule applies for e since let rec b, in EJj
is an evaluation context.
e f=E[N[z]], with z ¢ Capt_ (E[N]).
If E = letrec b, in F or E = let rec B[F] in g, then rule EM applies, and
otherwise, E is of the shape F and f =F[N[z]], e = let rec b, in F[N[z]]. If z €
dom(b,), then rule SUBST applies, and otherwise e = E ([N [z]] with 2 ¢ Capt(E ).

(b) Otherwise, b is not evaluated, so b is of the shape b,,y = g, b1, where g is not a value.
e If g is a result, then it is of the shape let rec b," in v, and by internal merge,
e —> let rec b,,b,",y =v,b; in f.
e Otherwise, by induction hypothesis:
— If g — ¢', by case on the reduction.
* EM: then rule IM applies for e.

* CONTEXT or SUBST: then g = E[go] and ¢’ = E[gj]. If E is of the shape
let rec b," in F or let rec B[F] in g”, then rule IM applies for e, and other-
wise, the global context is an evaluation context and the same rule CONTEXT
or SUBST applies for e.
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— If g =E[N[z]] with z ¢ Capt (E[N]). By case on E. First notice that we know
—+

that x ¢ dom(y = g, b1), since by typing F b and therefore if = g),, y, then x is

defined before y in b, and g = E [N [z]] implies the existence of an edge = 9),, Y

by hypothesis 2.

x If E =let rec b,' in F or let rec B[F] in g”, then rule IM applies.

x Else, if © € dom(b,), then rule SUBST applies, since the global context is an
evaluation context.

x Else, if © ¢ dom(b,,y = g,b1), then e is of the shape Eo[N[z]] with z ¢
Capt(Eoq).

4. e = e1 + es.

We treated the case where either e; or es is not a value above. So we may assume that both
are values. The typing derivation must be of the shape

l_ _><[,1;01> l_ _><[,2;02>
= I] F F] ) = 12 F F2 )
dom(1y) = dom(l;) T{lyou ' W) Fo : Ty dom(1y) = dom(Iy) T(lyouy' W) F oy : Ty
Fl‘G]Z(IHOHG]) Fl‘Gz([z,Oz,Gz)

'kte: M

with F G UGy and I1 W O & I, W Oy as side-conditions and

G1 = _)(m;m) M = <I,O,G)

Gy = —)<L2;02> and 1= (11 U 12) \ (01 U 02)
01 =T o Input(o) 0O =07 30,

02 = FQ o Ilelt(OQ) G = G] U GQ.

But values with mixin types may only be of two kinds: either variables or structures. If
either one of the two is a variable, we have treated the case as well in the beginning (and
e = E[N[z]] with « ¢ Capt,(E)).

So we may assume that e; = (11;01), €2 = (12;02), and that bound variables of the two
structures meet only on the common names, i.e. e; < ey. This can be reached via a-
conversion.

Moreover, typing imposes that Names(O1) L Names(O3), so Names(o1) L Names(0y), and
rule Sum applies.

5. CLOSE. e = closeeg, and e is a value, not a variable (these cases have been treated above).
By typing, eg = (€; 0) and we have

FTy  F o Ty Fo:T,
T'Feq:(0;0;G)
F'ke: {0}

So we have e — let rec Bind(o) in Record(o), provided
0 is defined and Bind(0) is syntactically correct.

By lemma 2, 0 is defined and + Bind(9).

For any forward reference from z to y in Bind(0), there is an edge from y to x in —,, and if it
points to a component of unpredictable shape, then either its degree is @ or we have y >, x,
so y is defined before z in 0 and therefore, in both cases, z is defined before y in Bind(9).

6. Other operators trivial.
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O

Eventually, we can prove a standard soundness theorem.

Theorem 2 (Soundness) The evaluation of a well-typed expression may either not terminate,
or reach a result, or get stuck on a free variable.

As free variables cannot appear during reduction, we have the following more standard corollary.

Corollary 6 (Soundness) The evaluation of a closed well-typed expression may either not ter-
minate or reach a result.
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Chapter 5

Refined static semantics: type
components

In this chapter, we extend the MM language with type definitions and abstract types. Our formal-
ization is strongly inspired by Leroy’s module systems [51, 52, 53, 54], but the theoretical design
also bases on type theory for recursive modules [27, 29], and the work of Duggan and Sourelis [31]
and Flatt and Felleisen [36, 35]. It does not solve any of the issues related to these systems, such as
undecidability, lack of principal signatures, or even problems for syntactically represent signatures
[56, 65]. It should rather be seen as an experiment on the expressive power of mixin modules with
type components.

5.1 The MML language

Our language of mixin modules with type components is presented in figure 5.1. Names S € Names
are distinguished from variables s € Vars. Expression variables z € MVars C Vars are distinguished
from type names t € TVars C Vars. Expression names X € MNames C Names are distinguished
from type names T € TNames C Names. Variables are used as binders, as usual. Names are
used for accessing to definitions in mixin modules, as an external interface to other parts of the
expression. A label L can be either a name or the anonymous label _.

The syntax comprises two main syntactic classes, expressions, which represent computational in-
structions, and types, which contain static information, roughly.

Definitions Expressions build on definitions d, and outputs o = (d1 ...d,), which are lists of
definitions. A definition d can have two shapes. If d = (T'>t = M), it binds a type expression M to
both a type name T and a type variable ¢. It is then called a type definition. If d = (L z[y*] = e),
then it binds an expression e (the body of the definition) and a finite set of variables y* to a label
L and an expression variable. It is then called a value definition. The name X or T is used by
other parts of the program to refer to the bound object. Conversely, the variable x or ¢ is used
by other definitions under the scope of the definition to refer to the bound object. If the label is
the anonymous label, the bound object remains unaccessible to other parts of the program. The
attached set of variables represents fake dependencies that help the programmer specify the order
of evaluation, exactly as for MM in chapter 3: when a mixin module is instantiated to a module,
by the close operator, definitions are reordered, taking actual and fake dependencies into account.

Module expressions Intuitively, expressions are divided into three parts. A basic module {o,}
is a list 0, of pairs S > s of a name and a variable. For homogeneity, we consider these pairs as
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Lexical conventions:
Expression Type Both
Variable T t S
Name X T S
Labels L € NamesW{_}
Path: p ===z|pX
Expression: e u=p Path
| {0,} Module
| let rec 0 in e let rec
| (I;0) Structure
| e1 + ez | closee Composition, closure
| (e: M) Type constraint
o n=di...d, Output
d =Lvzy|=e|Trt=M Definition
Type: M =% New type
|t]|pT Type path
| {O} Module type
| (I; O; —;—) Mixin module type
1,0 :=D,...D, Signature
D ==Lbs: M Declaration
— Cpin {X 5 Y | X,Y € Names, y € Degrees} Dynamic graph
— Crin Names x Names Static graph
Degrees = {©,0}

Figure 5.1: Syntax of MM

definitions, such that the body of each value definition is a variable, not bound by the current
module. This way, basic module expressions are always values. Modules are required not to bind
the same name or the same variable twice. Moreover, because there is no reordering on module
definitions, fake dependencies do not make any sense so we do not write them. Module selection is
performed by the selection operator, but it is restricted to paths p = z.X;..... X,,. The rationale
for restricting selection to paths has to do with phase distinction [41]. Roughly, by avoiding
computational expressions in types, we avoid fully dependent types, and the associated difficulties,
such as the undecidability of type equivalence.

Mixin module expressions Basic mixin modules, called structures, are pairs (I;0) of an input
I (also called a signature) and an output o. An input is a finite set I = (D; ... D,,) of declarations.
A declaration D is the specification of a definition, that the mixin module expects as an input. It
can either be of the shape X >z : M, and give the type of a value definition, or give the type of a
type definition. The point is that a type definition T'>¢ = M can be a concrete (or manifest) one
Tt : M, but can also be abstracted over. The type ¢ provided as an input to the mixin module can
then be any type. The corresponding declaration is T'>t : x. We call it an abstract declaration. The
scope of binding variables in I is the whole structure, whereas the scope of the binding variables
in o is restricted to o. The input is required not to bind the same name or the same variable twice,
as well as the output. Moreover, although the input and the output are allowed to define some
names in common, they must not define variables in common. Fake dependencies in definitions
are requested to refer to variables defined in the same structure. Mixin module expressions come
with a minimal set of operators: composition + and instantiation close. Other usual mixin module
operators are left for the moment, since they would complicate the presentation. They are used in
examples in section 5.4.
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Types Type expressions in MML include the unknown type %, type variables ¢, access to type
definitions in modules p.T', module types {O}, and mixin module types (I; O; —; —). Both I and O
range over finite sets of declarations. They are called the input and output signatures, respectively.
In module or mixin module types, signatures should not define the same name twice, and not define
the same variable twice either. In mixin module types, I and O should not define any variable in
common, but are allowed to define some names in common. In module types, abstract declarations
make the implementation of the declared type hidden to outer parts of the program. In mixin
module types, an abstract input declaration does not have the same meaning: it specifies that no
constraint is put on the input type ; any type is accepted. The graph — is a finite graph over
expression names, labeled by degrees x € {©,®}. It represents the dynamic dependencies of the
considered mixin module, and is therefore called a dynamic graph. It is used to detect ill-founded
recursive value definitions. The graph — is an unlabeled graph over names. It represents the static
dependencies of the considered mixin modules, and is therefore called a static graph. It is used to
detect cyclic type definitions.

Recursive definitions and type constraints As usual, let rec binds variables to their values.
It is required not to bind the same variable twice. For homogeneity, we consider these bindings
as definitions. Moreover, names and fake dependencies are irrelevant in let rec so we do not write
them. Any expression is allowed as a let rec definition, except, that forward references must point
to expressions of predictable shape, exactly as for MM in chapter 3. Expressions of predictable
shape are defined by

e, € Predictable ::= {0} | (I;0) | let rec b in e,.

The language allows to constrain the type of an expression e by writing (e : M). Notice that this
operator is static, and is therefore only able to make some type declarations abstract, not to forget
components.

Operations on sequences Lists and finite sets of definitions or declarations can be seen as finite
maps from pairs of a label and a variable to different kinds of codomains. For instance, signatures
are maps to types, outputs are maps to pairs of a set of fake dependencies and an expression. For
each such map f, we denote by DN(f) the set of names defined by f, {S | 3s, (S, s) € dom(f)},
and DV(f) the set of variables defined by f, {s | 3s, (S, s) € dom(f)}.

Structural equivalence We consider the expressions equivalent up to alpha-conversion of bind-
ing variables in structures, signatures and let rec expressions. In the following, we assume that no
undue variable capture occurs.

Dynamic semantics The dynamic semantics is defined exactly as the semantics of MM in
chapter 3, after removing all type indications.

5.2 Type system

The type system consists in four mutually dependent groups of relations: type well-formedness,
matching and equivalence, and typing. Each of this group has a component for types, signatures,
etc. .. They rely on the notion of environment T, referring to finite maps from variables to types.
Environment bindings are defined as finite maps from pairs of a label and a variable to types. This
way, a signature can be extracted from an environment, by removing all the anonymous bindings.
Environment extension + denotes the union of finite maps, without overriding. Therefore, T" + T
implies DV(I') L DV(I"). A signature can be seen as an environment by forgetting labels. This
will be done implicitely in the following.
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5.2.1 Well-formedness

The definition of well-formedness uses a new notion, the one of static dependency graph, which we
introduce now.

Static dependency graph The static dependency graph — o _,) of a set of declarations O with
dynamic dependency graph — is defined in figure 5.2. The arrow — denotes any concrete dynamic
graph: it is a graph over nodes, which are elements of VarsU Names, labeled by degrees. Further, O
is any set of declarations, not necessarily defining distinct names or variables. The definition of —
uses the function Nodes, which associates to a pair (L, s) of a label and a variable either s, if L = _
or L if L is a name. (By abuse of notation, we overload this function to act on declarations as
well.) Roughly, this graph connects manifest type definitions referring to other type definitions in
the same signature. It connects them by name when possible, and by variable otherwise. Formally,
a declaration D, statically depends on another declaration D if the type of Dy contains a type
declaration S >t : M, such that the variable s defined by D; is free in M.

Static graphs will often be required to be acyclic, which is written - — o _,). This condition avoids
the difficulty of type-checking and type equivalence in the presence of equi-recursive, higher-order
type constructors [29, 38]. Notice that the static graph is closed under dynamic dependency. This
is necessary to rule out recursive types, as shown by the following example.

Consider e =gef close(; T >t = yU, X>x = (§;U>bu =1t),Y >y = closex). The edges Y — T
and T'— X in the structure are obvious, but without the rules for prolongation with dynamic
dependencies, there would not be any edge T'— Y. The expression reduces to

let rec T>t=y.U, let rec T>t=y.U,
X>x={(0;Ubu=t), Xox={(0;Ubu=t),
Y>oy= letrecUbu=t and then Ubu=1t,
in{Ub>u' =u} Yoy={Uvu' =u}
in{Tot'=t,Xva'=z,Y>y =y} in{Tot'=t,Xva'=z,Y>y =y}

which would have the recursive type {T'vt: y.U Xb>z:{...),)Yoy: {U>u:t}}.

Well-formedness predicate Well-formedness of types, signatures, and declarations is defined
as the least relation respecting the rules in figure 5.4, using figures 5.2 and 5.3. Notice that it
depends on the typing relation.

A type variable t is a well-formed type, provided it is defined by the environment (rule Wr-VaRr). If
the path p has a module type exporting the type T', then p.T is a well-formed type (rule Wr-PATH).

A module type is well-formed, provided the set of its declarations is well-formed in the environ-
ment extended with themselves (rule WF-MODULE), and provided that dependencies between type
definitions (including the nested ones) are not cyclic. Formally, its static dependency graph — ¢ g)
is required to be acyclic. By rule WF-MIXIN, a mixin module type (I;0; —;—) is well-formed,
provided the set I is well-formed in the environment I + I, and the set of its output declarations
is well-formed in the environment I' + I + O. Moreover, it is required that the union of the static
graphs of I and O is acyclic, and that the dynamic graph — is correct. A dynamic graph is said
correct if its transitive closure is a partial ordering. The transitive closure of a dynamic graph — is
defined in figure 5.3, as the set of paths of —, labeled with the last edge of the path. This notion of
graph correctness has been proven in chapter 4 to be a correct criterium for checking dependencies
in mixin modules.

A well-formed signature is a signature containing only correct declarations. A declaration S>s: M
is correct, provided M is (rule WF-MANIFEST), but the abstract type * is not a well-formed type by
itself. Rule WF-ABSTR allows a declaration to use the abstract type, but only for type declarations.
Notice that the abstract type % is not the type of any value definition. In fact, the abstract type
can be seen as a syntactic artefact to include abstract and manifest type declarations into a single
syntactic class. The notion of well-formed environments is derived from the one for signatures.
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Static free variables

SFV(%) = 0 SFV(T>t: M) FV(M)
SFV(t) = 0 SFV(Xsz: M) = SFV(M)
SEV(z.p.T) = 0
SFV({0}) = |J SFv(D)\ DV(0)

DeO
SFV((I;0;—+;—)) = [ J SFV(D)\DV(I)U

Del

|J SFV(D)\ DV(1,0)

DeO

Static dependency graph

Node(Dﬁ) —({D1,D5...D, },—) Node(DiQ) Node(DiQ) — Node(Dig)
Node(D;, ) > ({D1,Ds...D,},—) Node(D;,)

Node(D;,) — Node(Di;) ~ Node(Di,) = ({p,,p,..D,},—) Node(D;,)
NOde(Dil) > ({D1,D>...D, },—) NOdP(Dm)

s € SFV(DQ) S = DV(D“)
Node(Di,) = ({Dy.Ds...D,},—) Node(D;,)

Figure 5.2: Static dependencies in a signature

XXz ARSNS g X5y
+ T
X X2y x5y

Figure 5.3: Transitive closure of —
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Types

t € DV(T) Ckp: {0} T € DN(O)
——— (WF-VAR) (WF-PATH)
FFt 'kFpT

r+oro F— 0.0
I'+{0}

(WF-MODULE)

T+I+I T+I+0F0  DV(I) LDVO) F—guog F—
TE(I;0;—;—)

(WPF-MIXIN)

Declarations and signatures

r-mM
———— (WF-MANIFEST)
I'FTprt:x (WF-ABSTR) 'kSes: M
vVDeO,TFD
VD,D' € O(DN(D) = DN(D')v DV(D) = DV(D')) = D =D’
O (Wr-S16)

Figure 5.4: Well-formedness

{Dy...D,}/p = {D:i/p...D,/p}
M/p = M (otherwise)
(T>t:*)/p = Tot:pT
(Tvt:M)/p = Tot:M (otherwise)
(Xvzx:M)/p = Xvazx:(M/pX)

Figure 5.5: Type strengthening

5.2.2 Typing

The typing rules are in figure 5.9, and they use figures 5.5 to 5.8 .

Rule TT-VAR gives a variable the type M proposed by the environment, strengthened as explained
in figure 5.5. Type strengthening [51], sometimes also called selfification [40], consists, when using a
module type bound to a variable x in the environment, in keeping track of where its abstract types
come from. The way it is done is by replacing abstract types with manifest types indicating that
they come from z. For instance, if z is bound in the environment to the module type {T >t : x},
then z has type {T >t : z.T}. Because of nested modules, the operation more generally consists in
prefixing the abstract type names with x, followed by the access path inside the module.

Rule TT-AccCESS explains how a computational component is accessed in a module. Assume z
has type {T'>u: M,Y >y : u}. The type of .Y cannot simply be wu, because the type variable u
would escape its scope. The system has to find a type equivalent to u. It is done by accessing the
path to u, i.e. giving .Y the type x.T. Formally, this is done by an operation called extraction,
and defined as the substitution

[O— p.O]l ={s—pS| (S, s)e€ dom(0)}.

94



Dynamic free variables

DFV(z) = {2}
DFV(z.p.X) = {z}
DFV({0,}) = |J DFV(d)\ DV(0,)
d€o,
DFV(let rec 0 in e) = (| J DFV(d)UDFV(e)) \ DV(o)
d€o
DFV({I; o)) = (U PFV(@)) \ DV(0) \ DV(T)
DFV(er + ) — DFV(e) UDFV(es)
DFV(closee) = DFV(e)
DFV((e : M)) = DFV(e)

Dynamic dependency graph

x = Degree(z', e) (L', z") € dom(I) U dom(o) (L[z*]pz =¢) €0
Node(L', ") 1.,y Node(L, z)

(L;, ;) € dom(I) U dom(o (Llzy ...x)>pz =€) €0

Node(L;, x;) g’([;o) Node(L, z)

Figure 5.6: Dynamic dependencies in a structure

Rule TT-STRUCT allows to type structures (I;0). A type has to be guessed for each definition,
and these types are grouped together in an environment I',, where the names have been kept from
o. This environment is checked well-formed. The type of the structure is obtained by forgetting
the anonymous declarations in I',, yielding a signature O,. But O, still might depend on the
anonymous definitions. The type system thus has to find a super signature O of O,,, that prevents
variables from escaping their scopes. Intuitively, eliminating a reference to a local type definition
is done as follows. For a reference to a type abbreviation, it consists in expanding it recursively
(acyclicity guarantees termination). For a reference to an abstract type, if an exported abbreviation
to it has already been made, then refer to this abbreviation, and otherwise return the abstract type.
The involved signatures and environment are checked well-formed; the static dependency graph
= (IUTy, = (1.0y) 1S checked acyclic; and the concrete dependency graph of (I;0), denoted by — (7.,
is checked correct, and lifted, as explained below.

3

The concrete dependency graph of a structure is defined in figure 5.6. It is a graph over nodes,
which are elements of VarsU Names. Edges may be defined in two ways. First, a definition
d = (Lv>x[zy...2,] = e) specifies a fake dependency on each z;, so for each i, if (L;,z;) €

dom(o) U dom(I), then there is an edge Node(L;, z;) ©, Node(L, ). Second, if the body e of a
definition d = (L > z[21 ...2,] = e) dynamically depends on a variable z', such that (L', z') €
dom(T) U dom(o), then there is an edge from Node(L',z') to Node(L,z). The notion of dynamic
dependence is defined in figure 5.6, and roughly corresponds to forgetting type constraints. The
degree of the edge is Degree(z’, ), where the Degree function is defined for x € DFV(e) by

Degree(z, (I;0)) = ©
Degree(z,{o,}) = ©
Degree(xz,e) = ® otherwise.

When this concrete dependency graph has been checked correct, in the sense that its transitive
closure restricted to strict edges is a partial ordering, it can be lifted to an abstract dependency
graph. This operation consists in prolonging edges to local definitions until they reach an exported
one, and then forgetting the edges involving local definitions. It is described in figure 5.7.
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Lift
Transitive closure through local components

[m]
N] X—1> x x X—2> NQ N] l) N2
Axz P x P
N1 M} N2 N1 — N2
Lift
L_>J = = | Names X Names

Figure 5.7: Lifting concrete dependency graphs

I Cos I, and

I Co, 1.

I Co I, means that for all (L, s) € dom(I;),

x € FV(I,,0)UDV(Iy,0) = (L,s) € dom(l,) and L € Names.

(11,01) < (12,02) means

Figure 5.8: Compatibility

Rule TT-MODULE types basic modules {0, }, as if it were a mixin with no input declaration, except
that given the restricted form of definitions allowed, it is simpler.

The rule TT-LETREC is as the TT-STRUCT for mixin modules without input declarations, for the
binding part at least. The final expression is then typed in the context extended with the most
precise signature available for the bindings, and the obtained type must not allow variables to
escape their scopes.

Rule TT-COMPOSITION types the composition of two mixin modules of type (I;; O;; —4; —;), for
i = 1,2. The two mixin module types are first checked compatible, as defined in figure 5.8. Roughly,
it ensures that variables are not captured during composition. Then, the unions of the two static
and dynamic dependency graphs must be correct. They will be the dependency graphs of the final
type. Its output signature is the disjoint union of the two output signatures O; and Os, in the
sense that they must not define the same name twice. The input signature of the final type is a
new signature I, which must be a sub signature of both I3 and I,. This way, the requirements
made on inputs in the composition are stronger than in each argument, thus preserving type safety.
The signature I could introduce edges in the static dependency graph, so the final graph is checked
acyclic.

Rule TT-CONSTRAINT defines type constraints. For typing (e : M), assuming e has type M’, it is
checked that M’ is a subtype of M, and if so, the type of (e : M) is M.

Finally, the TT-C1.OSE rule types mixin module instantiation. A mixin module of type (I; O; —; —)
is instantiated as follows. Semantically, the variables defined by O must replace the input variables
of I. This is done by the substitution o, and we obtain two signatures I' and O'. It is then checked
that in the environment extended by O’, the signature O' matches the signature I'.

5.2.3 Subtyping

It is easy to see that forgetting some output fields in mixin modules would be dangerous: the well-
known problems with width subtyping of extensible records (see e.g. [42]) can be encoded with
mixin modules. The first of these problems happens with composition +, putting two components
with the same name in conflict. For example, the expression (§; X >z = {}) + ((§; X >z = {}) :
(0; 0; 0; 9)) is stuck. The second problem arises with the overriding operator of section [?], when
one field is overridden with a field with the same name, but a different type, as in
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L(z)=M B Lkp:{0}
Tr o bjs | TVAR) TFpX:0X)[0—pO]

(TT-ACCESS)

'+IF1 I'+I+0FO l_—)<[:0> "-D([U]"M—NI;()))
Ir+1+T,FT, Fr+7+Il,Fo: T, F+I+FOI_F0\NamesSO

T (L;0) : (1;0; [ =10y )5 (= (1m0, 10) T )

(TT-STRUCT)

| Names

ko, : T F+O|_F0\Namess() r+oro I__'>((),(D)
'+ {o,}: {0}

(TT-MODULE)

P+0,F0, TFM TI+D,Fo:L,
F o) Fraoen,)  DAToFe:M T4, FM <M

I'kletrec o ine: M

(TT-LETREC)

I'Fep: (1300, =15 1) I'F ey (Ia;00; =23 —5)
([1,01)3([2,02) l—(—>1U—>2) '+IF1
P+IHI<h  THTFI<T k(= Uy U= (5 0m)

Fher+es: (101 + 02— U —=25—1 U=y U= (1 (5,05,)))

(TT-COMPOSITION)

Cke:M kM M <M
F'-(e:M): M

(TT-CONSTRAINT)

F'ke:(l;0;,—;—) o={s—s"1(S,s) € dom(I),(S,s") € dom(O)}

I'=H{o} O =0{c} T+0F{0)<{I
T+ closee: {O'}

(TT-CLOSE)

Vi<i<n,Tkd;:D; 'te: M
(TT-OuTtpPuUT) .
L'k (dy...dy):(Dq...Dy) F'F(Xvzjy'l=e):(Xvz: M)

(TT-EXPR)

r-m
FE(Tot:M): (Tot: M)

(TT-TYPE)

Figure 5.9: Typing rules
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Types

T+ M =M, FT+0,+0,+0; <0,
—————  (ST-Equiv) ;
' My < M, I'-{0: + 01} < {02}

(ST-MODULE)

F+L+IL+FL<I
F+L+L+0F0 <0, —1<—2 —; C —y

ST-MIXIN
T HA(I1;01; =15 —1) < (I + 15; Og; —9; —5) ( )
Signatures
Vi<i<n,I'FD;<D]
; - (ST-S16)
r-nD,...D,<D;...D,
Declarations
't M, < M,

(ST-VAL)

FF(Xvxz:M)<(Xb>x: M) FH(Tvot: M) <(T>t:x) (ST-Con-ABs)

FkFt=M
CHF(Tvot:%x)<(T>t: M)

(ST-ABs-CoN)
FH(Tot:*) < (T>t:x) (ST-ABs-Ans)

' M, =2 M,
F"(TDfMl)S(TDfMQ)

(ST-Con-CoN)

Figure 5.10: Subtyping and signature matching

(0 Xoz={Vsy=a}, @ Xor={))
pz==zY Y (0;0;0; 0))

which reduces to the ill-typed (§; X >z ={}, _p2=2.Y)

Subtyping is the least transitive relation respecting the rules in figure 5.10. For output components
of mixin modules, this relation corresponds to depth subtyping: it allows some type declarations
to be made abstract, and some value declarations to be made less precise, but no declaration can
be forgotten. In input signatures, it is possibly to add some deferred components. This appears
especially in rule ST-S1G, where declarations must be in a one-to-one correspondence. For modules,
however, it is allowed to forget some output components.

Subtyping is reflexive modulo type equivalence by rule ST-EQuiv. Rule ST-MobDULE allowed to
change its signature for a less precise one. By rule ST-MIXIN, a mixin module is more precise if its
input signature is less precise, i.e. it puts less requirements on inputs, and its output signature is
more precise, i.e. it provides more capabilities. Also, by definition, the notion of graph subtyping
allows to add edges in the graph, and to change © labels into @ ones.

Signature comparison, is made declaration by declaration. A value declaration may be replaced
with a value declaration of less precise type (rule ST-VAL). Any type declaration can be made
abstract (rules ST-CoN-ABs and ST-ABS-ABS) A manifest type declaration can be replaced with
an equivalent manifest type declaration. An abstract type declaration T'>¢ : x can be replaced with
a manifest type declaration T'> ¢ : M, provided the type t is provably equivalent to M. This can
happen for example, when comparing two equivalent but differently ordered module types, such as
{Tot:*,Ubu:t}and {Ubwu:*Tv>t:u}. Thisleads to comparing the declarations T'>¢ : + and
Tv>t:wuin the environment T' >t : %, U > u : t, where u is provably equal to t.
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Types

M#x TFM I(#) # *
(TE-REFL) T~ (TE-Vagr)
I-FM=M I'Ht=1()
THp:{O o(T T+0,+0 =0
p:{0} (T) # (TE-Acc) + ! > (TE-MODULE)

Fl—pTEO(T)[Oi—)pO] F"{Ol}g{OQ}

T+L I~ F+LFO =20, —1=—2 1 = Py

— (TE-MIXIN)
[ (11015215 —1) = (125 02; =2 =)
Signatures
Vi<i<n,['FD; =D, TES
T (D, Dyy={D .3 (TE5C
Declarations
'+ M; =2 M,
(TE-Cowmp)

F'F(Sps: M) =(S>s: M)

Figure 5.11: Type equivalence

5.2.4 Type equivalence

Type equivalence is the least symmetric and transitive relation respecting the rules in figure 5.11. It
is not reflexive, because the abstract type is not equal to itself (fortunately for type soundness), but
calling determinate types the types different from it, type equivalence is reflexive on determinate

types.

A type variable is equivalent to the type it has been assigned by the environment (rule TE-VAR).
If a path p has a module type exporting a type declaration 7' > ¢ : M, then by the typing rule
TT-VAR, this module type has been strengthened, so M is determinate, and p.T' is equivalent to
the extraction of M.

Then, module and mixin module types are defined straightforwardly through the notion of signature
equivalence, which checks the equivalence of the types associated to declarations, in a one-to-one
correspondence.

5.2.5 Directions for a proof of soundness

The problem In MML, as in any type system with type abstraction, type soundness is hard to
prove because type abstraction invalidates type preservation. The problem is easy to see. Assume
a module A has been defined, in an OCaml-like syntax, by

module A = (struct
type t = int
let x =1

end : sig
type t

val x : t
end)
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(Here, the construction (module : module-type) denotes the coercion of a module to a module
type.)

The module A is bound in the typing environment with the type

sig

type t

val x : t
end

Now, if further in the program we use A.x, then its type is simply A.t, not int. Indeed, in the
type of A, no definition is provided for t. Until now, no difficulty arose, but if we try to evaluate
our program, then A.x evaluates to 1, which is of type int, but not of type A.t: type preservation
does not hold.

Lillibridge’s solution Lillibridge [56] defines a kernel module system called the translucent sums
formalism, apparently close to the manifest types formalism, but which enjoys the type preservation
property. We illustrate the subtle differences leading to this result, and their consequences.

Let m =ger struct and S —ger sig
type t = int type t
let x =1 val x : t
end end

The counter-example program showing that type preservation does not hold in the manifest types
approach is module A = (m : S), let res = A.x. Recall that in the manifest types approach,
this expression is well-typed, and res has type A.t. The problem is that during evaluation its type
changes. In the translucent sums approach, there is no primitive let binding, so one has to encode
the program as a functor application, taking advantage of the fact that the principal type of (m
: S) is known to be S: (functor (A : S) = struct let res = A.x end) m.

In Lillibridge’s system, this expression is well-typed. Indeed, m has type sig type t = int val x

int end. Moreover, the functor has type functor (A : sig type t val x : t end) -> sig
val res : A.t end as a principal type. This type is a subtype of functor (A : sig type t
= int val x : int end) -> sig val res : int end. Therefore, by subsumption, the functor
can be given this type. As it is a non-dependent functor type, the whole program has type int.
Therefore, when selection is performed, this type is preserved.

However, one could object that we cheated a bit here, by forgetting that m was initially coerced
to S. And indeed, if we replace m with m : S in our encoding, we obtain an ill-typed expression.
Indeed, the principal type of the argument to the functor, m : S, is S, which is not transparent.
The consequence is that the functor cannot be specialized, as above, to a non-dependent type, and
therefore the program is ill-typed.

Related approaches In [31], Duggan and Sourelis prove the soundness of their calculus of mixin
modules by showing the soundness of the calculus without type abstraction by explicit coercion,
and remarking that each well-typed term in the presence of abstraction is well-typed without type
abstraction. The restricted calculus strongly resembles Lillibridge’s kernel system. The only type
abstraction lies in functor abstraction. Lillibridge’s system retains explicit coercion, but its use is
limited by the type system. Courant [23, 24] adds type equalities to the type theory of its module

calculus in order to retain type preservation.
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Syntactic type abstraction A drawback of these approaches is that while retaining the im-
portant property of type preservation, it is difficult to prove that abstraction is preserved during
evaluation. For instance, once the argument module is passed to a functor, the type system forgets
that it possibly had some abstract types. Such abstraction properties as representation indepen-
dence have been proven by Mitchell [59], from a denotational semantics standpoint, but they are
reported by Grossman et al. [39] to extend with difficulty to new language features. Instead,
Grossman et al. propose a new, syntactic technique for proving abstraction properties of systems,
which scales well to new language features. It is based on embeddings for exporting abstract val-
ues outside of the scope of abstraction. The authors notice as an interesting future work that this
technique might apply to module systems.

5.2.6 Undecidability, principal types, syntactic types

Conjecture of undecidability We conjecture that the typing MML is undecidable, based on
Lillibridge’s result that typing the OCaml module system is [56].

Conjecture 1 (Undecidability) Signature matching is undecidable in MML.

The following example in OCaml syntax gives an idea why the intuitive algorithm fails for modules.
It is easy to encode this example with functors. We refer to Lillibridge’s thesis for more details.

module type I = sig
module type A
module F : functor(X : sig
module type A = A
module F : functor(X : A) -> sig end
end) -> sig end
end ;;

module type J = sig

module type A = 1

module F : functor(X : I) -> sig end
end ;;

module Loop(X : J) = (X : I) ;;

The intuitive algorithm fails, because for matching J against I, it puts the components of J in
the environment, thus making the module type component A in I equal to I itself. Thus, when
contravariantly matching the arguments of the functor components F of each module type, it in
fact matches J against I, once again.

Principal types A type system has principal types if given an environment and an expression,
there exists a minimal type such that the expression has this type in the given environment. We
do not know whether MML has principal types.

Syntactic types For separate compilation, it is desirable for the programmer to be able to
express any signature of the language, syntactically. Indeed, it allows to put as much information
as needed in interfaces. Several known module systems do not have syntactic signatures, e.g. the
ones of Russo [65], Dreyer et al. [28], or the one of OCaml. For example, in OCaml, external

names are not distinguished from internal variables. It is thus impossible to express the type

{ typeT' >t : *,
val X bz : {typeT >t =t} }

101



without changing the names of some components.

A concrete system implementing MML would probably make the same choice of identifying external
names and internal variables, and would thus lack syntactic types.

5.3 Polymorphism and datatypes

The formalism already encodes explicit polymorphism [37] and is easily extended with datatypes
in the style of ML [58].

5.3.1 Polymorphism

As in [40], polymorphism is encoded by our formalism, although it is only explicit polymorphism.
We use the following syntactic sugar conventions, where ARG, RES € MNames, arg, res € MVars,
TARG € TNames, and targ € TVars. The variables arg, targ and res are not allowed to occur free
anywhere, and the names ARG, TARG and RES are reserved.

Notation Denotation
Function | Az : M.e (ARGv>x : M; RES > res = e)
Application e1es let rec res = close(e; + (0; ARG > arg = e3))
inres. RES
Function type | M7 — M> ( ARG»>arg: My; {ARG 9> RES}; )
RES©v>res: My; {ARG — RES}
Type function At.e (TARG >t :x; RES > res = €)
Type application e[M] let rec res = close(e; + (0; TARG > targ = M))
inres.RES
Type function type Vt.M (TARGv> t : *; RESv>res : M;(0; {TARG — RES})

5.3.2 Datatypes

It is not too difficult to add ML-like datatypes to MML. ML datatypes are user-defined abstract
types, accompanied with a finite list of constructors, which allow to build values of that type.

theory. They propose two possible interpretations, the opaque and the transparent interpretations.

Background In [26], Crary et al. study the interpretation of Standard ML datatypes in type

Inuitively, the opaque interpretation is the one of Standard ML: a datatype is interpreted as a new
type, and values of that type can only be created by application of the associated constructors.
For example, the OCaml signature

Sl =def S 1g
type u = A of u * u | B of int
type t = u *x u

end

is interpreted as

opaque _ .
S =def  sig

type u

type t = u *x u

val u_in : (u * u + int) -> u
val uout : u -> (u * u + int)
end
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theory. Nevertheless, Crary et al. reject it because each datatype construction or pattern-matching
corresponds to the run-time cost a function call. Instead, they propose to use the transparent
interpretation, in which a datatype is rather interpreted as a recursive sum type. The signature
S is interpreted as

This interpretation is used in [43], which gives a formal interpretation of Standard ML into type

Stransparent

1 =def sig
type u = g u . (u * u) + int
type t = u *x u
end

Notice that there is no need for introducing special constructors, as u_in and u_out in the opaque
interpretation, since one can rely on the sum type injections to produce values of type u. Fur-
thermore, the recursive type constructor yu is difficult to deal with. In their papers on recursive
modules [27, 29], Harper et al. study two possible type theoretic constructions implementing pu,
distinguishing equi-recursive types from iso-recursive types.

In the equi-recursive approach, the type 7 = y u . (u * u) + int above is equivalent to its
unrolling (7 * 7) + int. To construct a value of type 7, construct a value of type int or int
* 7, and just inject it into the sum type, thanks to the left and right injections injl and injr,
respectively. For example, e =qe¢ injr1 has type 7. Such expressions are decomposed by the
projection operations of sum types, projl and projr, so one can recover the integer from e by projr e.

In the iso-recursive approach, 7 is only isomorphic to its unrolling (7 * 7) + int. Concretely,
it means that given some term e’ of type (7 * 7) + int, there is a rolling operation roll that
coerces €' to 7: rolle’ is of type 7. Conversely, to use a value of type 7, one has to apply the unroll
operation first, which coerces it to (7 * 7) 4+ int). For instance, to construct a value of type 7, one
writes e =gef roll(injr 1), and its first element is accessed through (unroll(projre)).

The tension lies between the expressivity of the equi-recursive approach and the fact that it makes
type equivalence possibly undecidable. Conversely, the iso-recursive approach is a bit less flexible,
but retains decidability. In [26], Crary et al. choose the iso-recursive approach. However, the
transparent, iso-recursive interpretation of datatypes is not compatible with Standard ML, as
shown by the following example. In Standard ML, the signature S; is a subsignature of Sy, defined
as follows:

Sy =def sig
type t
type u = A of t | B of int
end

In the transparent, iso-recursive interpretation, it is not the case. Indeed, in order to prove it,
one has to prove that, assuming u = 7 and t = u * u, the type 7 is equivalent to t + int. It is
possible, by replacing u with its value, to prove that t is equivalent to u u . (7 * 7) + int, but
this type is not equivalent to 7. In order to solve the problem, Crary et al. enrich the type system
with Shao’s equation:

pot = po.(t{a = (na.7)}) (SHAO)

This allows to recover Standard ML datatypes.

We choose yet another approach, closer to inductive types than to recursive types [77]. A datatype
definition is initially not considered equal to any type. It is rather defined by a list of constructors,
as the smallest type such that the only way to construct values of this type is to apply one of the
constructors. This method in fact closely corresponds to ML datatypes, and was added by Werner
[77] to the calculus of constructions [22] for making the extraction of programs from proofs more
efficient. Thus, it can be considered as a perfectly type theoretical construction.
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Formalization Figure 5.12 extends MML with datatypes (with an approach inspired by [31, 66]).
Assume given an infinite, denumerable set of constructor names C' € ConNames. The notions it
defines are mutually recursive with the ones of figure 5.14. Type paths pt are either type variables
or type names prefixed by a module path. Expressions are extended with constructor applications
CPtle; ...e,], consisting in a constructor name, applied to a list of expressions, and annotated by
the type path the constructor comes from. The list of arguments must match the arity of the
constructor exactly, as will be enforced by the type system. Such an application is valid only
when the constructor has been previously introduced by a new form of definition, called datatype
definition, which has the shape T'>¢ = ®. Expressions are also extended with a family of operators
for pattern-matching. The family is denoted by matchg". It is indexed by a type path pt, and a
datatype ®. Indexing the pattern-matching operators with datatypes allows to easily define their
dynamic semantics. Indexing them over type paths is useful during typing, for checking that the
datatype has been declared as indicated by ®. A datatype ® = ¢;...¢, is a list of constructor
definitions, syntactically required not to bind the same constructor name twice, and a constructor
definition ¢ = C[M; ...M,] is a pair of the name of the new constructor, plus the list of its
argument types. When the constructor is applied, its arguments are required by the type system
to have these types. Notice that both the order of the constructors in a datatype definition and
the order of the types in a constructor definition matter. At the level of types, declarations are
enriched to take datatype definitions into account. A datatype definition T'> ¢ = ® corresponds
to two declarations: one defines the new abstract type T >t = %, while the other specifies its
constructors t < ®.

The set of expressions of syntactically predictable shape is extended with constructor applications
CPtle; ...e,], as shown in figure 5.12. A constructor declaration has no static free variables, since
it does not define any type. It is well formed, provided the types it mentions are and it does
not define the same constructor twice. The well-formedness condition on signatures now checks
that only one unfolding (t < ®) is defined for each ¢. Moreover, such ¢ must be defined in the
same signature, either as abstract types, or as types that unfold (see below) to an equivalent (see
below) datatype. This flexibility is necessary, since by type strengthening abstract types are soon
replaced with type paths. Type strengthening has no effect on an unfolding specification, rather
on the associated type definition. Finally, the degree of a variable in a constructor application can
be @, if it is © in all arguments.

Dynamic semantics Extending the dynamic semantics to handle constructors and pattern-
matching is described by figure 5.13. First, values are extended with constructed values, that is, a
constructor applied to values, and with partial matchings. The matching operator matchg" expects
the argument to the matching, plus | ® | functions for dealing with each of the constructors defined
by ®. When the final argument has not been provided, and the first arguments are evaluated,
the expression is called a partial matching, and considered a value. As soon as the final argument

is given, rule MATCH performs the matching. If the matching operator is matchgt7 and the first

argument to the matching is C,;pt,[vj ... vy,.], according to the index of C; in @, the rule applies

one of the matching functions v ..., to the arguments v} ... v,

Static semantics As shown by figure 5.14, the static semantics of MML is extended to account
for datatypes. A new judgment, type unfolding <, is introduced, for retrieving the datatype
corresponding to a type path. If it is simply a type variable ¢, then an unfolding declaration
(t < ®) must be in the environment. Otherwise, it is a type path p.T, then the datatype has to be
extracted from the type of p.

Typing constructor application C?'[e; ...e,] (rule TT-CONAPP) consists in unfolding the type
path annotation pt, to retreive the corresponding datatype ®, and check that the arguments
match the types expected by ®. Typing a matching operator matchg'; is a bit more complicated.
There are two main checks to do: first, the pt annotation must unfold to a datatype ®, and second
the @' annotation must be equivalent to that ®. Then, the type of matchgf, is a polymorphic

type Vi.M, where M is a function expecting the first argument of type pt, plus the | ® | matching
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Syntax

Type path: pt ==t |pT
Expression: en=...| CP'e;...e,] | match?’
Definition: de=...|Trt=9%

Declaration: Du=...|t<®

Datatype definition: & ::= ¢1...¢,
¢ =C[M; ... M,

Expressions of predictable shape

ey n=...| CPer...ep]

Static free variables

SFV(T < ®) = §

Well-formedness

Vie{l..n},Vje{l...n;},TEM; Vije{l..n},T+C;+#C;
LH(Ci[M ... M) ]...Co[M]...M]])

(WF-DATATYPE)

Ht r-a

T (<9 (WF-UNFOLD)
vDeO,T+D Vit <®),t<d)e0,d=279

Vit <®),(Trt: M)eO,(M=x)V(TFM <®)A(TFd =)

VD, D' € O(DN(D) = DN(D') v DV(D) = DV(D")) = D =D’

O (WF-S167)
Type strengthening
t=<@)/p=(t<2)
Degree (for z € FV(C'[e; ... e,]))
Degree(x, CPtler ...e,]) = /\ Degree(x, e;)

1<i<n,z€FV(e;)

Figure 5.12: Extension to datatypes

Value: v u=...| CP!v;...v,] Constructed value
| (match? v, ...v,) Partial matching (for n <| & |)

&= (Ci[M... M, ]...Co[M]...M]])

matchg"(Cz-p"I [0] .. o, o1 .. o — (V0] o),

(MATCH)

Figure 5.13: Extending the dynamic semantics
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functions, and returning a value of type t. The matching function corresponding to the constructor
C[M ... M,] expects n arguments of types M; ... M, and returns a value of type ¢. It appears
here that the purpose of the pt annotation on the matching operator is to represent the type of the
first argument to the matching. As syntactically, datatypes are not types, it could not be easily
guessed otherwise.

The typing judgment for definitions has to be extended, because a single datatype definition cor-
responds to two declarations, an abstract type declaration and an unfolding. Thus, instead of
a single declaration, the type of a definition is a finite set of declarations. To type a structure,
successively type its definitions and take the (disjoint) union of the obtained signatures (rule TT-
OutpuT’). Each datatype definition T'>¢ = & is checked correct, and its type is T >t : x,t < &
(rule TT-DATATYPE).

By rule ST-S1G’, signature matching now allows to forget some datatype declarations, only re-
taining an abstract type. Nevertheless, if the datatype is kept, rule ST-DATATYPE forces the
two declarations to be equivalent. Two datatypes are equivalent if they define the same list of
constructors, with equivalent types (rules DE-DATATYPE and DE-CON).

5.4 Examples

In this section, we give some example programs illustrating the use of mixin modules in some canon-
ical situations. The calculus makes a syntactic difference between type and value names. Here, we
do not syntactically distinguish between type and value identifiers, and prefer to prefix definitions
and declarations with keywords type and val to disambiguate them. We syntactically distinguish
names from variables, with the convention that variables begin with a lowercase letter, while names
begin with an uppercase letter. Moreover, we assume that the language is extended with polymor-
phic comparison functions =, <, >, some operations for booleans, such as prefix negation not and
infix and operators, and a conditional construction if then else .

5.4.1 Lists

We program a simple module implementing lists in MML. If we stick to monomorphic lists, that is,
the type of elements is fixed to int for example, then it is straighforward. Let ® = Nil, Cons[int, t].
We define the module list by

Olist =def typeT >t=2@
val Head > head = \x. matchly [int] z error
AhdAtl.hd
val Tail > tail = A\xz. match[t] 2 error
AhdAtl.tl
val Map > map = A\f\z. matchly[t] = Nil'[]
Mhdtl.Cons'[(f hd), (map f )]

and list = close (; 0yt ).

Notice the use of error: we did not include exceptions in our formalism, but for sure they remain
a useful construction in programming, and should be included in any practical application. The
obtained module is of type {O}, where

O =qer typeT >t :x
t < Nil, Cons[int, t]
val Head > head : t — int
val Tail > tail -t — ¢
val Map > map : (int — int) >t > ¢
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Type path unfolding T' F pt < ®

(t<®) el (TU-VaR) I'kp: {0} (Tot:M),(t<®)eO

_ TU-PATH
'ket< o FI—p.T<<I>[Ob—>p.()] ( )

Thkpt=M TFM<®
ThHpt<®

(TU-EQ)

Expressions

Thpt<® (C[M;..M,])ed® Vie{l..n},TkFe:M;

TT-CoNAPP
Tk CPer...e,]: pt ( )

Thbpt<® TFOxP

m (TT-MATCH)
I' - matchg, : Match(pt, ®)

Definitions

TH(d...dy):(O1+...40,)

(TT-OuTpPUT’)

e

(TT-DATATYPE)
' (Tot=®): (Tv>t:*t<P)

Declaration matching

r-o=da¢'

ST-D
Tri<®) < (<) OrDamaryee)

Signature matching

Vi<i<nTkD;<D!
THDy...D, (t<®*<D,.. D,

(ST-S167)

Datatype equivalence

Vie{l...n},0'F M; = M,
T+ C[M,...M,]=C[M]...M]

(DE-CoN)

Vie{l..n},TFd¢; =¢

TF(61...00) = (... 0) (DE-DATATYPE)

t
Type of match}

Match(pt, ¢ ... ¢n) = Vt.pt = Constr(t,¢1) — ... — Constr(t, ¢,) =t
Constr(t,C[M; ... M,]) = (My—...—> M, —1)

Figure 5.14: Extension of the typing judments
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Moreover, by type strengthening, at each place of use, the type declaration typeT >t : x of list
becomes typeT >t : list.T.

Parametric datatypes This module is usable as an ML module on lists of integers. Notice how-
ever that the language does not feature parameterized datatypes, so it is not possible to implement
directly a module dealing with lists of any type. We can try to encode parameterized datatypes
though. A first attempt consists in adding a deferred, abstract type elt for the elements of the list.
The corresponding mixin module openList has the input signature I =g type Elt > elt : x and the
output is oy, except that in the definition of T', int is replaced with elt in the datatype. This
mixin module indeed can produce a module for lists of any type, but it will generate different types
at each instantiation, since our datatypes are generative. Moreover, the Map function cannot be
defined polymorphically.

This is not a problem if one wants to link with the open mixin module, but as argued by Szyperski
in [74], and discussed in section 2.3.3, it is sometimes more convenient to rely on a closed library
module. To solve this issue, an extension of MML similar to Leroy’s [53] or Russo’s [65] applicative
functors, or Shao’s extended modules [71] seems possible although we have not formalized it. In

Leroy’s vein, it could consist in giving type paths the grammar

pt == t|pT
| [p1+..-+pa]T

where the production [p; + .. .ps].T would denote the type component T" in any module computed
by closing the sum p; + ...+ p,. Then, a type M can be encapsulated in a mixin module eltMix =
(€; Eltvelt = M), and the type of lists with elements of type M is denoted by [openList + eltMiz].T'.
The set of operations over lists can be extended polymorphically, as shown for instance by the
following definition of the traditional functions fold_left, applying a function successively to all the
elements of a list, and assoc, looking for the element associated to a value in an association list.
We denote by @, the datatype Nil, Cons| [openList + eltMiz].Elt, and by pt the type path
[openList + eltMiz].T |
[openList + eltMiz].T.

We define
let rec fold_left =  At.NeltMiz A f.\init. Al matchgtm [t]!
it
Ahd Atl.(fold left [t] eleMiz f (f init hd) tl)
and

let rec assoc =  AeltMix((); type Fst > fst : % ;0 0).
type Snd > snd : x
type Elt > elt : fst x snd
Av.Al.match} [[eltMiz].Snd]
error
Ahd At if fsthd = v
then snd hd

else assoc eltMiz v tl

Nevertheless, it is still not possible to easily define the polymorphic functions inside the mixin
module for lists. Maybe, another solution is to define the parametric datatype as a mixin module
val List>list = (type Elivelt : *;type T>t = Nil, Conslelt, t]) and the type list(M) is [list+mizElt].T,
for mizElt a named mixin exporting the type M. It is not obvious that this works in practice,
because the argument mizFlt has to be named. In theory, all types could be wrapped in in mixin
modules as their unique component Elt, and referred to by the name of these mixin modules. For
example, the module for lists and the Map function would look like :
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list = close((); val List > list = ( Elt > elt : x;
T >t = Nil, Conslelt, t])
val Map > map =
AmiazElt : (D; Elt > elt = *; 0; ().
At
Af i [mizElt).Elt — t'.

Al : [mizElt + list]. T.

[mizElt+list]. T !

MatCh i oo (i Bit-+list] . it [miz Blt4+list). T) [t']
Nil[mia:E'lt+list].T

Ahd Atl. Cons ™= T £ by (map mizElL [#'] f )] )

This example fails to type-check, at least if f is given the type [mizElt]. Elt — t', since its argument
has type [mizFElt + list]. Elt. We made this mistake on purpose to show how subtle typing errors can
appear with such encodings. One could envisage to introduce new type equations in the system,
such as [p+...].T = [p|.T if [p].T is well-formed.

Conclusion On the whole, we arrive to the conclusion that this is both cumbersome and ad
hoc, and typing these examples is not easy at all. Thus, the addition of primitive parameterized
types would be beneficial. This could cause some difficulties, as shown by Harper et al. in [28]:
[7] understand why. It is basically unification in the presence of higher-order, non-recursive type
constructors with singleton kinds, which has been proved decidable by Chris Stone [72].

Notice though that the need for applicative mixin modules could be requested in practice, as
applicative modules have proved useful.

In the remaining examples, for simplicity of the presentation, we assume that parameterized
datatypes are primitive in the language, and that a module list has been defined, using them,
with the following type:

list - { typeT >t : Aelt.list. T (elt)
tlelt] < Nil, Cons|elt, t[elt]]
val Head > head : Velt.t[elt] — elt
val Tail > tail : Velt.t[elt] — t[elt]
val Fold _left > fold _left : Velt.Vt'.(t' — elt — t') = t' — t[elt] —» t'
val Mem > mem : Velt.elt — t[elt] — bool
val Maz > max : Velt.(elt — elt — int) — t[elt] — elt
val Assoc > assoc : Vfst.Nsnd.fst — t[fst x snd] — snd }

5.4.2 Simple interpreter

As shown by Duggan and Sourelis [31], mixin modules facilitate the modular development of
compilers and, similarly, of interpreters. We illustrate it with a simple interpreter for a calculator [?]
with variable bindings. It takes as arguments expressions consisting of operations on numbers, and
possibly bindings of expressions, and returns the result if possible. We divide the implementation

into three mixin modules.

Evaluation mixin module The first mixin openFEval is in charge of the basic operations. It
imports the type env of environments, the type binding of bindings, the type variable for expression
variables, the function find_in_env, which retrieves the value of a variable in an environment, and
the function bind, which binds an expression to a variable in the environment.
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IopenE'val =def type Envvenv : %
type Binding > binding : x
type Result > result : int
type Variable > variable : x
val Find_in_env > find_in_env : variable — env — result
val Bind > bind : bindings — env — env

The mixin openFEwval must the define the datatype expr of expressions, the type result for results
of evaluation (integers), and the function eval which evaluates an expression in an environment.

3

The datatype of expressions is defined as

D papr =det  Var[variable], (* Variable *)
Plus[expr, expr],  (* Addition *)
Constlint], (* Integer constant *)
Let[binding, expr] (* Let binding *)

The output of the mixin module is as follows:

OopenEval =def type E.’l?p?" > exrpr = (DEmpr
type Result > result’ : int
val Eval > eval = Aan_env.Xan_ezpr. matchg'”" [result] an_expr
Av.find_in_env v an_enw
Aan_expr;. Aan_expr,.(eval an_env an_expr,) + (eval an_env an_expr,)
An.n
Abinding. \an_expr.eval (bind binding an_env) an_expr

and we can define openFval by openFEval = (IspenEval; Oopenival)-
It has type (IopenE‘yal; OopenE‘val; _>openE'val; _"()penEual>7 where

OnpenEval =def type E.’Ep?” > expr : x
erpr < q’E‘a:pr
type Result > result’ : int
val Eval > eval : env — expr — result

©)
—openEval —def { Eval — FEval
Find_in_env 9) Eval

Bind S Eval }

—openEval —def 0

By rule ST-S1G’, the implementation ®;45,p, can be hidden, by type constraint.

Binding mixin module The second mixin module deals with bindings. It imports the types
of environments, variables, expressions and results, and the functions Eval and Add_to_env, which
adds a variable and its value to the environment. Its import signature is thus

IopenBind =def type Env > env : %
type Variable > variable : x
type Expr > expr : x
type Result > result : x
val Add_to_env > add_to_env : variable — result — env — env
val Fval > eval : env — expr — result
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Given this, it can define the type Binding of bindings, as association lists of variables and expres-
sions, and the function bind which takes a binding and an environment as arguments, evaluates
the expressions, and binds the variables to the corresponding results in the environment.

OopenBind =def type Binding > binding = list.T[variable x expr]
val Bind > bind = Abindings.Aan_env.(list. Fold_left [variable x expr][env]
bind_one
an_env
bindings)
val _> bind_one = Aan_env.Apair.(add_to_env (fst pair)
(eval an_env (snd pair))
an_env)

We can define the mixin module openBind = (I,penBind; OopenBind). The type Binding can be made
abstract by type constraint, which gives openBind the type

Opeand : <InpenBind; OnpenBind; —openBind; > npenBind):

with

OopenBind =def  type Binding > binding =
val Bind > bind : bindings — env — env

—openBind =def 1 Add_to_em)g)Bind

Eval S5 Bind}
— openBind —det  Variable — Binding
Ezpr — Binding

Environment mixin module The last mixin module we define handles environments. It has
to define the type Env of environments, and the functions Find_in_env and Add_to_env for finding
and adding a variable binding in environments. It can be implemented by lists, as follows:

openEnv = ( type Variable > variable : x
type Result > result : x
type Env > env : list. T[variable X result]
; Find_in_env > find_in_env = list. Assoc [variable] [result]
Add_to_env > add_to_env = \v.\res.Aan_env.Cons®""[(v, res), an_env] )

Once again, the implementation of the type Env can be hidden to the outside world by type
constraint. Finally, the interpreter module is obtained by close(openFval + openBind + openEnv).

Comparisons We think [?] that the example compiler sketched by Duggan and Sourelis in [31] is
implementable in MML quite straighforwardly. However, Duggan and Sourelis [32] have proposed
an extension of their initial language DS with extensible datatypes and extensible constructors,
which allows them to refine their interpreters incrementally. This is not possible in MML because
datatypes are not extensible.

In [27, 29], Crary, Dreyer, Harper, and Puri investigate an extension of ML modules with recursive
modules. They focus both on the possible type-theoretic definitions for such an extension, and on
some example programs that should be encoded smoothly by recursive modules. As recursion was
a primary concern in the design of mixin modules, MML encodes most of their examples quite
smoothly, and our approach to datatypes allows to completely avoid the use of recursive types.
Moreover, the problems recursive modules cause for separate compilation do not appear with mixin

modules.
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5.4.3 Bootstrapped data structures

Another class of examples Dreyer et al. use to demonstrate the expressive power of recursive
modules in [29] are bootstrapped data structures, introduced by Okasaki [61]. The example they
choose is the one of sets of sets, which is easily programmed in MML.

Sets of sets with mixin modules Sets of sets are built out of a mixin module openSet, imple-
menting general sets. It imports the structure of the elements of the set: a type elt and a function
elt_cmp : elt — elt — int, which compares two elements, returning 0 if they are equal, a positive
integer if the first one is greater, and a negative integer otherwise. Given these, it defines the type
of sets with elements of type elt (as lists), and some standard functionalities over sets. The mixin
module could be constrained to hide the implementation of type set.

openSet = (  type Elt > elt :
val Elt_cmp > elt_cmp : elt — elt — bool
type Set > set = list. T [elt]
val Empty > empty = Nil**"[]
val Singleton > singleton = Az Cons**' [z, Nil**"[]]
val Cmp > ecmp = ANl; . As.
matCh‘;\?itl,Cons[elt,set] [77715] l
(matCh‘;\?itl,Cons[eluset] [7nf] Iy

0
Ahd Al — 1)

(Ahdy Atly . match’ consfenr ser [int] l2
1

Ahdg Atlg. (elt_cmp
(list.Maz 1y)
(list.Maz 12)))

After that, the mixin module for sets of sets wraps the one for sets. It defines the type of sets of
sets relying on the imported type of sets, and forces the type elt to be itself.

openSos = (  type Elt > elt : %
type Set > set : %
type Sos > s0s : x
sos < Intlint], Set[set]
val Empty > empty : set
val Singleton > singleton : elt — set
val Set_cmp > set_cmp : set — set — int
i type Sosb sos’ ik
sos' < Intlint], Set[set]
type Elt > elt’ = sos
val Cmp > cmp = Asos; .\sosg.[snipped code] )

Finally, the two mixin modules can be merged together, redirecting the comparison functions to
their expected names in each mixin module. The Cmp function of the openSet mixin module must
be connected to the Set_cmp input of the openSos mixin module. Conversely, the Cmp function of
the openSos mixin module must be connected to the Elt_cmp input of the openSet mixin module.
The definitive comparison exported by the module Sos implementing sets of sets should be the one
from openSos, so we rename Elt_cmp to Cmp in the obtained mixin module before to instantiate
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it. Thus, Sos is obtained by

Sos = close( (openSet[Cmp — Set_cmp] +
openSos[Cmp — Elt_cmp])
[Elt_cmp — Cmp))

Sets of sets with recursive modules In comparison, Dreyer et al. [29] implement recursive
modules by a complicated elaboration process, transforming the original program into an expression
of the underlying type theory. This theory features singleton kinds and phase-splitting rules [41]
that separate modules into their static part and their dynamic part.

The source program for sets of sets resembles the following.

module type KEY = sig

type key
val compare : key -> key -> order
end

module type SET = sig
type elt
type set

end

functor MkSet(Key : KEY) = struct
type elt = Key.key
type set = M

end

signature SOS = sig rec Sos in
type sos = Int of int | Set of Sos.SosSet.set
module SosSet : SET with type elt = sos

end

module Sos = struct rec Sos : SOS in
type sos = Int of int | Set of Sos.SosSet.set
module SosKey = struct
type key = sos
let compare sosl sos2 = ...
end
module SosSet = MkSet(SosKey)
end

The first module type KEY defines the signature of an ordered type: a type and a comparison
function. The second module type SET defines the signature of a module implementing sets: the
type elt of elements of the set, the type set of sets, and some functions over these types. The
functor MkSet takes an ordered type as an argument, and returns a module, which we assume
to implement sets. Formally, the functor MkSet is assumed to have the signature functor (Key

KEY) -> SET with type elt = Key.key, although it is not its principal signature, since the
implementation of the type of sets could be made manifest. The recursive module type SOS then
defines the signature of a module implementing sets of sets: the type sos of sets of sets, and a
sub-module implementing sets whose elements are of type sos. S0S is a recursively dependent
signature (rds). The recursive module Sos implements the module type S0S in a straightforward
way.
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This program is written in a surface language, which is not the calculus Dreyer et al. studied. The
program is therefore elaborated to this calculus, as we explain informally. SOS is elaborated into
an opaque rds, roughly a rds that prohibits the use of recursive types. By phase-splitting, opaque
rds’s reduce to non-recursive signatures ; here S0S is roughly equivalent to

module type S0S' = sig

type sos

type elt = sos

type set = M { Key.key — elt }
val Int : int -> sos

val Set : set -> sos
val expose : sos -> (int + set)
end

which is not recursive. (Notice that Dreyer et al. use the opaque interpretation of datatypes.)

The elaboration of the module Sos is more complex, and is done in two steps. First, the static
part of the module is extracted, as a set of type definitions, possibly nested inside sub-modules. It
is elaborated to an opaque fized-point, which allows datatype definitions (see [29] for details). We
obtain something like

module StaticSos = opaque struct rec Sos : SOS in
type sos = Int of int | Set of Sos.SosSet.set
module SosKey = struct
type key = sos
end
module SosSet = struct
type set = M { Key.key — SosKey.key }

end
end

The dynamic part of the module is then elaborated to a transparent fized-point, which does not
allow datatype definitions, since these are opaque, but is more flexible than the opaque fixed-
point otherwise. A transparent fixed-point requires the signature of the recursive module variable
(here Sos) to be fully transparent, so datatype definitions are elaborated by referring to their first
elaboration in the StaticSos. We obtain

module Sos = transparent struct rec Sos : (SOS / StaticSos) in
type sos = StaticSos.sos
module SosKey = struct
type key = StaticSos.sos
end
module SosSet = MkSet (SosKey)
end

Problem: in the source program, the type set in the result of the MkSet functor could be constrained
to be abstract. In the proposed elaboration, it would then be impossible to extract the static part
of it and put it in Static. To prevent such an issue, Dreyer et al. require the source recursive
module not to export abstract types. This limitation comes from the choice they make to elaborate
the dynamic part of the recursive module as a transparent fixed-point. This choice seems to be
mainly guided by two facts.
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e The first fact is that opaque fixed-points more or less encourage all references to other com-
ponents of the module to be done through the recursive variable. For instance, consider the
following recursive module.

module List =
opaque struct rec
List : sig rec List in
type t = Nil | Cons of int * List.t
val nthtail : List.t -> int -> List.t
end
in
type t = Nil | Cons of int * List.t
let nthtail (1 : List.t) n =
if n = 0 then 1
else match 1 with
| Nil -> failwith “‘list too short. ??
| Cons((hd : int), (tl : List.t)) -> nthtail t1 (n - 1)
end

The components of this module contains a lot of references to other components through
the recursive variable List, called module-recursive references by Dreyer et al. Here, one
could implement the type of list without any module-recursive reference. However, in the
case of datatype definitions split across different sub-modules, module-recursive references
are needed. Thus, it is simpler to consider a single datatype and to assume that the module-
recursive reference in that type is needed. Then, in the body of nthtail, none of the module-
recursive references could be turned into a local one (by eliminating the prefix List.): this
would break the type-checking of the module. Indeed, in the pattern-matching, the second
argument to Cons must be of type List.t, not t, so t1 must have this type. Further, t1 is
given as an argument to nthtail in the recursive call, so the type of 1 has to be List.t too.
Essentially, the problem is that it is impossible to unify t and List.t during type-checking.

e The second fact is that opaque fixed-points do not prevent the presence of equi-recursive type
constructors. This is a problem because type-checking is not known to be decidable in the
presence of higher-order equi-recursive type constructors.

These remarks lead Dreyer et al. to prefer transparent fixed-points. Nevertheless, opaque fixed-
points do not force all the type declarations to be transparent, which is sometimes convenient, as
we have seen with the above example. Moreover, we think there are ways to work around the
two problems of opaque fixed-points. For instance, elaborating all internal references into module-
recursive references directly avoids the burden to write all module-recursive references by hand.
Further, it is possible to modify the typing rule for opaque fixed-points in order to forbid equi-
recursiveness and also to type-check the dynamic part of the module with all the information about
the static part available. For reference, this leads to the following typing rule, with the notations
of [29]:

LS =la: k0] sig [[st S+ M=]ce F'ktelk
s T [a:s(c)o]]Fel os Tl :s(e)] F oy = o2[a/(Fst s)] type
Ckfizg(s: S)M : S

(We write fizg for “semi-transparent” fixed-point.) The rule forbids module-recursive references
in the static part ¢ of the module, thus relying on rds’s for static recursion. The dynamic part of
the module is type-checked knowing the implementation of the static part. The obtained type for
the dynamic part is checked equivalent to the expected type, knowing the implementation of the
static part. This achieves the flexibility of transparent fixed-points, without forcing the user to
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write a fully transparent signature. It is unclear whether it suffices for making the example of sets
of sets work if MkSet returns an abstract type, because the underlying calculus used in [29] does
not feature generativity. It would be useful to try and transpose the discussion to the more recent
formalism of [28].

In MML, modules components are mutually recursive by default, as well as signature components.
Thus, the problems due to decoupling module-recursive and local references do not appear. Our
way to work around recursive types is a bit cumbersome, as is the one for tracking ill-founded
recursion: we keep static dependencies in the types of mixin modules. Dreyer et al. do not need
such a machinery. Instead, one could argue that our way of dealing with recursive types is more
orthogonal to design problems than theirs. As a result, the design of MML seems more natural
than the one of [29]. In particular, bundles of recursive modules are dealt with in a very ad hoc
way in [29], while they are encoded smoothly in MML.

5.4.4 Mathematical data structures

Presentation 1In [15, 14], in the context of the Foc project ', Boulmé et al. explore the imple-
mentation of a library of mathematical data structures dedicated to computer algebra, in OCaml.
Let us first explain how they present computer algebra. Mathematical objects such as 1, or the
polynomial X2 + X + 1 are called entities. In mathematics, entities are grouped in collections,
which express a link between these entities, possibly materialized by operations called methods.
For example, the entities 0,1,2, ... form the collection of natural numbers. Slighlty more complex:
the entities 0,1,2, ..., together with the distinguished element 0, the binary internal composition
law +, and the unary internal composition law —, form the group of natural numbers. Collections
have a carrier, or representation type. For natural numbers, it is int. Mathematical collections
are in turn grouped by certain sets of properties, called species. A species is a set of types and
methods, which can be only declared, or defined, when common to all its collections. For example,
the species of polynomials of one variable contains a default algorithm for multiplicating polyno-
mials, even if the carrier or the type of the coefficients are abstracted over. Species have interfaces,
specifying the set of methods they define. For more details, see [15, 14, 62].

The aim of the FOC project is to develop a certified library by extraction of OCaml programs from
Coq specifications. [?] (references) They have a precise list of criteria to be met by their implemen-
tation, insisting on incremental development, type abstraction, and code sharing. Essentially, for
implementing such a library, objects do not offer enough abstraction mechanisms, whereas modules
are not flexible enough with respect to incremental programming. As a result, they use a smart
combination of objects and modules. A species is implemented by an abstract class, i.e. a class
where some methods can be undefined. Interfaces are represented by class types. Collections are
pairs of a type t, the carrier, and an object meth, containing the methods operating on t. When
all methods of a species s are defined, it can be instantiated into a collection. For this, a module
is created, which contains the corresponding carrier and the species s. For example, if the class s
implements polynomials in one variable over real coefficients with lists of pairs of an integer and
a floating point number (sparse representation), then the corresponding collection poly can be
created by

module Poly = (struct
type t = (int * float) list
class meth = new s
end : sig
type t
class meth : st
end)

Thttp://uww-spi.lip6.fr/ foc
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where st is the type of s, abstracted over the carrier. This achieves abstraction over the represen-
tation of the carrier. Extensibility and refinement are allowed by operating on the class s.

MML allows a similar encoding of mathematical structures. Species can be encoded by mixin
modules, abstract methods being represented by deferred components, and concrete methods with
defined components. The carrier is represented by a type component. An interface is a module
type. A collection is created by closing a mixin module, and immediately hiding the representation
of the carrier.

Simple examples We show the idea by implementing the very beginning of the Foc library. For
this we assume that MML has been extended with the overriding operator « described in section
[7], and with a macro expansion mechanism for abbreviating signatures. A module type can be
included in a signature I by a declaration of the form include M: if M denotes the module type {O},
the signature I, include M denotes the greatest lower bound I' of {I} and {O}, as module types.
This means that forgetting some components is allowed. Moreover, we assume that an external and
internal renaming and prefixing facility is given for signatures. The signature I[(X >z) — (Y >y)]
denotes I, with X replaced by Y and z replaced by y, if it does not generate any conflict. The
signature I[(P>p)- (X >z)] denotes I, with all the defined external and internal names prefixed by
P and p, respectively. We skip the details of this extension, although it is certainly non-trivial.?

The minimal interface of species is defined as any printable carrier:

type basic_object_sig = { typeT >t : *,
val Print > print : t — unit }

The basic species, at the top the semantic inheritance hierarchy of the structures we will define, is:

val basic_object = (  include basic_object_sig

;o€ )

The interface of a set is defined by the following module type:

type set_sig = { include basic_object_sig
valEq>eq:t — t — bool
val Neq > neq : t — t — bool

}

The species of sets is the first to have a concrete method, Neq, which can be defined in terms of
FEq:

val set = basic_object + (  include set_sig
; val Neq> neq = Az A\y.not(eqzy) )

We define the interface of partial orders as:

type partial_order_sig = { include set_sig
val Leq > leq : t — t — bool
val Lt > It : t — t — bool
val Geq > geq : t — t — bool
val Gt > gt : t — t — bool }

2Tillibridge showed that it makes signature matching undecidable in OCaml [56]
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Similarly to sets, only one of the four functions of partial_order_sig is needed to imlement the three
other ones. Thus, the species of partial orders can be defined as:

val partial_order = set + (  include partial_order_sig

;o val Lt It = Az \y.(leq zy) and(not(eqz y))
val Geq > geq = Az \y.(leqy x)
val Gt gt = Ax Ay .(ltyx) )

Lattices must match the same interface as partial orders, with two additional functions, the greatest
lower bound and the least upper bound functions:

type lattice_sig = { include partial_order_sig
val Glbo glb : t >t —> ¢t
val Lub>lub :t -t —t }

The species of lattices does not have anything to define by default, and is therefore implemented
as:

val lattice = partial_order + (  include lattice_sig

;o€ )

Then, the interfaces for mix- and max-lattices add the distinguished elements Min and Maz,
respectively:

type min _lattice_sig = { include lattice_sig

val Min > min : t

val Is_min > is_min : t — bool }
type maz_lattice_sig = { include lattice_sig

val Maz > maz : t

val Is_max > is_-maz : t — bool }

The corresponding species can define the methods Is_min and Is_maz, respectively, in terms of
Mix and Max:

val min_lattice = lattice + (  include min_lattice_sig

i val Is_min > is_min = A\x.(eq x min) )
val maz lattice = lattice + (  include maz _lattice_sig

; val Iscmaz > is_maz = Az.(eq x maz) )

Complete lattices can be implemented by inheriting both from min- and max-lattices.

type complete_lattice_sig = { include max _lattice_sig
include min_lattice_sig }

,,,,,

The species of complete lattices has the mixin module type
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( typeT > t:x ; val Neqg>neq : t — t — bool  ;—;0)

val Print > print : t — unit val Lt > It : t — t — bool
valEq>eq:t — t — bool val Geq > geq : t — t — bool
val Neq > neq : t — t — bool val Gt > gt : t = t — bool

val Leg > leq : t — t — bool val Is_min > is_min : t — bool
val Lt It : t — t — bool val Is_maz > is_maz : t — bool

val Geq > geq : t — t — bool
val Gt > gt : t = t — bool
valGlboglb .t >t >t

val Lub> lub : t >t —>t

val Min > min : t

val Is_min > is_min : t — bool
val Maz > max : t

val Is_max > is_mazx : t — bool

(We do not detail the dynamic dependencies, which are not interesting.)

It is then really easy to instantiate an example collection, with integers for examples. Let the
complete lattice of natural numbers between 0 and 10 be implemented by the collection:

val open_int _lattice = complete_lattice + ( ()
i typeT' >t =int
val Print > print = print;nt
val BEg > eq = Az \y.(z = y)
val Leq > leq = Az A\y.(z < y)
val Glb > glb = Az \y.if x <y then z else y
val Lub > lub = Az Ay.if £ >y then z else y
val Min > min =0
val Mazx > maz =10 )

We can then decide that the algorithm for Lt is too inefficient, and incrementally implement an
optimized collection optimized_int_lattice, with the comparison function from the library, as follows.

val open_optimized _int_lattice = open_int_lattice « (  include partial_order_sig
iovalLtslt = Az y.(z <y) )
val optimized_int_lattice = close open_optimized_int_lattice

Hard example (part VII): recursive polynomials, a first attempt A very subtle exam-
ple of a representation of mathematical structures is given in [14] by recursive polynomials. It
consists in representing polynomials in any number of variables, starting from a representation of
polynomials in one variable, with natural degrees, parameterized over the type of their coefficients.

Polynomials introduce a slight complication in regard to the previous examples: they encapsulate
a sub-structure of coefficients. A first natural attempt to represent such sub-structures is to wrap
them as sub-modules. In this paragraph, we show how this strategy fails.

Define a module type for rings:
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type ring_sig = { typeT >t
valEqg>eq :t — t — bool
val Zero > zero : t
val Eq_zero > eq_zero : t — bool
valUnb>un :t
val Add > add :t -t —t
val Minus > minus :t -t — t
val Uminus > uminus : t — t
val Mult > mult : t >t —>t }

The natural module type for polynomials has the ring of its coefficients as a virtual component,
and some more functionalities related to polynomials:

type poly_sig = { val Coef > coef : ring_sig
include ring_sig
val Lift o lift . coef T — t
val Mult_extern > mult_extern : coef T —t — t
val Le s le - t — coef T
val Is_coef > is_coef : t — bool }

The lift function lifts a coefficient to a polynomial of degree zero. The muli_extern function
multiplies a polynomial by a coefficient. The Ic function returns the highest non-zero coefficient of
a polynomial. The is_coef function checks if a polynomial is of strictly positive degree.

Some of these functions can be implemented in a generic way, in the following poly mixin module:

val poly = (  include poly_sig
i val Mult_extern > mult_extern = Ae.Ap.(mult (lift ¢) p)
val Eq_zero > eq_zero = Ap.(coef .Eq_zero (lc p))

val Is_coef > is_coef = Ap.(eq p (lift (Icp))) )

We can now define the mixin module of recursive polynomials. It relies on a representation of
polynomials Poly > my_poly (the internal variable is for avoiding the conflict with poly). This
sub-module defines polynomials in one variable, but this variable is unnamed. The idea is to
use my_poly as a representation for polynomials in variable “X”, but also as a representation for
polynomials in “Y”, and so on. Following this idea, a polynomial in “X” is a pair (“X”,e), where
e is of type my_poly. T. There remains a question though: what is the type of the coefficients?
Semantically, one can see polynomials in variables “X;” ... “X,”, as polynomials in “X;”, whose
coefficients are polynomials in “X,” ... “X,,”, and so on. This is exactly how we proceed here.
The coefficients of e are recursive polynomials. We maintain the invariant that the coefficients
of a polynomial in a variable “X” are polynomials in variables inferior to “X”, according to the
polymorphic comparison operators. Basic coefficients are imported as a Base > base module. We
obtain the (partially snipped) code, of figure 5.15, with ® = Base[base.T|, Comp[string, my_poly.T.

The mixin module defines an intermediate type support as described above, and a sub-module
Rec_poly > rec_poly, defining the coefficients of the import module my_poly, i.e. the recursive
polynomials. This is specified by the type sharing equation withtype Coef. T = support in the
expected type of my_poly. (Type sharing equations are not present in the language initially, but
they are easily implemented using signature inclusion.) The sub-module rec_poly uses the generic
module for polynomials poly, where (Coef > coef) has been renamed to (Base > my_base), in order
both to match the fact that it re-exports the imported module Base > base, and to avoid conflict
with its internal variable base. It specializes the type T of poly to support. The intersting functions
are Compose and Add.
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val poly_rec = ( val Base > base : ring_sig
val Poly > my_poly : poly_sig with type Coef. T = support
type Support > support : *
support < &
i type Support > support’ =
support’ < ®
val Rec_poly > rec_poly = close(
poly[(Coef > coef ) — (Base > my_base)] «
( include poly_sig[( Coef > coef ) — (Base > my_base)]
withtype T = support
andtype Base.T = base.T
val Compose > compose : string — my_poly. T — t
; val Base > my_base' = base
type T' > t' = support
val Eg > eq' = Az \y.(z = y)
val Zero > zero' = Base'[base. Zero]
val Un > un' = Base'[base.Un)]
val Compose > compose’ = dv.Al.
if my_poly.Is_coef | then my_poly.Lcl
else Comp'[v,1]
val Lift > lift' = Xa.Base'[a)
val Le > Ie¢' = Az match, [base. T =
Aa.a
Av. AL (le (my_poly.Lel))
val Add > add’ = \xi.\xy. matchl, [t] 2,
Aa;. matchfp [t] z2
)\a2.Baseb“se'T[base.Add ay as]
Ava. Ala.(compose ve (my_poly. Add (my_poly. Lift 1) l2))
vy . matchl [t] o
Aaa.(compose vy (my_poly.Add (my_poly.Lift x2) 1))
Avg. Al if v1 = vy then (compose v, (my_poly.Add ;i 15))
else if v > vy
then (compose v, (my_poly.Add (my_poly.Lift x2)11))
else (compose ve (my_poly.Add (my_poly.Lift x1)15))
[...snipped ...] ) ) )

Figure 5.15: Recursive polynomials (first attempt)
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Compose takes a variable v and a polynomial [ (of type my_poly.T), and returns the same poly-
nomial, seen as a polynomial in v, in canonical form (of type support). The variable v is assumed
superior to the variables used in the coefficients of I. If [ is of degree zero, then the function returns
the corresponding coefficient, which is indeed of type support. If [ is of strictly positive degree,
then the function returns Comp‘[v,1].

Add takes two recursive polynomials z; and z» of type ¢, and returns their sum.

e If both arguments are base coefficients, then the sum is the sum of these coefficients.

e It both arguments are composed polynomials, i.e. constructed with the Comp constructor,
then the variables are examined.

— If both x; and =5 are recursive polynomials in the same variable v, then the underlying
polynomials are summed, and the result [ is injected into recursive polynomials in v by
the compose function.

— Otherwise, the argument with the greatest variable, say x; for example, is decomposed
into the variable v and the underlying polynomial I. The coefficients of [ are recursive
polynomials in variables inferior to v, so xo is semantically of the same class them.
Therefore, it is lifted by my_poly.Lift to a polynomial of degree zero, and added to [.
The result is then injected back into recursive polynomials in v by the compose function.

e If one argument, say z; is a base coefficient, and the other is a recursive polynomial v, [, then
x1 is semantically in the same class as coefficients of I since all its variables are inferior to
theirs. So, it can be lifted by my_poly.Lift to a polynomial of degree zero, and added to [.
The result is then injected back into polynomials in v by the compose function.

Until now, no problem arose. But assume now that we have implemented the ring of integers
int_ring and a mixin module for sparse polynomials sparse_poly. If we try to construct recursive
polynomials by composing these two mixin modules with poly_rec, we write

val try = poly_rec +
( val Rec_poly v rec_poly : poly_sig
;i val Poly > my_poly = close( sparse_poly +
(B; val Coef > coef = rec_poly))
val Base > base = int_ring )

Unfortunately, this expression is ill-typed, since there is a dependency cycle between rec_poly and
my_poly, and both are expressions of the shape close..., which are considered of unpredictable
shape. In fact, it would be very difficult to let the system accept this. A solution could be to rely
on types to guess the shape of both modules. But then, one has to check that one does not try to
inspect the value of the other before it has been defined. And in this particular case, it is far from
obvious. Indeed, the components of each module can be considered safe from their definitions,
but what about the components of sparse_poly? They perfectly could require some components of
rec_poly. Thus, the dependency analysis must be refined if we want to allow this example to be
well-typed.

Hard example (part VII): recursive polynomials, a solution There is a different so-
lution to implement recursive polynomials, using roughly the same idea, but flattening all the
sub-modules. The problems of name conflicts are solved by prefixing the names, reproducing in a
flat way the namespace separations induced by module boundaries in the first attempt.

The ring_sig, poly_sig module types, and the poly and mixin module are defined as above, except
that the sub-module representing coefficients is now inlined in poly_sig (and consequently also in
poly). The modified module type is
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type poly_sig = { include ring_sig[(Coef _> coef ) - (X > z)]
include ring_sig
val Lift > lift : coef — t
val Mult_Extern > mult_extern : coef — t — t
val Le > e : t — coef
val Is_Coef > is_coef : t — bool }

Coefficients are represented by the included signature ring_sig[(Coef - > coef_) - (X > z)], which
brings the type Coef T of coefficients, and ring operations on it, such as Coef _Mult and Coef _Add.
Polynomials are represented by the second included ring signature (without prefixing). The new
mixin module for recursive polynomials is presented in figure 5.16.

As in the first attempt, the mixin module bases on the generic mixin module for polynomials, but
here, the renaming of Coef to Base must be done component-wise. Indeed, it would otherwise
modify all the names. For readability, as a shorthand, we write only the names in the renaming, not
the variables. They are renamed accordingly. The base coefficients of our recursive polynomials are
imported as a ring_sig signature, prefixed with Base_, to mimick the imported Base sub-module of
the first attempt. Similarly, the sub-module Poly of the first attempt is imported here as a poly_sig
signature. The type sharing equation Coef.T = support is converted into a renaming removing the
prefix of all the components beginning with Poly_Coef _: this makes them match the comonents
corresponding to recursive polynomials. The main datatype is then defined, but must be modified
according to the new naming conventions: ®' = Base[base_t], Comp[string, poly_t]. The rest of the
mixin module is defined similarly, only replacing some accesses to sub-modules with direct accesses
to prefixed components of the main mixin module.

This second attempt is successful, since a module of recursive polynomials can be built on the
ring of integers int_ring and a mixin module for sparse polynomials sparse_poly (which has been
flattened to match the signature poly_sig). The code is as follows:

val int_recursive_polynomials = (int_ring[( Base_> base_) - (X > z)]
+ (sparse_poly [(Poly_v poly_) - (X b )]

[ type Poly_Coef . T — T
val Poly_Coef _Eq — Eq Poly_Coef _Zero +—  Zero
Poly_Coef _Eq_zero +— FEq_zero Poly_Coef _.Un +— Un
Poly_Coef _Add +— Add Poly_Coef _Minus + Minus
Poly_Coef _Uminus + Uminus  Poly_Coef _Mult +~ Mult])

+ rec_poly_flat);;
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val rec_poly_flat =

poly[ type Coef . T +— Base_T
val Coef _Eq +— Base_Eq Coef _Zero +— Base_Zero
Coef _Eq_zero +— Base_Eq_zero Coef _.Un + Base_Un
Coef _Add +— Base_Add Coef _Minus +— Base_Minus
Coef _Uminus +—  Base_Uminus Coef Mult +—  Base_Mult |
-
( include ring_sig[(Base_v base_) - (X > z)]
include(poly _sig with type Coef _T = support
[(Poly- v poly.) - (X v z)]
[ type Poly Coef . T — T
val Poly_Coef .Eq — Eq Poly_Coef _Zero +—  Zero
Poly_Coef _Eq_zero +— FEq_zero Poly_Coef _Un +— Un
Poly_Coef _Add +— Add Poly_Coef _Minus — Minus
Poly_Coef _Uminus + Uminus  Poly_Coef _Mult — Mult])

val Lift > lift : base_t — t
val Mult_Extern > mult_extern : base_t — t — ¢
val Lev le : t — base_t
val Is_Coef > is_coef : t — bool
val Compose > compose : string — poly_t — ¢
type Support > support : x
support < @'
i type Support > support’ : x
support’ < ®' type T > t' = support
val Eg > eq' = Az \y.(z = y)
val Zero > zero' = Base' [base_zero]
val Un > un' = Base'[base_un)]
val Compose > compose’ = Av.Al.
if poly_is_coef | then poly_lcl
else Comp‘[v, 1]
val Lift > lift' = Aa.Base'[a]
val Le > Ie¢' = Az matchl [base_t] =
Aa.a
AL (le (poly_lcl))
val Add > add’ = \xi.\xy. matchl, [t] 2,
Aa;. matchfb [t] z2
)\ag.Baseb“se‘t[base_add ay as]
Ava. Ala.(compose vg (poly_add (poly_lift x1) 12))
vy . matchl [t] o
Aay.(compose vy (poly_add (poly_lift x2)11))
Avg. Al if v1 = vy then (compose v (poly_add iy 1))
else if v > vy
then (compose vy (poly_add (poly_lift x2) 1))
else (compose ve (poly_add (poly_lift 1) l2))
[...snipped ...] ) )

Figure 5.16: Flattened recursive polynomials
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Part II1

Compilation of mixin modules
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Chapter 6

Typed compilation without local
definitions

6.1 Intuitions

In this chapter, we present an efficient compilation scheme for a subset of MM. Let us first give
intuitions on it. A mixin structure is translated into a record, with one field per output component
of the structure. Each field corresponds to the expression defining the output component, but
A-abstracts all input components on which it depends, that is, all its direct predecessors in the
dependency graph. These extra parameters account for the late binding semantics of virtual
components. Consider again the M1 and M2 example at the end of section ??. These two structures
are translated to:

mli={f=MAg.Ax. ...g...; u=A.fO0}
m2={g=A.Ax. ...f...; v=2JXAg. g1}

The sum M = M1 + M2 is then translated into a record that takes the union of the two records m1
and m2:

m={f=ml.f; u=ml.u; g=m2.g; v=m2.v }

Later, we close M. This requires connecting the formal parameters representing input components
with the record fields corresponding to the output components. To do this, we examine the
dependency graph of M, identifying the strongly connected components and performing a topological
sort. We thus see that we must first take a fixpoint over the £ and g components, then compute u
and v sequentially. Thus, we obtain the following code for close(M):

let rec f = m.f g and g = m.g f in
let u = m.u f in

let v =m.v g in
{f=f;g=g;u=u; v=yv}

Notice that the let rec definition we generate is unusual: it involves function applications in the
right-hand sides, which is usually not supported in call-by-value A-calculi.

In fact, the let rec of MM is almost powerful enough to model such fixpoints. We choose as the
target language of our compilation scheme the A\,-calculus, featuring a let rec construct that slightly
extends that of MM. It allows to group all the components within a single binding;:
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z € Vars Variable
X € Names Name
Expression: e =z Variable
[{X1=e1...X, =€} Record
| e. X Record selection

|let rec 21 =€y ..., =€, in e let rec
| (Xi>zy...Xp>a,dr ... dy)  Structure

| e1 +eq | closee Composition, closure
leix,..x, | e—x,. .x, Projection, deletion
le[X1 =Y ... X, » Y] Renaming
| exsy Splitting

Definition: d:= X[zy...z,]pz=¢ Named definition

Figure 6.1: Syntax of MM,

let rec f = m.f g

g =m.gf

u=m.uf

V=mnveg
in{f=f;g=g; u=u; v=v}

We have not proven any encoding property of our compilation scheme. We would at least like to
have a (weaker) soundness result for it, and a simple idea to show it is to set up a sound type
system for \,, and show that the expressions generated by our compilation scheme are well-typed.
However, the type system of MM would not accept them, so we have to find a finer type system.
Fortunately, Boudol [13] has already developed a non-standard type system for a call-by-value
calculus that supports such single recursive definitions. Later, we have extended it to mutually
recursive definitions in [46]. Here, we adapt the ideas of [46] to Ao, and our result is that the
compiled terms are well-typed.

6.2 Definition of the compilation scheme

6.2.1 Restricting the source language: MM,

The syntax of MM, terms and types is defined in figure 6.1. The meaning of meta-variables is
kept from the presentation of MM (section 3.1). The language is the same, except that anonymous
definitions have dissapeared, and the freezing, hiding, and showing operations, that were using
them. The operations on the structure of expressions are defined by restriction of the ones of MM.
The notion of syntactic correctness is maintained identical as for MM, and expressions are similarly
identified modulo correct variable renaming.

The operational semantics are defined exactly as for MM, without the contraction rules FREEZE,
HIDE, SHOW, and letting the meta-variable op range over the restricted set of operators (see figure
3.2), and denote by ople] the application of op to the expression e. The syntax for contexts is
modified accordingly. Also, the notions of predictable shape and of degree remain the same. In
particular, the Degree function returns @ on all kinds of expressions, except on mixin modules and

records, where it returns ©.

The definition of the type system slightly differs from that of MM. Indeed, the output sections
of mixin module types are now lists of types, indexed by names, as indicated in figure 6.2. They
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M € Types == {0} | {;0;G)

Names -2 Types

€| X~ MO

Crin {X 3V | X,Y € Names, y € Degrees}

M

IO G

€ Vars % Types

Figure 6.2: Types for MM,

x = Degree(z', e) (X', z") € dom({t;0)) (X[z*]pz=¢)€o0
X' 50X

(Xi,z;) € dom({;0)) (X[z1...zx]>pz =€) €0

X; 3@;0) X

Figure 6.3: Dependencies in a MM, structure

are still supposed to be finite maps. Thus, in the following, the meta-variable I still denotes a
finite map from names to types, but the meta-variable O now denotes a list of types indexed by
distinct names. The typing rules are modified accordingly: for a mixin module (s;0), the output
section of the result type preserves the order in which the components appeared in 0. This does
not change the typing rule T-STRUCT however. The meaning of the rule T-SuMm slightly changes
though, because we have to define the disjoint union operation W on indexed lists. It is defined, if
the two lists define disjoint sets of names, as their concatenation, and undefined otherwise. Thus,
there is an implicit side-condition in rule T-SuM from the point of view of this section, requiring
that the output sections of the two summed mixin modules define disjoint sets of names.

The notion of graph and the corresponding operations are greatly simplified by the absence of
local definitions: all the considered graphs are abstract (i.e. graphs on names only). The way to
compute the dependency graph — ., of a structure (¢;0) is also simpler, as described in figure
6.3: nodes are simply names, and no lift operation is necessary.

Our goal is to translate well-typed terms of MM, into a simple calculus with let rec, relying on
the dependency graphs. To do this in a sound way, it is crucial to only have to deal with safe
dependency graphs. Fortunately, proposition 7 remains true.

Proposition 8 (Types well-formed) If the types in ' are well-formed, and T'F e : M, then M
is well-formed.

6.2.2 The target language ),

The target language for our translation is the A, calculus, a variant of the A-calculus with records
and recursive definitions introduced by Boudol [13].

Syntax

The syntax of A, is defined in figure 6.4. Intuitively, it is a subset of MM,, where mixin module
constructs have been replaced by functions and applications, and the let rec has been extended
(see below) The meta-variables X and x range over names and variables, respectively. Vari-
ables are used as binders, as usual. Names are used for accessing record fields, as an external
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T
X
o

Expression:
€ € expr

Vars
Names

=[] | =

x| Av.e|ejes

{Xl 26‘1...Xn :en}
e.X

let recz1981€1...25 ©p €p
ine

Variable
Name
(n a natural)

Figure 6.4: Syntax of A,

e More meta-variables:

s =

X1:€1...Xn:€n

Tr101€1...01n%n€En

e Notations:

Record
Binding

For a finite map f, and a set of variables P,

dom(f) is its domain,
cod(f) is its codomain
f| p is its restriction to P,
and f\p is its restriction to dom(f) \ P.

e Expressions of predictable shape:

ey € Predictable ::= {0} | Ax.e | let rec b in e

Figure 6.5: Meta-variables and notations
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interface to other parts of the expression. Figure 6.5 recapitulates the meta-variables and no-
tations we introduce in the remainder of this section. The syntax includes the A-calculus con-
structs; variables x, abstraction Az.e, and application ejes. The language also includes records
{X; =e1...X,, =en}, record selection e.X and a let rec construct. A mutually recursive definition
has the shape let rec x1 1€ ...2,0,€, in e, where arbitrary expressions are syntactically allowed
as the right-hand side of a definition.

Syntactic correctness Recordss = (X; =e;...X,, =e,) and bindings b = (z101€1 ... T,9,€,)
are required to be finite maps: a record is a finite map from names to expressions, and a binding
is a finite map from variables to expressions. Requiring them to be finite maps means that they
should not bind the same variable or name twice.

In a let rec binding b = (x1 = e1...x, = e,), we say that there is a forward reference from
zi toz; if 1 <i < j <nandzx; € FV(e;). A forward reference from z; to z; is syntac-
tically forbidden, except when e; is of predictable shape. An expression of predictable shape
is a record, a function, or a binding followed by an expression of predictable shape. Formally

e, € Predictable ::= {s} | Az.e | let rec b in ey.

Sequences Records and bindings are often considered as finite maps in the sequel. We refer to
them collectively as sequences, and use the usual notions on finite maps, such as the domain dom,
the codomain cod, the restriction | p to a set P, or the co-restriction -\ p outside of a set P.

Structural equivalence We consider the expressions equivalent up to alpha-conversion of bind-
ing variables in structures and let rec expressions. The set of terms of A, is defined as the set of
structural equivalence classes.

Semantics

The semantics of A, is quite similar to that of MM,, except for what concerns let rec bindings.
A first difference is that a binding defining only values is considered fully evaluated only if these
values match the corresponding size indications: if a value of size n is expected (annotation =y,,)
then the defined value must have this size; if a value of unknown size is expected (annotation =),
then any value will do. From now on, the meta-variable b, for bindings of A\, denotes such fully
evaluated bindings. This implicitely appears in the definition of results and evaluation contexts.

As shown in figure 6.6, values include functions Az.e and records of values {s,}, where s, denotes
an evaluated record X1 =v; ... X,, = v,.

The semantics of record selection and of function application are defined in figure 6.7, by com-
putational contraction rules, defining the local computational contraction relation ~».. Record
projection selects the appropriate field in the record; and the application of a function Az.e to a
value v reduces to the body of the function, where the argument has been bound to z by let rec.

In X\,, for mostly technical reasons, we distinguish the topmost binding syntactically : the global
computational reduction relation --+. is a binary relation on configurations ¢, which are pairs of a
binding, the topmost binding, and an expression, written b I e (see figure 6.6). Here, the topmost
binding is close to the usual notion of runtime environment, with the additional feature that bound
values can be mutually recursive.

The rules for handling let rec and the notion of evaluation contexts are adapted to this notion of
configuration. The computational contraction rule LIFT remains the same. The computational
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Configuration:

c == ble
Value:
v €values == x| Ar.e|{sy}
Answer:
a € answers = b, Fw

More meta-variables:

Sy = Xy=wv...X,=v, Value record
b, = x1 =v1...x, =v, Value binding

Figure 6.6: Configurations and answers in A,

e Computational contraction rules

xz ¢ FV(v) B
ETA
{Xi1=v1...Xp =v,}.Xi~.v; (PROJECT) (Az.e)v ~~.let rec z =v in e ( )
dom(b) L FV(L)
- - (L1rT)
Llet rec b in e] ~.let rec b in LJe]
e Computational reduction rules
e~e c
m ( ONTEXT)
dom(by) L {z} U dom(b,,bs) U FV(b,,ba) UFV(f) (M)
(by,z = (let rec by in €),bo - f) =+, (by, b1,z =e,ba - f)
dom(b) L (dom(b,) U FV(b, E[N](z) =
om(l) L (dom(b) UFVI) Nw=v

(by Fletrec b in €)--+.b,,bF e E[N[z]] --+. E[N[v]]

e Evaluation contexts

Lift context: Record contexts:

L == ge|lvao|oX|{S} S == s, X=0O,s
Nested lift context: Binding contexts:

F == 0O|L[F] B = b,,z=00b
Evaluation context: Strict contexts:

E = (b,FF)|(B[F]Fe) N == w|oX

e Access in evaluation contexts

(by FF)(x) =by(z) (EA) (by,y=TF, bk e)(x) =b,(z) (IA)

Figure 6.7: Reduction semantics for A,
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reduction relation extends the computational contraction relation to any evaluation context E,
as defined in figure 6.7. An evaluation context E is a nested lift context, either inside a partially
evaluated binding, or under a fully evaluated binding. The reduction rules are modified accordingly.

The target language

The computational reduction relation on expressions is compatible with structural equivalence.
Hence we can define computational reduction over equivalence classes of expressions, obtaining the
reduction relation —.

Definition 18 The )\, language is the set of terms, equipped with the relation —.

Ao features a let rec that is slightly extended over the ones of ML or OCaml. We will now show
how to compile it. Our target language for this compilation is presented in the next section and is
a A-calculus without a let rec at all, but with notions of heap, and locations.

6.2.3 Compilation scheme

We now present a compilation scheme translating MM, terms into call-by-value A-calculus extended
with records and a let rec binding. This compilation scheme is compositional, and type-directed,
thus supporting separate compilation.

The translation scheme for our language is defined in figure 6.8. The translation is type-directed
and operates on terms annotated by their types. For the core language constructs (variables,
constants, abstractions, applications), the translation is a simple morphism; the corresponding
cases are omitted from figure 6.8.

Access to a structure component F.X is translated into an access to field X of the record ob-
tained by translating E. Conversely, a structure (1;0) is translated into a record construction.
The resulting record has one field for each exported name X € dom(o), and this field is associ-
ated to o(X) where all input parameters on which X depends are A-abstracted. Some notation
is required here. We write D~'(X) for the list of immediate predecessors of node X in the de-
pendency graph D, ordered lexicographically. (The ordering is needed to ensure that values for
these predecessors are provided in the correct order later; any fixed total ordering will do.) If
(X1,...,X,) = D7Y(X) is such a list, we write 1 (D~1(X)) for the list (z1,...,z,) of variables

associated to the names (X1,...,X,) by the input mapping . Finally, we write X(ml, cey ). M

as shorthand for Az; ... Ax,.M. With all this notation, the field X in the record translating (i; o)
is bound to X1 (D~1(X)).[o(X) : O(X)].

The sum of two mixins F; + FEs is translated by building a record containing the union of the fields
of the translations of E; and E». For the delete operator E \ X, we return a copy of the record
representing F in which the field X is omitted. Renaming E[X < Y] is harder: not only do we
need to rename the field X of the record representing F into Y, but the renaming of X to Y in
the input parameters can cause the order of the implicit arguments of the record fields to change.
Thus, we need to abstract again over these parameters in the correct order after the renaming, then
apply the corresponding field of [E] to these parameters in the correct order before the renaming.
Again, some notation is in order: to each name X we associate a fresh variable written X, and
similarly for lists of names, which become lists of variables. Moreover, we write M (z1,...,z,) as
shorthand for M z; ... z,.

The freeze operation E ! X is perhaps the hardest to compile. Output components Z that do
not depend on X are simply re-exported from [E]. For the other output components, consider a
component Y of F that depends on Y7,...,Y,,, and assume that one of these dependencies is X,
which itself depends on Xy,...,X,. In E'! X, the Y component depends on ({Y;} U{X;})\ {X}.
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[e: M) X : M]=[e: M'].X
[(e;0) : {I;0; D}] =
(X =X YD (X)) [o(X) : O(X)] | X € dom(O)}
[(Er : {L1;01;D1}) + (B2 : {I2; O2; Do}) : {I; O; D}] =
let ey = [Ey : {I1;01;D1}] in let eo = [Es : {I; O2; D2}] in
(X =€1.X | X € dom(0y);
Y =e.Y | Y € dom(0,))
[(E: {10 D')\ X : {I; 0: D}] =
lete=[E:{I';0;D'}]in (Y =e.Y | Y € dom(O))
[(E: {0, D'YX « Y]: {I;0; D}] =
lete=[FE:{I';0";D'}] in
(Z{XYY = AD Y (Z{X}Y).(e.Z DY (2)){X}Y | Z € dom(O"))
[(E: {I'0"D'}) | X : {I,0; D}] =
lete=[E:{I';O';D'}] in
(Z=eZ| Z e dom(0), X ¢ D'""'(2);
Y =XD(Y)letrec X =e.X D' (X)ineY D-1(Y) | X € D' (Y))
[close E: {I';O"; D'} : {0; O; 0}] =
lete=[E:{I';0";D'}] in
let rec X_]1 =e. X, m and ... and X—}h =e.X, WX}“) in

let rec X7 =e. X7 D'"1(X7) and ... and X, =e. X2 D' 1(X}) in
(X =X | X € dom(0))
where ({X] ... X}, },....{X7... X% }) is a serialization of dom(O') against D'

Figure 6.8: The translation scheme

Thus, we A-abstract on the corresponding variables, then compute X by applying [E].X to the
parameters X Since X can depend on itself, this application must be done in a let rec binding
over X. Then we apply [E].Y to the parameters that it expects, namely Y;, which include X.

The only operator that remains to be explained is close E. Here, we take advantage of the fact
that close removes all input dependencies to generate code that is more efficient than a sequence
of freeze operations. We first serialize the set of names exported by E against its dependency
graph D. That is, we identify strongly connected components of D, then sort them in topological
order. The result is an enumeration ({X{ ... X, },..., {X{ ... XP }) of the exported names where
each cluster {X{... X/} } represents mutually recursive definitions, and the clusters are listed in
an order such that each cluster depends only on the preceding ones. We then generate a sequence
of let rec bindings, one for each cluster, in the order above. In the end, all output components are
bound to values with no dependencies, and can be grouped together in a record.
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v(z) = )0 (Var)

Fkz:T(x) /vy F'ke:TC(c) /v (Consr)

T+{z: T"}r-M:7/(v—1)[z—d
Fl‘)\ﬂ?.M!T’i)T/’y

(ABSTR)

FI—M]:T'i>T/'yl LEM:7" /7
F"Ml Mg:T/("ylfl)/\d@"YQ

(App)

FI—MIT’i)T/’}/ I(x)=r1
F'tEMz:7t/(y—1)A(z—d)

(APPVAR)

rEM:7 /4 F+{z: 7'} N:7/y[z—d
Fkletz=MinN:7/yAdQ~

(LET)

F+{...zjor .. }FM:7/~[... zj—>d; ..]
VZF-F{ Tji_Tj }"MZTZ/’}/Z[ :L‘jl—)dij ]
Vi7j2dij 2 1 Vi7j,k2dik Sd”@d7k
I'Fletrec ... z; = M; ... InMT/’}//\(/\dz@’yl)/\(/\dz@d”@’y])

i

4,7

(REC)

Vi:DkM;:1 |y

(RECORD)

TFM: (.. X1 ...) ]~ 1<i<n (Sk1)
TFMX;:7 ]~y v

6.3

6.3.1

The translation scheme defined above can generate recursive definitions of the form let rec z =
M zin .... In ), these definitions can either evaluate to a fixpoint (i.e. M = Az.\y.y), or get
stuck (i.e. M = Az.z+1). In preparation for showing that no term generated by the translation can
get stuck, we now equip A, with a sound type system that guarantees that all recursive definitions
are correct. Boudol [13] gave such a type system, however it does not type-check curried function

applications with sufficient precision for our purposes. Hence we now define a refinement of Boudol’s

Figure 6.9: Typing rules for A,
Type soundness of the translation

A type system for the target language

type system.

The type system for A, is defined in figure 6.9. Types, written 7, have the following syntax:

Ao types: T :=int |bool base types

| 71 4, T annotated function types
| (... X;: 7 ...) record types

Arrow types are annotated with degrees d, indicating how a function uses its argument.

instance, a function such as Az.x + 1 has type int LN int, because the value of z is immediately
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needed after application, whereas Azxyz.z + 1 has type int 2, ..., because the value of z is not
needed unless at least 2 more function applications are performed. Formally, a degree can be either
a natural number or oo, meaning that the variable is not used. Similarly, the typing judgment is
of the form ' F M : 7 / 7, where v is a (total) mapping from variables to degrees, indicating how
M uses each variable: y(x) = oc means that z is not free in M; v(z) = 0 means that the value of
x is needed to evaluate M; and v(z) = n + 1 means that the value of z is needed only after n + 1
function applications, e.g. x occurs in M under at least n + 1 function abstractions.

Rule (var) expresses that the variable z is immediately used via the side condition vy(z) = 0.
Function abstraction (rule (abstr)) increments by 1 the degree of all variables appearing in its
body, except for its formal parameter x, whose degree is retained in the type of the function. We
write v — 1 for the function y — v(y) — 1, with the convention that 0 — 1 =0 and oo — 1 = co. We
write (7 — 1)[z — d] for the function that maps = to d, and otherwise behaves like (y — 1).

Rule (app) deals with general function application. In the function part M, all variable degrees
are decremented by 1, since the application removes one level of abstraction. The degrees of the
argument part M> are combined with the d annotation on the arrow type of M; via the @ operation,
defined as follows:

dQ0=0 dQoo =00 d@(n+1)=d

Because of call-by-value, immediate dependencies in My (y2(z) = 0) are still immediate in the
application. Variables not free in My (72(z) = oc0) do not contribute any dependency to the
application. The interesting case is that of a variable z with degree n+1in M>, i.e. not immediately
needed. We do not know how many times the function M; is going to apply its argument inside
its body. However, we know that it will not do so before d more applications of M; M,. Hence, we
can take d for the degree of x in M, M. Finally, the contributions from the function part (y; —1)
and the argument part (d @ ) are combined with the A operator, which is point-wise minimum.

When the argument of an application is a variable, as in M z, a more precise type-checking is
possible (rule (appvar)). Namely, the variable z is not needed immediately, but only when the
function M needs its argument. Hence, the degree of z in the application is (y(z) — 1) A d, while
all other variables y have degree y(y) — 1.

The most complex rule is (rec) for mutual recursive definitions. Intuitively, the right-hand sides
Mji ... M, must not depend immediately on any of the recursively defined variables =1 ...x,. In
other terms, the dependency d;; of M; on z; must satisfy d;; > 1. However, we must also take into
account indirect dependencies: for instance, M; may depend on zy, whose definition M5 in turn
depends on z3, making M; depend on z3 as well. We account for these indirect dependencies via
the triangular inequality d;;, < d;; @d;;. Finally, the dependencies of the whole let rec are obtained
by combining those of its body M with those arising from the uses of the z; in M, either direct
(d; @~y;) or one-step indirect (d; @d,; @+;). Longer indirect dependencies such as d; Qd;; @d;; @y,
need not be taken into account because of the triangular inequality.

Finally, the (let) rule is a combination of the (abstr) and (app) rules, and the rules for record
operations (record) and (sel) are straightforward.

6.3.2 Soundness of the target language

To simplify the proofs, we prove the soundness on a subset A, of A, that excludes constants, record
construction and access, and the let binding. It is entirely straightforward to extend the proofs to
the omitted constructs.

Properties of degrees

We start the proof with a number of algebraic lemmas on degrees and degree operations. Figure 6.10
re-states the definitions of the operations on degrees. The following lemmas should be read as
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Degrees Minimum Composition
d := n|oo d N oo = d d @ oo = o
‘ A d = d d @ 0 = 0
m A n = min(m,n) d @ n+l = d
Plus Minus
o0 4+ n = oC o — n = o0
m + n = m-+nn m — mn = m-yn ifm>n
m — n = 0 ifm<n

Figure 6.10: Summary of degree operations

universally quantified over the degrees d, d', di, d», d3. We adopt the convention that @ has
highest precedence, followed by A, and then + and —.

Lemma 18

10.
11.

C(dy +1)@dy < dy @dy + 1.

(di Ady) @dy = dy @dy Ady @ dy.

dy @ (do Ady) = dy Qdy Ady Q@ dy.

(di Qds) Qdy = dy @ (ds @ dy).
d-n)Qd =dad —n.

Ifd+1=d, thend >1andd=d — 1.
Ifd#0, thend—1+1=d.

0@d<d.

Ifd<d thend+1<d +1.
Fd+1<d —1thend+2<d.

IfdQ 2 ]., then dl @dq Sdl @dg@dfg

Proof

. If dy = 0, we obtain 0 < 1 which is true. If dys = oo we obtain oo < oc. Otherwise, the claim

reduces to dq +1 < d; + 1.

. If d3 = 0, we obtain 0 on both sides of the equality. If d3 = oo, both sides are equal to oco.

Otherwise we get di A dy on both sides.

If dy = 0, both sides are equal to 0. If do = oo, then dy A d3 = d3 and d; @ dy = oo, so both
sides are equal to dq @d3. Otherwise, we argue by case on d3. If d3 = 0, then we obtain 0 on
both sides, and if d3 = oo, we obtain d; @ dy for both sides. Otherwise, dy Ads =n # 0, so
dy @(dy ANdg) =dy =dy ANdy =dy Qdy A dy Qds.

. If d3 = 0, both sides are equal to 0. If d3 = co, we obtain oo on both sides. Otherwise, both

sides are equal to d; @ ds.

. Both sides reduce to oo if d' = 00, to 0 if d' =0, and to d — 1 otherwise.

By definition of +.
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7. By definition of + and —.
8. By definition of @.
9. By definition of +.

10. Since d + 1 is strictly positive, d’ cannot be 0. Thus, d' = d' — 1 + 1 by property 7, and the
result follows by applying property 9tod +1 < d' — 1.

11. If d3 = oo or d3 = 0, both sides reduce to d3. Otherwise, write d3 = n+1. Then, d; Qds = d;
and d; @Qd, @dz = dy @Qdy, hence it simply remains to prove that d; < d; @d,. Since dy > 1,
we have only two cases: either dy = oc, in which case d; @d, = oc which cannot be less than
di; or dy = m + 1, in which case d; @ dy = d;, and the result holds.

O

Lemma 19 If v < (71 — 1) Ad @ yq, then there exists v and v} such that v = (73 — 1) Ad @~}
and 71 < and 5 < 2.

Proof We define ] and 4 pointwise. Consider a variable z. Let d' = y(z), di = 1 (z), do =
vo(z). We construct d} and d!, such that d' = (d} —1)Ad@Qd), and d} < d; and d}, < ds.

e If d' =0, then we can take dy = dj = 0.

e If d' = oo, then we can take di = d; and d, = d», because only oo is greater than d'.

e Ifd =n+1,let d, =n+2and d, = do. By hypothesis we know that d’ < d @ dy. Since
di—1=n+1=4d, wehave (d —1)AdQd, =d} — 1 =d'. Moreover, since d' < d; — 1,
we have that n + 1 < d; — 1, and therefore (d] = n + 2 < d; by lemma 18. Finally, d} < ds
trivially holds.

O

Lemma 20 Ify < (y1—1)A(x—d), then there exists v} such that vy < v andy = (v} —1)A(z—d).

Proof We proceed as in the previous proof. Consider a variable y and let d' = v(y) and di = 71 (y).
We construct di such that d} < dy and d' = (d] — 1) A ((z — d)(y)).

e If d; =0, then d} = 0 works.

e Otherwise, we take dj = d' + 1. This d} is suitable because:

— Since d' <dy —1,wehave d' +1 <d; —1+1 and d; # 0. By lemma 18, it follows that
di —1+1=dy, hence d} < d;.

— Fromd < (d+1-1)<(dy—1)and d' < (di —1) A (z—d)(y) < (z— d)(y) it follows
that d’ < (d}) — 1) A ((z — d)(y)).

— Since d} — 1 =d', we have that (d] — 1) A ((z — d)(y)) < d'.

O

Lemma 21 Letn € N. If

i,je{l...n} ie{l..n}

then there exist v{,71,...,v., such that v, <-~;, for i =0,...,n and

’yl:’yé/\ /\ dz@d”@’y;/\ /\ dz@’}/zl
i,je{l...n} ie{l..n}
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Proof Simply take v} = 7' and v} = v; for i = 1,...,n. By transitivity we have v < 7 and
trivially v} < ;. Tt is easy to check that

’)/(’]/\ /\ dz@d”@’y;/\ /\ di@%gv’
i,je{l...n} ie{l...n}

by definition of 4'. Moreover, by hypothesis, we know that

N\ di@d;aq >+ and N\ diay >~y
i,je{1...n} ie{1...n}

hence
Y<un N di@dyayian N\ di@y
i,j€{1...n} i€{l...n}

and the expected equality follows. O

Lemma 22 Ify[z—d] = (71 —1)AdoQ~yy then there exist vy, V4, di, da such that y1 = v [x—d4],
Y2 = v do], and y = (v — 1) Ado @ s

Proof Let d; = 71 (z) and do = 72(z). Let ] be the function associating 1 (y) to every variable
y # x and such that v{(z) = v(z) + 1, which we can write v [z + y(z) + 1]. Let +4 be the function
associating 2 (y) to every variable y # z and such that v}(z) = oo, which we can write y;[z — oc].
We have trivially v; = 1 [z — di] and 5 = [z — d2]. We now check the third property. On =,

V(@) = (y(2) + 1 =1) Ady @ oo = (y1(z) — 1) Ady @ ;(x)

() = (my) —1) Ado @ya(y) = (1 (y) — 1) Ado @y3(y)

O
Lemma 23 Ify[z—d] = v ( /\ d; @ d;; Q) A (/\ d; @ ;) then there exist v and a ] for
i,je{1...n} i
each i, such that y)[z—do] = vo, Vi[z—d;] = 75, and v = YA ( /\ d; @d;; @ 'y;)/\(/\ d; @),
i

i,je{1...n}
with do = vyo(x) and d; = ~v;(x) for all i.

Proof Take v = yo[z — v(x)] and v} = v;[x > oo] for all i. We check that the expected properties
hold as in the previous proof. O

Weakening lemmas

We now prove two “weakening” lemmas showing that the typing judgement still holds if the degree
environment 7 is replaced by another environment +' < +, or if the degree y(z) of an unused
variable z is changed.

Lemma 24 (degree restriction) If v <~y and M :7 /~, thenTHM: 7 [~

Proof We reason by induction on the typing derivation of M, and by case on the last typing rule
used.

Rule (var), M = z. We know that I'(z) = 7 and y(z) = 0 > 4'(z), so 7'(z) = 0 and we can apply
the axiom (var) again.
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Rule(abstr), M = AzM;. Given the typing rules, we have a derivation of T' + {z — 7} F M, :

7/ (y—D[z—d witht=m 4 . But it is easy to notice that ' =Dx—d < (y—1D[z—d,
so by induction hypothesis, we have a derivation of '+ {x — 7} F My : 7 / (' — 1)[z — d]. The
expected result follows by another application of the rule (abstr).

Rule (app), M = M; M,. By typing hypothesis, we have derivations for I' + M, : 7' 4 r / n
and I'F My : 7' [ 79, with v = (71 — 1) Ad @ 5. By lemma 19, we construct -] and 73, such that
Y1 <71, 75 <2 and ¥ = (71 — 1) Ad @ ~4. Applying the induction hypothesis twice, we obtain
derivations for I F M, : 7 % 7 /v and T F My : 7' / 44, and we can apply the rule (app) again
to obtain the expected result.

Rule (appvar), M = M; z. We have a derivation for T' - M; : 7' LN / n with T'(z) = 7" and
v = (y1 —1) Ad. Hence, v' < (w1 — 1) A (z— d). Applying lemma 20, we obtain ] such that
v <m and v = (y; — 1) A (x — d). We can apply rule (appvar) again to derive the expected
judgment.

Rule (rec), M =letrec ... z; = M; ... in N. By typing hypothesis, we have

F+{ Tj i T }"NT/’)/(][ iEjl—)dj ]
F+{ Tj i Tj }l_Msz /’)/Z[ ;U7l—>dl] ]

for all 7:,]', d,j 2 1

for all i,j,k, d,k S d,j Q djk
=7 (\di @) A (A di@dy @)
i (2%}
Using lemma 21, we take v, = 4’ and for all i, v} = 7;, knowing that vy < 7 and ' =
YA (/\ d; @y))A (/\ d; @ d;; @~}). By induction hypothesis, we know how to derive T+{... z; :_
] (2%}

(3
T .. }FEN:T [Nyl xj—d; ...]. Hence we can derive ' M : 7 /~'. O

Lemma 25 (degree weakening) IfTF M :7 /y[z+—d] and x ¢ FV(M), then T M : 7 / .

Proof The proof is by induction on the typing derivation of M and by case on the last rule used.

Rule (var), M =y. Since z ¢ FV(M),  # y. By typing hypotheses, y(y) = 0 and I'(y) = 7. It
follows that T - M : 7 / 7.

Rule (abstr), M = AyM;, where y is fresh. The premise of the typing rule holds: T+ {y — 7 } I

M1/ (y[z—d—1)[y—do] and 7 =7 Do, . But, obviously (y[z—d]—1)[y—do] = (v—1)[y—
dp][z — d — 1]. Hence, by induction hypothesis we obtain I+ {y +— 71} = My : 72 / (v — 1)[y — do]
and the expected result follows by rule (abstr).

Rule (app), M = M; M,. We have ' - M; : 7/ doy 7 / v and T + My : 7 / v with
Yz = d = (m — 1) Ady @Q . Applying lemma 22, we obtain dy, da, y; and ~} such that
= (71 —1)ANdogQ~4, i [z di] = 11 and [z — da] = 2. By induction hypothesis we can derive

TFM % /71 and T'F Ms : 7' / v4. The expected result follows by rule (app).

Rule (appvar), M = My, with y # z by hypothesis z ¢ FV(M). We have a derivation of
THM:n % 5 / 71 with y[x = d] = (y1 = 1) A (y = dy). Take v, = [z = y(z) + 1].
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We have [z — 7 (z)] = v and v = (7] — 1) A (y = dp). The first equality is straightforward,
and the second equality follows from the facts that v(z) = v(z) + 1 — 1, and for any z # =z,
(1 =D A(y—=do))(z) =((y —1) Ay~ do))(z). We then conclude by induction hypothesis as
above.

Rule (rec), M =letrec ... z; = M; ... in N. We have
F+{..zj.7 ..}FN:7/yn[.. z;—d; ..]

and for all ¢
F+{ Tj i Tj }"MZTZ/’)/Z[ ;Ujl—>dij ]

with for all 4,7, k, dix < d;j @dj; and for all i,5, di; > 1 and vz — d] = v A (/\ d; @’yi) A

(/\ d; @ d;; @;). Lemma 23 shows the existence of v, and 7 for all i such that v\ [z—dn] = YN,
ij
and for all i v}[z +— d}] = v;, and v = vy A (/\ d; @) A (/\ d; @d;; @~}), with dy = yn(x) and
i i
for all i, d; = v/(x). Applying the induction hypothesis, we derive
F+{...z;: 7 ..} FN:7/9N[.. zj—dj ..]

and for all 4

The result follows by rule (rec). O

Lemma 26 (type weakening) IfT+{z— 7'} FM:7 /vy andx ¢ FV(M), thenT - M : 7 [ 7.

Proof Straightforward by induction on the typing derivation. O

Substitution lemmas

We now establish the traditional substitution lemma: a variable can be substituted by a term of the
same type without affecting the type of the program. This lemma provides a semantic justification
for our definition of @ in relation with what really happens during the reduction of an application.

Lemma 29 (substitution) If T+ {z — 7'} F My : 7 / [z —=d], and T = My : 7' | 72, with
z ¢ FV(Ms) U dom(ys), then T = My{z}Ms:7 /v Ad@Q~s.

Proof We proceed by induction on the typing derivation of M; and case analysis on the last typing
rule used. We write M = M{z} My, T' =T + {z— 7'}, and v =11 Ad Q@ 5.

Rule (var), M; =y. We have I''(y) = 7 and y [z — d](y) = 0.

If y=ux,then M = My, d =0, 7 = 7" and by hypothesis ' = M : 7 / 5. So by lemma 24, it is
enough that vy < 79 or y1 A0 @y < 749, which is true by lemma 18.

Ify # x, then ¢ ¢ FV(M) and T+ {z — 7'} F M : 7 / [z — d], so by lemmas 25 and 26,
'+ M :7 /v, and it suffices that vy < 7y, which is trivially true.

Rule (abstr), M, = A\yMs, with y fresh. By typing hypothesis, we have

FI+{y'—)T]}|_M32T2/’)/3[y'—)d0]
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with 7 = 7 2% 7, and Yly—do] = (m[z—=d)—1)[y—do] = (11 — D[z~ (d—1); y—>dp]. Take M} =
Ms{z}M,. By induction hypothesis, we have T'+{y — 7} F M} : 12 [ (11 —1)[y—=>do] A(d—1)Q~,.
Since y is fresh, it does not occur in 7s, hence

(m — )[1/'—>d0]/\(d*1)@72

=((m -1 A(d-1) @)y do]
=((m-1)A(dQy — 1))y — do] by lemma 18
:((71/\d@72)—1)[y»—>d0] (0 — D[y — do]

Hence, rule (abstr) concludes ' - AyMj : 7 KN / Yo, which is the expected result.

Rule (app), My = M3 My. We have I - M5 : 7" Loy 7 [/ v3 and I' = My : 7" / 74 and
Y[z d = (y3 —1) Adyg @~4. By lemma 22, if d3 = ~3(z) and ds = v4(x), there exists 4
and v4 such that [z — ds] = 3, vi[z = da] = 74, and v1 = (7§ — 1) A dp @ 4. By induction

hypothesis, if M} = Ms{z}M, and M; = My{x}M>, then T - Mj : 7" oy 7 / ¥4 Ads @y and
T'E M 7" [~ Ads Qs so by rule (app)

F"MT/((’)/%/\dg @’}/2)—1)/\d0@(’74’l/\d4 @’)/2)
Moreover, by lemma 18, the degree environment is equal to

(73 = 1) A(dz @z — 1) A (do @y4) A (do @ dyg @)
= M A(d3Qry —1)A (dp @dy Qy)
= Y A((d3 — 1ady @dy) Qs
= N AdQmy
= T

Rule (appvar), M; = M3 y. As in the (var) case, we argue by case, according to whether y is
equal to x or not.

Case y = z. Then, M = M} M,, where M} = M3{z}M,. The typing hypothesis implies

T Ms " 2 7 /vs () and T'(y) =T (z) =7 = 7" and [z = d] = (3 — 1) A (y = dp). Take
¥4 = y3[z = y1(x) + 1]. We have v = (74 — 1) and v4[z — v3(x)] = 73. Thus we can write the
premise (*) as follows

' M;: 7" LN ] Vilz = y3(x)]

n Hence, by induction hypothesis we have
FI—M:;:T”ﬂ)T/’yg/\dg@’yQ
with d3 = v3(z). Then by rule (app), we obtain
TEM:7/((v4Ad3 Q) —1)Ady @y
But o = (74 — 1) Ad @ ys. Since d = (d3 — 1) A dp, it follows that
Yo = (73— 1) A(dzQya —1)Adp @y

Hence, we have derived the desired judgment.

Case y # z. Then, M = M} y, where Mj = Ms{z}M,. By typing hypothesis, we have I'

My o " 2 o / v (¥) and I"(y) = T'(y) = 7" and m[z = d] = (y3 — 1) A (y = do). Take
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¥4 = y3[z = v (x) +1]. We have v1 = (74 — 1) A (y— do), and v4[z — v3(z)] = v3. Thus we rewrite
the premise (*) as follows:

' M;: 7" o, 7 / vilr e 3 ()]
By induction hypothesis, it follows that

T M " 2 r /vy Ads @y,
with d3 = v3(z). Then by rule (appvar), we get

TEM:7/((v3Ad3 Q) —1)A(y > do)
which yields by lemma 18
THM:7/(v—=1)A(d3 @y — 1) A (y = do)

Moreover,

Y = MmAdQy

(73 = 1) A(y=>do) Nd @

(o — 1) A (g do) A (ds — 1) @

— A (y— do))

(v5 = 1) A (yr>do) A (dz @y — 1) (by lemma 18)

(because v [z — d] = (3
Thus, the expected result holds.

Rule (rec), M = let rec z; = Ny and ... and z, = N,, in N, where the z; are fresh. By typing
hypothesis,

'+{...zj.7 .}EN:7/an[.. z;—=dj ..]
foralli, "+ {... zj:_7; ..} b Ny:my [ &l zj=>diy .. ]
for all 4, j, d;; > 1
for all i, j, k, di, < d;; Qdjy,

We write N' = N{z} M, and for all i, N} = N;{z}My. We have y,[z +— d] = yn A (/\ d; @65;) A

2
k3

(/\ d; @d;; @4;). Lemma 23 shows that we can construct vj and a 6] for all i such that v [z —
de] = yn, and iz = d)] = §; for all i and v = Yy A (/\dZ @d;) A (/\dl Qd;; @4%), with
dy = yn(z) and dY = §;(x) for each i. Thus, the two premisesi can be rewrii"tien as follows:
'+{...zj: 7 .}EN:7/yyl.. zj—=d; .. ]z~ dn]
foralli, "+ {... ;.7 ..} F N7 [ 8., zj > di; .. Jlx—dy]

By induction hypothesis, it follows that

F+{...z;j:1 ..}FEN 7 /9y[.. zj—=dj ..]JNdNQp
foralli,F+{... Tj i Tj }"N{Tl/(si[ ;Ujl—>dz‘j ]/\d?@’)/z

Since the z;s are fresh we have yjy[... zj = d; .. JAdN QY = (YW AdN Q@ y2)[... z;—d; ...] and
for all i, 0j[... xj > di; .. JAd) @y = (8, Ad) Q,)[... xj = d;; ...]. We can therefore apply
rule (rec) to obtain

ThM:7/yyAdy @y A Ndi @di; @ (85 Ad) @yo) AN di @ (0] Ad) @)

1,7
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According to lemma 18, the degree environment above is equal to

v A (dv @)
A (N di @di; @65)

i,j

A (Ndi@di; @d) @)
1,

A (N\di@d)

2
A (N\di@d) @)
i
To obtain the expected result, it suffices to prove that this degree environment is equal to . Since

71[$'—)d] :’)/N/\(/\di@(si) N (/\dl@d”@é?)

1,7

we know that
d=yn(z) A (A d; @ 5;(x)) A (/\ di @dy; @ §;(x))

i.J
Therefore, d = dy A (/\ d; @dJ) A (/\ d; @d;; @dS). It follows that
i i,j
Yo = Y1 /\d@’)/g
= WA (Ndi@ads)n(\dad;ads)

i,J

Ndn A (\di @d?) A (\ di @di; @df)) @y
i i,
= WA (N\di@ads)n(\dad;ad))
i i,J
NMdy @y2) A (\di @df @ 7o) A (N di @dy; @df @)
i 1,7
This completes the proof. O

We now extend the previous lemma to the case of parallel substitution, exploiting the fact that
M{... z; » M; ...} isequal to M{xz1}y1 ... {zn}yn{vi } My ... {yn}M,, where the y; are fresh.
To support this reduction, we first show the stability of the typing judgement under substitution
of one variable by a fresh variable.

Lemma 27 If T+ {z:_ 7} F M :7 [/ ~vz—d] andy ¢ FV(M), then T +{y :_ 7} F M{z}y: 7/
Yy = d].

Proof Easy induction on the typing derivation of M. O

Lemma 31 (parallel substitution) AssumeT+{... z;:_ 7 ...} M :7 [ yy[... zi—=d; ..],
and for all j € {1...n}, T+ M; : 7; |/ ~v; with for all i,j, z; ¢ FV(M;) U dom(~;). Then,
-M{... z;— M, ...}:T/’yM/\/\d,;@’y,;.

Proof Write M{... z; = M; ...} as M{x1}y1 ... {zntyn{yi} M1 ... {yn}M, where the y; are
fresh. We first apply lemma 27 n times to obtain I'+ {... y; .. 7 ...} F M{z1}yr ... {zn}yn :
T/ Yml--. yi+>d; ...]. We then apply lemma 29 n times again, successively using the n typing
hypotheses for the M;. This leads to the desired judgment. O
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Substitution by a variable

We now state and prove a stronger variant of lemma 29 for the case where we substitute a variable
by another variable. This alternate substitution lemma is distinct from lemma 27: here, y is not
supposed to be fresh, and this is why former occurences of y must be taken into account, which is
done through the A operation.

Lemma 30 (substitution by a variable) If T + {zx = 7'} F M : 7 / y[z = d] and T'(y) = 7',
then T = M{z}y:7 [/ vA(y—d).

Proof We write I' =T + {& — 7'} and M' = M{z}y and proceed by induction on the typing
derivation of M and case analysis on the last typing rule used.

Rule (var) We distinguish the three sub-cases M =z, M =y, and M = 2z with z # x and z # y.
All three cases are straightforward.

Rule (abstr), M = AzM; where z is fresh. By typing hypothesis, we have

V+{zomn}tEM:m/ (y[z—d —1)zwdo]

with 7 =71 ﬂ> To. This is equivalent to
M+{z=n}EM :n/(y—Dz=dy)lz—d—1]
Applying the induction hypothesis, we then have
F+{z—ntrM{zly:nn/(y=-1)[z=dA(y—=d-1)

which yields
F+{zen}ttEMA{zty:m/ (yA(y—=d)) — 1)z~ dy)

We conclude I' - M{z}y: 7 /v A (y — d) by rule (abstr).

Rule (app), M = M; M,. The typing hypothesis entails I'' -+ M; : 7' do, & / v and I + M, :
7' [ va with y[z = d] = (71 — 1) Adp @y9. Take v = y1[z — y(z) + 1] and 5 = y2[z — co0]. These
degree environments enjoy the following properties:

n=ml=n@)] =) y=0—1)Ad Q@

T'F M {z}ly: " LN T/ 7 A@Y—n(z) TEM{zyy: 7" | v A (y— 1z

LEM 1/ (n=DAy= (n(z)—1) Ado @ (y3 Ay = 72(2)))
The degree environment in the conclusion is equal to

By induction hypothesis, we can derive
(M =D Ado @y A(y= ((m(z) —1) Ado Q@ya(2))) =7 A (y = d)
The desired result follows.

Rule (appvar), M = M; z We have I'" - M, : 7" oy 7 / 71 and I'(z) = 7" and v[z — d] =
(1 — 1) A (2 = dg). We consider the two cases z = 2 and z # x separately.

Case z = z. In this case, 7' = 7". Consider 7 = y1[z — v(z) + 1]. We have 74{ — 1 = v and
¥1[z = v1(x)] = 7. By induction hypothesis, we obtain

T M{aly:m 27 /9 Ay n(z)
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Since I'(y) = 7', rule (appvar) concludes
PEM r /(=1 A~ (n) - 1) Ay do)

But the degree environment in this conclusion is equal to (y; — 1) A (y = ((71(z) — 1) Adp)), that
is, ¥ A (y — d). This is the expected result.

Case z # z. Define v = y1[z—y(z) +1]. We have y = (v —1)A(z—dp) and vy [z~ 1 (z)] = 7.
By induction hypothesis, we obtain

DEM{aly:m" D /7 Ay = (@)
Since I'(z) = 7", we derive by rule (appvar)
TEM 7/ (m=DAy= () —1) Az do)

The latter degree environment is equal to v A (y — (71 (z) — 1)), that is, v A (y — d), as required
to establish the result.

Rule (rec), M =letrec ... ; = M; ... in N where the z; are fresh. The premises of rule (rec)
hold:

'+{ ..z .. }FMj:7/yl.. zj—>dy ... forall j
M+{... 2o . YEN:7 /N[ 25— d; .. ]
for all 4,7, d;j; > 1
for all i,7,k, dip, < d;j Qdj,

Moreover, y[z — d] = yn A (/\ d; @v;) A (/\ d; @d;; @v;). By lemma 23, we can construct vy
i i
and v for each i satisfying the following conditions: v = 5 A (/\ d; @) A (/\ di @ di; @),
i i,j
YN = Yyl dn], and for all i, v; = [z d}], with dy = yn(z) and for all 4, d} = v;(z). Applying
the induction hypothesis, we obtain derivations for the following judgments:

C+{... zim ..} M{z}y:7 /vl .. zi—=dji .. ]A(y—dj) for all j
P+{...zi:m ... }EN{zty:7 /N[ zi—=>di .. ]A(y—dn)

From these premises, rule (rec) derives I' - M’ : 7 / 4/, where

!

7= wAy—da)
A(/\di@di.i@(W,;A(y'—)d})))
/\(Kdi@(%/\(deé)))
— 7/\i(g,,H(dN/\(/\di@di_i@d_;)/\(/\di@d;)))
= YA (y—d) N i

This concludes the proof. O

Soundness

The soundness of A\.’s type system (theorem 3) is, as usual, a corollary of two properties: subject
reduction (lemma 32) and progress (lemma 33). We start with a technical lemma on recursive
definitions arising from the reduction of a let rec term.
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Lemma 28 Assume T + {... a; .7 ...} b M; 75 [ vl.. zi—=dj ...] forall j € {1...n}.
Further assume that for all i,j, d;j > 1 and for all i,j,k, dij, < dijj Q@dj,. Then, for any iy €

{1...n},
I'kletrec ... z; = M; ... in M,jo :Tio/’}/iq/\/\dioi@’yi

Proof By application of rule (rec), we obtain
I'kletrec ... €T; :M7 ... in M,O © Tig /’}/,0 /\/\d“ﬂ@d” @’Y]/\/\dlol@’yl
i,J i
Since dioj S digi @) d,jj, we have diqj @ Vi S d707 Q d,j Q V- ThllS,
/\digi Qd;; @v; A /\digi Q@ry; = /\digi Q@ ;
1,7 i i

and the expected result follows. O
Lemma 32 (subject reduction) IfT'FM:7 /~v and M — M', thenT - M : 7 [ ~.

Proof The proof is by case analysis on the reduction rule used.

Reduction rule (beta), M = AzM; v. The typing derivation for M can end either with an
application of the (app) rule or with the (appvar) rule.

In the (appvar) case, we have v = y. We rename z if necessary to ensure x # y. The typing
derivation for M is of the following form

F+{z—7}r-M 7/ (v — 1)z~ d

F")\QUM]ZT’i)T/’}/O
CEM:7/(vw—1)A(y—d)

T(y) =7’

Moreover, v = (yo — 1) A (y = d) and M’ = M;{z}y. By lemma 30, we have
TEM 7/ (vo—1)A(y~d
which is the expected result.

In the (app) case, the typing derivation for M is
T+{z=r}EM 7/ (n—1z—d

FI—AZEM]ZT’i)T/’)/] Thv:r [y
F'EFM:7/ (1 —1)AdQy

Moreover, M' = Mi{z}v and v = (11 — 1) Ad @ y3. By lemma 29, it follows that T - M’ : 7 / ~,
as expected.

Reduction rule (mutrec), M =letrec ... z; = v; ... in N, where the z; are fresh. We have
M' =M{... z; » M; ...} with, for all i, M; =letrec ... z; =v; ... in v;. By typing, we have
Fr+{...z;.7m ..}FN:7/n[... z; = d; ..]
foralli, D4+ {... zj:_7; ...} Foiim [l xj—=>dij .. ]
for all 4,7, dij; > 1
for all i,7,k, dip, < d;j Qdjy,
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By lemma 28, it follows that
J

By lemma 31, we obtain

M :r /v A(Ndi @y A N\ dij @y;))
i J

which is identical to the expected result

CEM /v A(Ndi@y) A (N\di@di; @)

ij

Reduction rule (context), M = E[M;], My — M{ and M’ = E[M]]. The result follows by
structural induction and case analysis over the context E. The only point worth mentioning is
that in the case E = v O and the typing derivation ends with rule (appvar), then M; can only be
a variable, and therefore cannot reduce. O

Lemma 33 (progress) IfT'- M : 7 /v and v > 1, then either M is a value, or there exists M'
such that M — M.

Proof The proof is a standard inductive argument on the typing derivation of M, and case analysis
on the last typing rule used.

Rule (var). M is a variable, i.e. a value.

Rule (abstr). M is a A-abstraction, i.e. a value.

Rule (app), M = M; M,. We have I' - My : 7' 4 / nnand T'F My : 7'/ 9. Moreover,
Y= -1)AdQry.

Applying the induction hypothesis to M; and Ms, either both terms are values or at least one
reduces. If M reduces, M also reduces via the context 00 Ms. If M; is a value and M reduces,
M also reduces via the context M; O. If both M; and M, are values, the type 7’ i> T of M,
guarantees that M; is either a variable or an abstraction. But M; cannot be a variable, because
~ > 1 implies y; > 2. Hence, M, is an abstraction and we can apply the (beta) rule to reduce M.

Rule (appvar). Same reasoning as in the (app) case.

Rule (rec), M =letrec ... x; = M; ... in N. If all M; are values, M reduces by rule (mutrec).
Otherwise, M reduces via the rule (context). O

Theorem 3 (soundness of \,) IfT'F M : 7 /v and v(x) > 1 for all x free in M, then M either
reduces to a value or diverges, but does not get stuck.

Proof The theorem follows from the following lemmas, which are proved in appendix 6.3.2. The
first three lemmas are substitution lemmas for general one-variable substitution, substitution of
one variable by another, and parallel substitution. They play a crucial role for proving subject
reduction for the typing rules (app), (appvar) and (rec) respectively.
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e D1(X)=(Xy,...,X,) is the list of the predecessors of X in D, ordered lexicographically.

e D(X,Y)=min{v| X 5 Y € D} (with the convention that D(X,Y) = oo if D contains nq
edges from X to Y)

e FCTp(X,I)=(M{",...,M}!"), for Pred(D) C dom(I), where
S DX = (XL X )
—forallie{1...n}, I(X;) =M, and D(X;, X) = v;.

o Pred(D)={X | X 3Y € D,X,Y € Names,v € Vals}

o Succ(D)={Y | X 3 Y € D,X,Y € Names,v € Vals}

Figure 6.11: Operations on graphs

IITl — TQ]] = T 2) T2
[int] = int
[bool] = bool
[{:0:DY = (X : [O(X)]x.p | X € dom(0)) if F {I;0; D}
MIxps = [M]2200 (o) 25072 M) 22 [M]
where (M",..., M) = FOTp(X, 1)

Figure 6.12: Translation of types

Lemma 29 (substitution) If '+ {z — 7'} F My : 7 [ [z —=d], and T - My : 7' | 2, with
z ¢ FV(My) U dom(ys), then T = My{z}Ms:7 [/ y1 Ad @ ~s.

Lemma 30 (substitution by a variable) If T+ {z— 7'} F M : 7 / y[z = d] and T'(y) = 7',
then T = M{z}y:7 [/ vA(y—d).

Lemma 31 (parallel substitution) If T + {... z; :_ 7 ...} F M : 7 [/ ymu[-.. zi—d; ...,

and for all j € {1...n}, T' v M; : 7; | ~v; with for all i,j, z; ¢ FV(M;) U dom(y;), then
r-M{... z; » M; ...}:T/’yM/\/\d,;@’y,;.

The soundness of A, then follows from the well-known properties of subject reduction (reduction
preserves typing) and progress (well-typed terms are not stuck).

Lemma 32 (subject reduction) IfT'FM:7 /v and M — M', thenT - M : 7 /[ ~.

Lemma 33 (progress) If 't M : 7 /v and v > 1, then either M is a value, or there exists M’
such that M — M'.

6.3.3 Soundness of the translation

The goal of this section is to prove the soundness of our approach, in the sense that a well-typed
MM, expression translates to a well-typed A, expression. The soundness of A, then ensures that
the translation evaluates correctly.
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Core terms: Cu==x variables, constants
| AxCM | (Cy Cy)M  abstraction, application
‘ M

E.X component projection

Mixin terms: E:=C core term

(o) mixin structure

| (+Eh Ey)M sum

(E[X « Yy)M rename X to Y

(B! xX)M freeze X

[(E\ X))V delete X

| (close E)M close
Output assignments: o ::= Xj; sy E;

Figure 6.13: Syntax of type-annotated terms

To state the soundness of the translation, we need to set up a translation from source types to
Ao types. We start by defining useful operations on graphs and signatures in figure 6.11. We
define FCT (X, I) as the list of the types and valuations of the predecessors of X in D according
to I, ordered lexicographically. Then, Pred(D) and Succ(D) are simply the sets of predecessors
and successors of any node in D. The translation of types is presented in figure 6.12. A natural
translation for environments follows, defined by [I'] = [-]oT. Moreover, we define the initial degree
environment corresponding to a type environment as d°(I') = 0 o I, that is to say the function
equal to 0 on dom(T") and oo elsewhere. In the sequel, we will often use valuations as degrees. It
is worth noticing that for all valuations vy, and vy, min(vy,v2) = v1 Ave = v1 Q vs.

As the translation operates on annotated well-typed terms, we define an annotated syntax in figure
6.13. The type system for annotated terms is exactly the same, except that it looks more like a
well-formedness judgment I' - E. Thus a derivation for a standard term yields a correct derivation
for the corresponding annotated term. We denote by E the annotated term corresponding to a
derivation of E, which should be clear from the context. A well-formed annotated term is a term
whose annotations are all well-formed types. We consider only well-formed annotated terms in the
following.

We now turn to proving theorem 4: the translation of a well-typed source term is a well-typed
Ao-term.

We start by stating three typing rules that are admissible in A,, and help type-check the terms
arising from the translation scheme. We omit the proofs of admissibility, which are straightforward.

Lemma 34 (single let rec) The following typing rule is admissible for the type system of A.

F+{z—=7Y-M:7/yz—d F+{z—7}-N:7" ] plz—d] d>1
Chletrecc=NinM:7 /v AdQy

Lemma 35 (n abstractions) The following typing rule is admissible for the type system of Ao.

Fr+{...z:m ..}JFM:7/(y—n)... z;,—>d; ..]

F"X(-ﬁ:---;ﬂ?n)-M!ﬁ k) T2 dat(n=?) .. Thn d—")T/V

Lemma 36 (n applications) The following typing rule is admissible for the type system of A.

FI-M:ﬁM)TQm...Tnd—")T/’y D(x;)=1i fori=1,...,n

CkEM(xi,...,zp) :7 [/ (y=n)A (... zi—=d; ...)
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We now prove two technical lemmas on the typing of sub-expressions that occur when translating
the close and freeze operators.

Lemma 37 (translation of close) Assume I'| —e : [{I;O0;D}] / d°(T'). Let Xi,...,X, be
names such that X; ¢ dom(L') and O(X;) = I(X;) and D(X;,X;) # 0 fori,j € {1,...,n}.
Further assume that for all immediate predecessors X of one of the X; in D, either X is one of
the X;, or T(X) = I(X). Let M be an expression and T be a type such that T'| — M : 7 / d°(T"),
where T =T + {X; : O(X1),..., X, : O(X,,)}. Then,

I'| —letrec X; =e.X; D-1(X;)and ... and X,, = e.X,, D-1(X,,) in M : 7/ d°(I)
Proof By definition of the translation of a mixin signature, and the hypotheses on T, the conditions
of lemma 36 are met, and we obtain

' —eX; D71(X;): O(X;) /d°(T)A (X = D(X,X;) | X € D7(X;))

Since E ¢ dom(T) for all j, the degree environment above is pointwise greater or equal to
d°(T)[X; = D(X;,X;) | j € {1,...,n}]. Thus, by lemma 24, it follows that

| —e.X; D L(X;): O(X;) [ d°(D)[X; = D(X;, X:) | j € {1,...,n}]

Moreover, D(X;, X;) € {1, 00} for all i and j. Hence, the premises of the (rec) typing rule are met.
Applying the weakening lemma 24 to its conclusion, we obtain the desired result. O

Lemma 38 (translation of freeze) Assume I'| —e : [{I;0;D}]/d°(T), where e is a variable
distinct from X for all names X. Let X be a name such that [(X) = O(X). Write D' = D'X and
I' =1\ x. Then, for all namesY € dom(0O), if X ¢ D~*(Y') we have

[ —eY : [O)]y,p, 1/ d°(T)
and if X € DY), we have

D~ XD 1(Y)let rec X = e.X D-1(X) ine.Y DY) : [O(V)]y.pr.rr / d°(D)

Proof Recall the definition of D’:

DI = DX = (D U Daround) \Dremove

vl /\1)2 Vo

where Daround = {Z "5 Y | (Z % X) e D, (X 2 Y) €D} and Dyemove = {X S Y | Y €

Names, v € {0,1}}.

Thus, in the case X ¢ D~'(Y), no edges leading to Y are added nor removed. Hence, D'~'(V) =
D~'(Y), which implies [O(X)]x pix,1, = [O(X)]x,p,r and the expected result.

Consider now the case X € D1(Y). We have D'"1(Y) = (D 1 (Y) U D }(X)) \ {X}. Define
I'=T+{Z:[I(Z)] | Z€ D '(Y)}. By lemma 36, and using the fact that e is not one of the Z,
it follows that

I'|—eX D (X):[0X] /{e— 0;Z D(Z,X)| Z € D"}(X)}

and
F'+{Y:[[I(X)]]}\—9YD LY):[0Y] /) {e—0;Z—D(Z,Y)| Ze D '(Y)}

Notice that D(X, X) > 1, because otherwise the graph D would not be safe, making the signature
{I; 0; D} ill-formed. In addition, O(X) = I(X). The conditions of lemma 34 are therefore met,
and we obtain T’| —let rec X = e.X D=1(X) ine.Y D=1(Y) : [O(Y)] / v where

v = {e=0;Z=D(Z,X)|Z+X,ZeD (X))}
ANMe—0;Z=D(Z,Y)|Z#X,Ze D YY)}
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By definition of D' = D!X, v is equal to {er0; Z—D'(Z,Y) | Z € D'"'(Y)}. Applying lemma 35,
we obtain

[l - XD 1(Y)let rec X = e.X D-1(X) ine.Y DY) : [O(X)]x.0r. / {e+ 0}

which implies the desired result by weakening. O

Theorem 4 (soundness of the translation) If T - E : M, then [['] & [E] : [M] / d°(T) +
IsRec(F).

Proof The proof is by structural induction on E, and case analysis on FE.

Function abstraction: £ = \x.C and M = 1, — 7. By induction hypothesis, [I'] + {z :
71} = [C] : 72 / d°(T)[z — 0] + IsRec(C). Applying the degree weakening lemma if IsRec(C') is not
zero, we obtain [I'] + {z : m }| — [C] : 72 / d°(T)[z — 0]. From this, the (abstr) typing rule shows
that [T]| — [Az.C] : 5 / d°(T") + 1, which is the expected result since IsRec(Az.C) = 1.

Other core language constructs: the result follows immediately from the induction hypothesis,
since IsRec(E) = 0 in these cases.

Structure construction: E = (1;0) and M = {I;0; D}. By typing, we have D = D(1;0), + D,
dom(o) = dom(0), and for all X € dom(o), '+ Io1t o(X):. O(X).

Let o = X; 'S i, 0 = X, 'S My, v; = IsRec(E;) and o = y; *S Y}, with I(Y;) = M} for all j,
with the X;s and Yjs ordered lexicographically, that is, if i1 < iy, then X, <;e; Xj,, and similarly
for the Ys.

By induction hypothesis, for all i, we have [['] + [I o] F [E;] : [M;] / d°(T + 1 ot) + v;.

But FV([E;]) = FV(E;) and FV(E;) N dom(:) = (D 1(X;)), so we can apply lemma 35,
and weakening lemmas 25 and 26 to eliminate variables of dom(:) that are not free in E;. Let
(Z1,...,Z,) =D (X;) and for all k € {1...n}, M}’ = I(Z;). We obtain

)

TH XN (D (X)) [E] : [y 22 ] s (] / do(r)

D, vitlnl), M) s [M], because D(Zy, X;) = v(v ' (Z)
IsRec(E;) = v;. The desired result follows.

i+(n—1
But [Mi]x, ps = [MI'] 22 E;) =

Closing: E = close E' and M = {I;0;D}. We apply lemma 37 repeatedly to each let rec group
in the translation, starting with the innermost one. Since the let rec are generated following a
serialisation of the graph D, all free variables in a let rec are bound earlier, and dependencies
between the variables bound in the same let rec cannot have degree 0 (otherwise the graph D
would not be safe, and M would be ill-formed). The expected result follows.

Freezing: E = E; ! X. The result follows from the induction hypothesis applied to E;, and
lemma 38 applied to each component of the record generated by the translation.

Delete: E = E; \ X. The result follows immediately from the induction hypothesis applied to E;.

Renaming: F = E;[X « Y]. We apply the induction hypothesis to E;, then use lemmas
35 and 36 to handle the rearrangement of the parameters of the record components. O

We define IsRec(FE) as 1 if E is an abstraction AzC, and 0 otherwise, and extend this definition to
annotated expressions.
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Theorem 4 (soundness of the translation) If T - E : M, then [T] & [E] : [M] / d°(T) +
IsRec(F).

See appendix ?? for the full proof. Notice that this result holds for non-empty contexts I'; in
conjunction with the compositional nature of the translation, this ensures that our compilation
scheme is applicable (and sound) not only to closed programs, but also to terms with free variables
as can arise during separate compilation.
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Chapter 7

Compilation of let rec

7.1 Overview

The “in-place updating trick” The “in-place updating trick” outlined in [25] and refined in
the OCaml compiler [55], implements let rec definitions that satisfy the following two conditions.
Consider the mutually recursive definition z1 = ey ...z, = e,. First, the value of each definition
should be represented at run-time by a heap allocated block of statically predictable size. Second,
for each i, the computation of e; should not need the value of any of the definitions e;, but only
their names x;. As an example of the second condition, a recursive definition like f = A x. (...
f ...) is accepted, since no computation will try to use the value of f. Contrarily, a recursive

definition like £ = (£ 0) is refused.

Evaluation of a let rec definition with in-place updating consists of three steps. First, for each
definition, allocate an uninitialized block of the expected size, and bind it to the recursively-
defined identifier. Those blocks are called dummy blocks. Second, compute the right-hand sides
of the definitions. Recursively-defined identifiers thus refer to the corresponding dummy blocks.
Owing to the second condition, no attempt is made to access the contents of the dummy blocks.
This step leads, for each definition, to a block of the expected size. Third, the contents of the
obtained blocks are copied to the dummy blocks, updating them in place.

For example, consider, in a given language L, a mutually recursive definition z1 = ey, x5 = e9,
where it is statically predictable that the values of the expressions e; and ey will be represented
at runtime by heap allocated blocks of sizes ny and ns, respectively. Here is what the compiled
code does, as depicted in figure 7.1. First, it allocates two uninitialized heap blocks, at adresses [y
and [», of sizes ny and ns, respectively. This is called the pre-allocation step. As a second step, it
computes e;, where z; and x5 are bound to l; and Io, respectively. The result is a heap allocated
block of size n;, with possible references to the two uninitialized blocks. The same process is
carried on for ey, resulting in a heap allocated block of size my. The third and final step consists
in copying the contents of the two obtained blocks to the two uninitialized blocks. The result is
that the two initially dummy blocks now contain the proper cyclic data structure.

Simple generalization The scheme described above computes all definitions one after another,
and only then updates the dummy blocks in place. From the example above, it seems quite clear
that in-place updating for a definition could be done as soon as its value is available.

As long as mutual references do not really use the referenced values, as happens for recursive func-
tions for instance, both schemes behave identically. Nevertheless, in the case where es really uses
the value v; computed for e, for example if e; = (x;1 1), the original scheme can go wrong. Indeed,
the dummy block pre-allocated for x; is still empty at the time where ey is computed. Instead,
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e Pre-allocation:

: *
e Computation:

: \ .

€1 €2

e In-place updating:

Figure 7.1: The “in-place updating trick”

with immediate in-place updating, the value v; is already available when computing e,. This trivial
modification to the scheme thus corresponds to increasing the expressive power of let rec. It allows
definitions to really use previous definitions. Furthermore, it allows to transparently introduce
definitions with unknown sizes in let rec, as shown by the following example.

An example of execution is presented in figure 7.2. The executed definition is y = ey, 3 = €9, 23 =
ez, where e; and e3 are expected to evaluate to blocks of sizes n; and ng, respectively, but where
the representation for the value of es is not statically predictable. The pre-allocation step only
allocates dummy blocks for 1 and x3. The value v; of e; is then computed. It can make references
to 1 and z3, which correspond to pointers to the dummy blocks, but not to z2, which would not
make any sense here. This value is copied to the corresponding dummy block. Then, the value
vg of es is computed. It can refer to both dummy blocks, but it can also really use the value vy.
Finally, the value vz of ez is computed and copied to the corresponding dummy block.

This modified scheme implements more mutually recursive definitions than the initial one. The
next section formalizes its semantics.

7.2 The source language A,

7.2.1 Syntax

The syntax of A, is defined in figure 7.3. The meta-variables X and z range over names and
variables, respectively. Variables are used as binders, as usual. Names are used for accessing
record fields, as an external interface to other parts of the expression. Figure 7.4 recapitulates the
meta-variables and notations we introduce in the remainder of this section. The syntax includes
the A-calculus constructs; variables z, abstraction Ax.e, and application e;e;. The language also
includes records {X; = e;...X,, = e,}, record selection e.X and a let rec construct. A mutually
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1. Pre-allocation:

2. Computing e;:

U1

3. Updating with v;:

U1

C

4. Computing es:

U1

C

5. Computing e3:

U1

C

6. Updating with vs:

U1

C

(%]
j
(%) V3
U3
V2

Figure 7.2: The refined “in-place updating trick”
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x € Vars Variable
X € Names Name
Expression: e € expr:=z | Az.e | ejeq
[{X1=€e1...Xn=¢€n}|eX
|letrec 1 =ey...x, =€, in e

Figure 7.3: Syntax of A,

e More meta-variables:

si:=X;=¢€¢;...X,, =€, Record

b=z =e;...z, =€, Binding

e Notations:

For a finite map f, and a set of variables P,

dom(f) is its domain, cod(f) is its codomain
fi p is its restriction to P, and f\p is its restriction to Vars\P.

e Expressions of predictable shape:
e, € Predictable ::= {0} | (1;0) | let rec b in e

Figure 7.4: Meta-variables and notations

recursive definition has the shape let rec z; = e; ...z, = e, in e, where arbitrary expressions are
syntactically allowed as the right-hand side of a definition.

Syntactic correctness Records s = (X; =e¢;...X,, =e¢,) and bindings b= (1 = e ...z, =
en) are required to be finite maps: a record is a finite map from names to expressions, and a
binding is a finite map from variables to expressions. Requiring them to be finite maps means that
they should not bind the same variable or name twice.

Consider the let rec binding b = (x; = e1 ...z, = e,). We say that there is a forward reference
from z; to x; if i < j, and x; occurs free in e;.

Forward references in bindings are allowed only when they point to a certain class of expressions, the
expressions of predictable shape. As a first approximation, we say that the shape of an expression
is predictable if it is a structure, a record, or a binding followed by an expression of predictable
shape. Formally e; € Predictable ::= {0} | (1;0) | let rec b in ey.

Sequences Records and bindings are often considered as finite maps in the sequel. We refer to
them collectively as sequences, and use the usual notions on finite maps, such as the domain dom,
the codomain cod, the restriction | p to a set P, or the co-restriction -\ p outside of a set P.

7.2.2 Structural equivalence

We consider the expressions equivalent up to alpha-conversion of binding variables in structures
and let rec expressions. For this, we define the structural contraction relation, in figure 7.8, relying
on notions defined just below.

A binder z, in a let rec or in a function, may be renamed into a new variable y, provided y meets
some freshness conditions. Variable renaming is formally defined in figure 7.7, using notions defined
in figures 7.5 and 7.6. Variable renaming is a total function, from pairs of an expression and a
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UnsafeNewNames(z, \x.e) = Capt,(e) U FV(e)
UnsafeNewNames(x,let rec b in e) = FV(let rec b in e)

—

U Capt,(e)
U U {wrucapt,(f))
(yof)eb

\ =}

Figure 7.5: Unsafe new names in A,

U ({y}u Capt,(b(y))) U Capt,(e)

. — yEdom(b)
Capty (let rec b in e) it z € FV(let rec b in )
0 otherwise
Capt,(z) = Capt,(c) = 0
{y} U Capt, (e)
Capt,(Ay.e) = if z € FV(A\y.e)

0 otherwise
Other cases easy.

Figure 7.6: Capture in A,

variable renaming = — y (z is replaced with ), to expressions. In case renaming crosses a node
binding one of the two variables z and y, it stops. Otherwise, it is propagated as usual. Therefore,
variable renaming sometimes does not preserve meaning. For instance, renaming x with y in Ay.x
yields the same expression, since renaming does not cross the node binding y. This is why we
introduce the notion of unsafe new names. It is defined in figure 7.5. A new name can be unsafe
for a binder if it is captured by binders inside the sub-expression, as y is in the above example. The
notion of capture is formalized by the Capt function in figure 7.6. Basically, Capt,(e¢) denotes the
set of binding variables located above occurrences of z in e. For instance Capt, (Ay.z) is the set
{y}. A new name can also be unsafe for a binder when it is free in the considered sub-expression.
For example, renaming = to y in Az.(xy) does not preserve meaning. The structural contraction
relation, ~4, defined in figure 7.8, allows to rename a binder, provided the corresponding variable
renaming is correct on the considered expression. The structural reduction relation -+ is the
contextual closure of the structural contraction relation. These two relations are symmetric, and
therefore the transitive closure --+,* of --s, is a congruence, called the structural equivalence
relation, and also written =;.

In the following, all expressions are considered up to structural equivalence =;.

Let 0 = {z — y}.
w{o} =y
z{o} zifz #x
{X1:el...Xn:en}{a} {X]ZG]{U}...XnZGn{U}}
Oze)fo} = { Az.(e{c}) if z ¢ {z,y}

Az.e otherwise
. let rec b{o} in e{o} if {z,y} N dom(b) =0
(let rec b in e){o} let rec b in e otherwise

(z1 =e1...xy =en){o} (x1 =e1{o}...xn =en{o})

Other cases easy.

Figure 7.7: Variable renaming in A,
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y ¢ UnsafeNewNames(z,let rec b1,z =e,by in f) c=xTHy
let rec by,z =e€,by in f~gsletrec bi{o},y =e{o},b2fc} in f{o}

y ¢ UnsafeNewNames(x, \z.e)

Figure 7.8: Structural contraction relation of A,

Configuration: cu=blFe

Value: v € values ==z | Az.e | {sy}
Answer: a € answers ::= b, F v

More meta-variables:

sy =Xy =wv...X,, =v, Value record
by i=2x1 =v1...2, = v, Value binding

Figure 7.9: Configurations and results in A,

7.2.3 Semantics

The semantics of )\, is quite standard, except for what concerns let rec bindings.

As shown in figure 7.9, values include functions Az.e and records of values {s,}, where s, denotes
an evaluated record X1 = v ... X,, = v,.

The semantics of record selection and of function application are defined in figure 7.10, by com-
putational contraction rules, defining the local computational contraction relation ~».. Record
projection selects the appropriate field in the record ; and the application of a function Az.e to a
value v reduces to the body of the function, where the argument has been bound to z.

Five operations are necessary for handling bindings properly, all defined Ariola et al. [7].

1. A first operation is let rec lifting. It consists in lifting a let rec node up one level in an expres-
sion. For example, an expression of the shape e; +(let rec b in e5) becomes let rec b in e;+es.

2. A second operation is internal merging. During the evaluation of a binding, a definition may
return a let rec as an answer, where a value is expected. Internal merging merges this binding
into the current one. An expression of the shape let rec b1,z = (let rec by in €),b3 in f
becomes let rec by,by,z = e,b3 in f, provided no variable capture occurs.

3. A third operation is external merging. The shape of results in A, allows only one binding to
wrap values. Therefore, if evaluation results in two nested bindings, they must be merged into
asingle one. An expression of the shape let rec by in let rec by in e becomes let rec by, bs in e,
provided no variable capture occurs.

4. A fourth operation, external substitution, allows to access bound variables when defined by
a surrounding binding. An expression of the shape let rec b in C[z] becomes let recbin C|e]
if z = e appears in b and = is not captured by C, and no variable capture occurs.

5. A last operation, internal substitution, allows to access identifiers bound earlier in the same
binding. (Assuming left-to-right evaluation, “earlier” means “to the left of”.) An expression
of the shape let rec by,y = C[z],by in e becomes let recb;,y = C[f],b2ine if z is defined as
f in by, and not captured by C, and no variable capture occurs.
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e Contraction rules
z ¢ FV(v)
- (BETA)
{Xi=v;...Xp, =v,}.X; ~cv; (PROJECT) (Ax.e)v ~,let rec z =v in e
dom(b) L FV(L)
- - (L1FT)
Llet rec b in €] ~.let rec b in LJe]
e Computational reduction rules
e~ e © ) E[N](z) = v s )
_— ONTEXT UBST
Ele] -+ E[e'] E[N[z]] -+ E[N[v]]
dom(b) L (do.m(bv) U FV(b,)) (EM)
(by Fletrec b in e) —-+.b,,bF €
dom(by) L {z} U dom(b,,ba) UFV(b,,b2) UFV(f) (M)
(by,z = (let rec by in €),bo - f) =+, (by, b1,z =e,ba - f)
e Evaluation contexts
Lift context: Record contexts:
L == gelvo|n0X|{S} S == s,,X=0O,s
Multiple lift context: Sequence contexts:
F == 0O|L[F] B == b,,z=0,0b
Evaluation context: Strict contexts:
E == (brFF)|(B[F]ke) N == ow|oX
e Access in evaluation contexts
(by FF)(z) =by(z) (EA) (bo,y =F,bF e)(x) =by(x) (IA)

Figure 7.10: Reduction semantics for A,

The question is how to arrange these operations to make the evaluation deterministic and to
ensure that it reaches the result when it exists. Our choice can be summed up as follows. There is
a topmost, binding. When this topmost binding is already evaluated, evaluation can proceed under
this binding. Otherwise, evaluation is allowed inside this binding. If evaluation meets another
binding inside the expression, this binding is lifted to be immediately under the topmost binding.
Then, it is merged with the latter, internally or externally according to the context. External
and internal substitutions are allowed only from the evaluated part of the topmost binding. In
order to simplify the presentation of the translation and the correctness proof, we distinguish
this topmost binding syntactically : the global computational reduction relation --+. is a binary
relation on configurations ¢, which are pairs of a binding, the topmost binding, and an expression,
written b - e (see figure 7.9). Here, the topmost binding is close to the usual notion of runtime
environment, with the additional feature that bound values can be mutually recursive.

More formally, let rec handling is done through one additional computational contraction rule LirFT
performing the lifting operation, and a computational reduction relation, defined in figure 7.10.

The contraction rule LIFT lifts a let rec binding up a lift context. As defined in figure 7.10, a lift
context is any non-let rec expression, where the special context hole variable O appears immediately
under the first node, in position of the next sub-expression evaluated.

The second contraction rule IM corresponds to internal merging. If, during the evaluation of
the topmost binding, one definition evaluates to a binding, then this binding is merged with the
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r € Vars

X € Names
Expression:
E € Expru=x | z.E|EE A-calculus

| let &y = Ey...z, = E, in E Non-recursive let binding
| {X1=F...X,,=E,} | EEX Records
| | alloc | update Locations, allocation, mutation

Figure 7.11: Syntax of Agy0c

topmost one. The evaluation can then continue.

The computational reduction relation extends the computational contraction relation to any eval-
uation context, as defined in figure 7.10. We call a multiple lift context a series of nested lift
contexts, and an evaluation context is a multiple lift context, possibly inside a partially evaluated
binding, or under a fully evaluated binding.

The EM reduction rule corresponds to external merging. It is only possible at toplevel, provided
no variable capture occurs.

Finally, the external and internal substitution operations are modeled within a single reduction
rule SUBST. This rule transforms an expression of the shape E [N[z]] into E [N [v]], provided the
context E[N] defines z as v and no variable capture occurs. The meta-variable N ranges over
strict contexts. A strict context is a context that requires a non-variable node to evaluate. An
example of strict context is Owv, that is, the function part of a function application. An example
of a non-strict context is (Az.e)d, that is, the argument part of a function application, where a
variable would allow the evaluation to continue. Strict contexts are formally defined in figure 7.10.
The SUBST rule replaces a variable in a strict context with its value, according to the context. As
indicated in figure 7.10, evaluation contexts define the variable they bind, in two possible ways.
First, a topmost, semantically correct, fully evaluated let rec binding defines the variables it binds
for the nodes under it. Second, if (b,,x ¢ F,b) is the topmost, partially evaluated binding, then
b, defines the variables it binds, inside F, and later inside b. The two rules defining access in
evaluation contexts in figure 7.10 show how these definitions may be used. The two different ways
of access correspond to the external and internal substitution operations, respectively.

The computational reduction relation on expressions is compatible with structural equivalence =;.
Hence we can define computational reduction over equivalence classes of expressions, obtaining the
reduction relation —.

7.3 The target language ;.

The syntax of the target language 40 is presented in figure 7.11. It distinguishes variables x from
names X . It includes the constructs of the A-calculus (function abstraction and application) and a
non recursive let binding. Additionally, there are constructs for record operations (construction and
selection), and constructs for modeling the heap: an allocation operator alloc, an update operator
update, and locations [.

The semantics of A,y is defined as a structural reduction relation on configurations. As defined
in figure 7.12, a configuration is a pair of a heap and an expression. A heap is a finite map from
locations [ to evaluated heap blocks. An evaluated heap block H, € Heap Values is either a function
Az.E, or an evaluated record {S,} (where Sv ::= X; =V;...X,, =V,,), or an application of the
shape allocn, for n € N. Such applications model dummy heap blocks, containing unspecified data.
A well-formed configuration is such that all the locations mentioned are bound in its heap.
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Configuration:
C =0FFE
© € Heaps = Vars Kin, HeapValues

Answer:

A€ Answers := O FV
V € Values:=z |1

More meta-variables:

H, € HeapValues := Az.E | alloc n | {S,}
S, =X =...X,=V,
B ZZ:ﬂf]:E]...mn:En

Figure 7.12: Configurations and results in Ayj0c

Evaluated heap blocks are not values. Only variables and locations are values. In this calculus,
function abstractions are not values, since their evaluation allocates the function in the heap, and
returns its location: the result of the evaluation of Az.E is a configuration O + I, where the location
I is bound to Az.[e] in the heap ©.

The related operators in the language are alloc, which creates a new empty block of size given by
its argument, and update, which copies its second argument in place of its first one, provided they
have the same size. For this, we assume given a function Size from ).y, heap value blocks to N.

Notation We write O(l — H,) for the map equal to ©® anywhere but on [ where it returns H,.
We write 01 + O, for the union of two heaps ©; and ©, whose domains are disjoint. In particular,
when the heap © is undefined on [, we write © + {l — H,} to denote the union of ® and {l — H,}.

7.3.1 Structural equivalence

In Aajoe, a notion of structural equivalence identifies expressions modulo variable and location
renaming. Locations are bound only by heaps, at toplevel in configurations. We consider configu-
rations equal modulo renaming of bound locations. This relation is easy to define since the location
renaming never cross any location binder, so we do not formalize it here. However, we have to
define the structural equivalence modulo variable renaming. A binder z, in a let or in a function,
may be renamed into a new variable y, provided y meets some freshness conditions. Structural
equivalence is formally defined in figure 7.13.

Substitutions First, variable renaming is defined. It is a total function, from pairs of an ex-
pression and a variable renaming = — y (z is replaced with y), to expressions. Nevertheless, we
will see that the computational reduction relation uses a more complex notion of substitution than
just variable renaming: it must also replace variables with locations in some cases. Therefore,

substitutions are elements of Subst = Vars % Values. We interpret them as total functions from
variables to values, extending them with the identity function on variables, outside of their syntac-
tic domain. The domain dom(o) of a substitution ¢ is the set of variables = such that o(z) # x.
We sometimes consider substitutions as sets, taking the union of two of them when it makes sense,
and sometimes we compose them, in the reverse notation, since they come from the right. The
composition of o1 and o is defined by {01002} = {01 }{02}: it acts as o1, then o9. Moreover, we
call variable renamings, or simply renamings, the injective substitutions whose codomains contain
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e Substitutions Let o € Subst = Vars Fin, Values.

z{o} o(2)
(Iet B in F){O’} = let B{O’} n F{U\dnm(B)u(rfl(dom(B))}
(:U = E7B){0'} (:L‘ = E{U}B{U\{T}U”—l({T})})
O+ E{o} 000k E{c}
Other cases easy.

e Capture

Capt,(let y=E,B in F) =  Capt,(Ay.let B in F)U Capt,(E)
Capt,(z) =

{y} U Capt, (E)
Capt,(\y.E) = if z € FV(\y.E)
0 otherwise
Other cases easy.

e Unsafe new names

UnsafeNewNames(z, \x.E) = Capt,(E)U FV(E)
UnsafeNewNames(z,let = E,B in F') = UnsafeNewNames(z, Az.(let B in F'))

e Structural reduction

y ¢ UnsafeNewNames(z, \z.E)
Az E ~ g Ay (E{z — y})

y ¢ UnsafeNewNames(z,let z = E,B in F)
let =FE,B in F~glet y=E (B{zw~y}) in F{z — y}

Figure 7.13: Structural equivalence in A g0c
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()= .E l ¢ dom(©)

BE ALL y
Or V-0 Bz vy (P OF Hy . 04 (I Hyp 1 oo
o) ={S,} Size(O(ly)) = Size(O(l2))
(PRrROJECT) (UPDATE)
OFILX ~.0F S,(X) O F updately Iy ~~. O(l; — O(l2)) F {}
dom(B) L A

L
©F Allet B in E]~.©Flet B in A[E] (Lte)

Figure 7.14: Computational contraction rules for A,

only variables, and we denote them by (. Symmetrically, we call variable allocations the injective
substitutions mapping variables to locations, and denote them by .

We extend substitutions to Agye. expressions and configurations, as described in figure 7.13 (where
we take the usual notation for substitution F{c}, meaning o(F)). In case the substitution crosses
a binder z, then it forgets any information about z. Thus, under this binder the substitution
becomes o\ (1 00-1(f21)- Otherwise, it is propagated as usual. Therefore, substitution sometimes
does not preserve meaning. For instance, renaming x with y in Ay.z yields the same expression,
since substitution does not cross the node binding y.

Structural equivalence This is why we introduce the notion of unsafe new names. It is defined
in figure 7?7. A new name can be unsafe for a binder if it is captured by binders inside the sub-
expression, as y is in the above example. The notion of capture is formalized by the Capt function
in figure 7.13. Basically, Capt,(e) denotes the set of binding variables located above occurrences
of z in e. For instance Capt,(\y.z) is the set {y}. A new name can also be unsafe for a binder
when it is free in the considered sub-expression. As an example, renaming z to y in Az.(zy) does
not preserve meaning.

The structural contraction relation, ~~, defined in figure 7.13, allows to rename a binder, pro-
vided the corresponding variable renaming is correct on the considered expression. The structural
reduction relation --+ is the contextual closure of the structural contraction relation. These two
relations are symmetric, and therefore the transitive closure --+,* of --+ is a congruence, called
the structural equivalence relation, and also written =;.

7.3.2 Semantics

The semantics of A0, like the one of A, is given in terms of a computational contraction relation
that handles rules for the basic constructors and a computational reduction relation that handles
global rules. As in A, evaluation results are values surrounded by a heap binding:

A € Answers :=0 + V.

Computational contraction relation The computational contraction relation is defined by
the rules in figure 7.14, using the notion of lift contexts in figure 7.15.

The BETA rule is a bit unusual, in that it applies a heap allocated function to an argument V.
The function must be a heap binding | — Az.E, and the result is E{z — V'}.
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Lift context: Record context:

A == OF|VOo|oX|{Z} ¥ == §,X=0,8
| letz=0,Bine Multiple lift context:
o == 0| A9

Figure 7.15: Evaluation contexts of Ag,j0c

OFE~,0'FE
OF ®[E] .0 I O[E]

(CONTEXT)

OFlet 2=V,Bin E--+.0F (let B in E){z— V} (Le1)

OFlet e in E--»,0FE (EmMPTYLET) OFE--».0\nFE

(GC)

OFlet By in let By in E--».0F let By,Bs in E (EM)

Figure 7.16: Computational reduction in A,0c

The PROJECT rule works similarly: it projects a name X out of a heap allocated record | — {S,},
where S, is a finite set of evaluated record field definitions of the shape X; =V; ... X,, = V,,. The
result is S, (X) (i.e. V;is X = X;).

The ALLOCATE rule is one of the key points of A,j... It states that a value block H, evaluates
into a fresh heap location containing H,, and a pointer to it: © + {l — H,} F [ (I fresh). If H, is
a dummy block allocn, the result is a dummy block on the heap.

The UPDATE rule copies the contents of a heap block on to another one. If the locations /; and I,
are respectively bound to blocks H,; and H,, in the heap ©, then ©  updatel; I, will evaluate to
Ol = H,») F{}.

Finally, as in A,, the evaluation of bindings is confined to the toplevel of terms, whence the LirT
rule, which lifts a binding outside of a lift context. In Ay, lift contexts are of the shape

Axz=n0E|VOo|o.X|{Z}|let z=0,B in e,

where X ranges over record contexts, of the shape ¥ :=5,, X =0, S.

Computational reduction relation The computational reduction relation is defined in figure

7.16.

The CONTEXT rule shifts the contraction relation to a multiple lift context. Lift contexts have been
defined in the last paragraph, and multiple lift contexts are simply series of nested lift contexts.

The LET rule describes the toplevel evaluation of bindings. Once the first definition is evaluated,
the binding variable is replaced with the obtained value in the rest of the expression. Eventually,
when the binding is empty, it can be removed with rule EMPTYLET.

By rule GC, when a heap binding is not used by any other binding than itself, and not used either
by the expression, it may be removed.

Finally, the EM rule states that it is equivalent to evaluate two bindings in succession, or to
evaluate their union.
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7.3.3 The \,j,. calculus and its confluence

The set of terms of the Ay calculus is the set of equivalence classes for =;. The computational
reduction relation on expressions is compatible with =, so we may extend it to terms, to obtain
the reduction relation —.

Definition 19 The \yyoc calculus is the set of terms, equipped with the relation —.

Unlike in Ao, the reduction of Ay, is not deterministic because of rules GC and EM. Rule GC
can apply at any time, and rule EM gives a choice between two outcomes when two successive

bindings are encountered. It is therefore important to make sure that Agy,.c is confluent. Let i>
be the relation defined by the rules CONTEXT, LET, and EMPTYLET. It is syntax directed, and
therefore deterministic.

We first prove the following proposition, which is also described by the following diagram, where
the plain arrows are universally quantified, and the dotted ones are existentially quantified.

C

Cr Oy

Proposition 9 For all configurations C, Cy, and Cy such that C < Cy and C LN Cs, there
exists a configuration C' such that C; "¢ and Cs NG

Proof

If ¢ PMERET C1, the two obtained configurations are identical. If C' BN C: by rule LET, then

the two reductions simply commute. If C conrgxr C1, then we have to examine the underlying

contraction step C ~~. C7. In all cases but one, the two reduction steps simply commute. The only
problematic case is when the applied rule is LIFT. We have C = ©  ®[E], with E = Aflet B in Ej]
and C1 = O F ®flet B in A[Eq]].

3

e If A u=0F | VO | {£} | 0.X, as rule EM applies on C, we must have ® of the shape
let x = ®,,B; in let By in F'. Therefore

Ci,=0OFlet x =®let B in A[E;]],By in let By in F',

and
Co=0Flet = <I>1[A[Iet B in El]],Bl,BQ in F'.

Let
C'=0Flet z = <I>1[Iet B in A[El]],Bl,BQ in F'.

We obtain easily that C; and Cs both reduce to C’, in one step of M and ]L”), respectively,
which is as expected.
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e If A =let z = 0O,B; in F, then ® might still be of the shape letz = &, B} inlet Byin F",
in which case the previous reasoning applies. If it is not of this shape, then the let binding
contained in A is part of the EM redex, so ® = O, and F is of the shape let By in F". So,
we have a diagram of the shape:

OF letz = (let B in E), B OF letBin
in let By Lirr letz = Fy, By in
in £ let By in E"

lEM

OF |etB7£E = E]7B] in
let By in E"

[EM

EM

OF let z=(let B in E), O+ letBin . "
Bi, B, Lwr ety = By, By, By, — M OF letB.x=Fy, B, B,
in F" in F" in I

This result extends by a simple induction to the following corollary, pictorially described by the
following diagram.

C] . 02

EM .

Corollary 7 For all configurations C, Cy, and Cy such that C <, Ci and C LN Cs, there exists
a configuration C' such that Cy e and Cs LI

Then, the relation “EN 15 defined as i), extended with rule EM. Formally, CEM_ ¢,y EM

Thanks to the previous corollary, we prove that the “EM relation is confluent. This is done by

considering the relation CEN EM , which is strongly confluent. In other terms for any two reduction

steps C' CEM EM C; and C CEN EM, Cs, there exist a configuration C' and two reduction steps
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c; NN o and 0, NN o A pictorial view of this is given by the following diagram:

CEM . ~CEM

Proposition 10 The relation CONEM ™ s strongly confluent.

Proof To prove this last statement, we proceed by case on the CEM rules applied, from C, to
reach C; and Cs, respectively. If the two rules are EM, then as this relation is deterministic, we

conclude easily, and similarly if the two reductions are < steps. The only relevant case is when
one reduction is a —s step, say C BN C1, and the other is in M

In this case, we have C <, C M Cy. By the previous corollary, we obtain a C) such that
Cs CEM B C4. Then, by confluence of the deterministic relation ﬂ>7 we obtain C’ such that
o EM" 0" and C} EM" ¢, This configuration is also such that C; and Cs reduce to it by relation

CEM EM * .
— — , In at most one step.

This is depicted by the following diagram.

C
c
, EM
Ci
EM
"
* EM
Ch . Cy
ya
. *
{4 EM
EM ’ *
Cy
- EM
*
N 4
¢’
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O

Corollary 8 (Confluence of \yj,.) The Aujoe calclulus is confluent.

7.4 Translation

7.4.1 Generalized contexts in A,

The purpose of this paper is to prove that A, can be faithfully translated into A,j0.. A desired
property for this translation, in order to make the proof of correctness easier, is that a result is
translated as a result, not needing any additional computation. However, a simple abstraction such
as Ax.z is a value of A\,, and could be translated as such in Ay, but is not a result of Ay ;... The
correct translation is rather the configuration {l — Az.z} F l. The drawback of such a method is
that the translation is no longer compositional, at least in the usual sense. Indeed, the translation
of an application such as (Az.z)(Az.z) is not the application of the translation of the function to
the translation of the argument.

Definition

In order to overcome this difficulty, we introduce a non-standard notion of contexts in \y0¢, which
take as an argument configurations, rather than just expressions. Configurations are pairs of a
heap and a multiple lift context, and the application of a context © @ to a configuration @' - E
is @+ 0’ - ®[E].

We are not done yet. We have indeed seen that results in A, can be of the shape b, - v. We imagine
that b, will be translated as the heap, roughly. But heaps of A, only contain heap blocks, i.e.
dummy blocks, functions or evaluated records. Therefore, in the case where b, contains definitions
of the shape z = y for example (or x = 1 if we had constants), we have to find another solution.
Furthermore, this solution has to take into account the asymmetry of let rec in A\,. Indeed, the
heap © = y,z = z in fact maps both =z and z to the value y. Our solution is to retain the part
of A, heaps that cannot be included in A,y heaps as substitutions. For instance, the A, binding
x = y,z = z is translated as the substitution {z — z} o {z — y} (recall that composition of
substitution is “left to right”).

But then, contexts again become a bit more complicated, because they must include a substitution
part. Indeed, the A, context x = y,2 = = F O does not correspond to any standard evaluation
context in Agy.c. Instead, we have to define a stronger kind of evaluation contexts, including a
heap ©, a standard context ®, and a substitution . We write them ©  ®[s], and denote them
by ¥.

Applying a context to a configuration is valid if the two heaps define disjoint sets of locations, and
if the substitution carried by the context is correct for the configuration, in the following sense.

Definition 20 (Substitution correctness) A substitution o is correct for an expression E iff

Vz € dom(o),o(z) ¢ Capt,(E).

This definition extends straightforwardly to heaps and configurations. Fortunately, when the pro-
posed substitution is not correct for the considered configuration, structural equivalence allows
to rename all the problematic binders in it, and find an equivalent configuration for which the
substitution is correct.

Similarly, the composition ¥ o U5 of two contexts ¥; = ©; F &;[0;] is O1 + Oy F &1[®3][3 0 71],
provided the substitution o9 00y is correct for the heap ©; + @4 and the context ®[®,]. But again,
structural equivalence always allows to find correct equivalent contexts (since binders in contexts
are not in position to capture the placeholder).
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Properties

In this section, we prove some properties of stability of the reduction relation inside contexts. Not
every reduction step is valid inside contexts, since for instance the LET and EMPTYLET are only
valid at toplevel. However, we will see that inside contexts of the shape ® F O[o], reduction is
preserved.

We first prove that contraction is preserved under correct substitution.

Proposition 11 If Cy ~. Cy and o is correct for Cy and Cs, then C1{o} ~>. Ca{c}.
Proof By case on the applied contraction rule. Let C; = ©; F E;, for i =1, 2.

Beta. Then E; =1V, and ©1 = O, and ©,(l) = Az.E. We have E {o} = [(V{c}), and as o is
correct, (Az.E){o} = Az.(E{0}). So ©1{c} F1(V{o}) ~.O{c} F E{c}{z — (V{0o})}. As
o is correct for Cy, = is not in the domain or codomain of o, so 0o {z = (V{o})} = {z —
V} oo, and therefore C1{o} ~~. ©2{c} F Ex{c}.

Allocate, Update, Project. Similar.

Lift We again have ©; = O,, with E; = Aflet B in E] and E; = let B in A[E]. By the side
condition on the LIFT rule, we also know that dom(B) L FV(A). By hypothesis, we finally
have dom(B) disjoint from the domain and codomain of o.

So, Ci1{o} = 01{c} F A{o}[let B{o} in E{c}], which reduces to
©:{c} Flet B{o}in A{o}[E{o}], as expected.

O

This property extends to computational reduction.

Proposition 12 If C; — Cy and o is correct for Cy and Csy, then Ci{c} — C2{c}.
Proof By case on the applied rule. Let again C; = ©; F E;, for ¢ = 1,2.

Context. By application of the previous proposition.
EmptyLet. Trivial.
Let. We have C; = O, Flet z=V,B in E,and C2 =0 F let B{z — V} in E{z — V}. So,

Ci{o} =01{o} Flet z = (V{o}),B{o} in (E{o}),
which reduces to
O{c} Flet B{oHz — (V{o})} in (E{ocH{z — (V{c})}),

but as z is not in the domain or codomain of ¢, the substitution o o {z — (V{o})} is equal
to {z — V} oo, so Ci{o} reduces to

O{c}rlet B{{z = V}oo} in (E{{z = V}oo}),

which is exactly C2{o}.

O

Now, we prove that reduction by the CONTEXT rule is preserved inside any evaluation context.
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Evaluation context:

¥ =0 F d[0]
Restricted evaluation context:
¢ == 0 F do]

Figure 7.17: Evaluation contexts in Ay

Proposition 13 If Cy conrgxr Cs, then for any context U, W[C4] conrgxr T[Cs].

Proof Let Cl = @1 F El, 02 = @2 F EQ, C{ = \I"[Cl], Cé = \I’[CQ], and ¥ = O + CI)[O'] Let us

assume w.l.o.g. that o is correct for the considered objects. Then, C] = (01 + 0){c} - ®[E;]{o}
and C) = (02 + 0){c} F ®[E:]{c}.

Let us prove first that C}' Conrger CY, with C} = (01 + 0) F ®[E;] and C} = (O3 + O) F P[E,].
As we know, Cy reduces to Cz by rule CONTEXT, so in fact, By = ®[E}], E» = ®[E;], and the
proof of Cy —» C5 is of the shape:

O1F E| ~.05F E)
C]—)CQ

But it is trivial that contraction rules are not affected by additional bindings in the heap, so we
obtain easily that

O+0,FE ~,0+0,+ E

Then, by rule CONTEXT, we have
Cy — Cy.
Finally, by proposition 12, we deduce that
Ci{o} — C){o},
which is the expected result.
O

Now, we would like a similar property to be true with any reduction, but we have seen that it
does not hold because of the toplevel nature of the LETREC rule. However, we have a slightly
property, with contexts of the shape © F O[o], which we denote by the meta-variable ¢, and call
weak evaluation contexts. (The two notions of contexts introduced in this section are recalled in
figure 7.17.) A toplevel reduction remains toplevel inside a weak evaluation context.

Proposition 14 If C; — Csy, then ¢[C1] — ¢[C2].

7.4.2 Definition of the two translations

This section describes the translation. It consists in fact in two translations. The first one, called
the standard translation, is very intuitive, but not easily proved correct. The second one is much
less intuitive, but is easier to prove correct. The key technical point is that the standard translation
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Translation of expressions:

[«] = =z

[Az.€] = Az.[€]

[ere-] = [ei][e-]

[e-X] = [e].X

[let rec b in €] = let Dummy(b), Update(b) in [e]

Dummy pre-allocation of bindings:

Dummy(e) = €
Dummy(z = e,b) = (x = allocn, Dummy(b)) if Size(e) =n
Dummy(z = e,b) = Dummy(b) if Size(e) = [7]

Computation of bindings:

Update(e) = €
Update(z = e, b) (y = (updatez[e]), Update(b)) if Size(e) = n, with y fresh
Update(z = e,b) = (z = [e], Update(b)) if Size(e) = [7]

Figure 7.18: Translation (standard translation)

reduces to the second translation, without using the BETA or PROJECT rules, and therefore without
performing any real computation.

Both translations rely on a function Size from to A, expressions to N U {[?]}. This function is
supposed to guess the size of the result of the translation of its argument. We assume that the size
of any expression of predictable shape is known, and moreover that the size of variables is undefined.
In other words, for any e; € Predictable, Size(ey) # [?], and for any variable z, Size(x) = [?].

The standard translation The standard translation is defined in figure 7.18. It is almost direct
for variables, functions, applications, and record operations, but the translation of bindings is more
intricate. The translation of a binding b is the concatenation of two bindings in A,0.. The first of
them is called the pre-allocation binding, and gives instructions to allocate dummy blocks on the
heap for definitions of known size. The second binding is called the update binding. It computes
definitions, and alternatively updates the previously pre-allocated dummy blocks for definitions
of known sizes, or simply binds the result for definitions of unknown sizes. As announced, this
translation does not map results to results. A simple example is Az.z, which is translated as Az.x.
To reach a result, this translation still has to reduce to the configuration {I — (Az.z)} 1.

The second translation, named the TOP translation, performs all this kind of reductions at the
meta-level, in order to associate results to results. As a consequence, it associates Agy,. configura-
tions to A\, expressions, and A,y configurations to A, configurations. It is defined in figures 7.19
and 7.20.

The TOP translation The idea is that the TOP translation is used until the current point of
evaluation in the expression, and beyond that point, the standard translation is used.

Variables are still translated as variables. A function Az.e is translated as with the standard
translation, i.e. Az.[e], but the result is allocated on the heap, at a fresh location I: {l — Az.[e]} F
l.
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Translation of expressions as configurations:

-

[[{Sv}]]TOP

[[{Sv, X = e, S}]]TOP

[['Ue]]TOP

[[61 62]]TOP

[[e.X]]TOP

[let rec b in e]TOP

OFzx
{l = A\z.[e]} H1
O+ {l—{S,}}+H1

01+ 05+ {S,,X =E,[s]} for

0,+60,FVE

OF E[[eg]]

OFEX

{ [B]7°P 0 F [e]]
[[b]]TOP [[[e]]TOP]

for [s,]T°Y = O F S,
e ¢ values
[[Sv]]TOP = (‘)] F SU
[e]™°F =0+ E
for { [v]T°F =0, FV
[e]*°F =02 F E
for { e1 ¢ values
[e1]*°Y =OFE
for [e]T°Y =0 F E
if b is not evaluated
otherwise

Translation of configurations:

[bF e]TOF = [let rec b in ]TOF

Translation of bindings and evaluated records:

[[bv7b]]TOP —
[Xi =v1...X, = v,]TOF

TDum(b) o TOP(b,) o TUp(b)
H orXi=vi.. . X,=V,)

1<i<n

where b # (z = v,b')

with Vi, [v;]T°F = 0; F V;

Figure 7.19: The TOP translation (first part)
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Translation of evaluated bindings: Ev. binding — (heap x substitution x variable allocation)

TOP(e) = 0F (id,id)
{ Size(v) =[]
TOP(x =v,b,) = OF(co{z—V}n if [O]TOF =0+ V
TOP(b,) = 0O F (o,n)
{ Size(v) =n
TOP(z =v,b,) = OF (o,nU{z—1}) if [o]TOF =@ F 1
TOP(bv) =0F ((7'7 ’I])

Actual dummy pre-allocation: Binding — (heap x variable allocation)

TDum(e)
TDum(z = e,

0+ id
TDum(b) it Size(v) = [7]

. Size(v) =n
O+ {l—allocn}FnU{z—1} if { TDum(b) = O 1

b)
TDum(z = e, b)

Actual computation of bindings: Binding — (heap X binding of A0c)

TUp(e) = (QFe
Size(v) = [7]
TUp(z =e,b) = O, +0O+-2=EB if { [e]"°"=0,FE
TUp(b) =02+ B
Size(v) =n
TOP _
TUp(z =e,b) = ©O;+ 02+ y= (updatezE),B if [e] =0 E

TUp(b) =02+ B
y fresh

Figure 7.20: The TOP translation (continued): bindings
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An evaluated record takes the translations of its fields and puts them in a record allocated on the
heap at a fresh location I: @ + {l — {S,}} F l. Here, ® |- S, is the translation of the record s,,
defined in figure 7.19. If s, = (X; = v1... X, = v,), and for each i, [v;]T°F = ©; F V;, then
OFS, = 4 0iF (X1 =W...X,=V,).

1<i<n

When the record is not fully evaluated, it is not yet allocated on the heap. It is divided into its
evaluated part s,, and the rest X = e, s. s, is translated as for evaluated records, into 0 F S,,.
The field e is translated with the TOP translation, into @, + E, and s is translated with the
standard translation. We denote by [s] the record s, translated with the standard translation.

Function application works like records: if the function part is not a value, then it is translated
with the TOP translation, while the argument is translated with the standard translation. If the
function is a value, then both parts are translated with the TOP translation.

The translation of a record selection e.X consists in translating e with the TOP translation, and
then selecting the field X.

TOP translation of bindings The translation of bindings is more complicated. As for records,
the binding is divided into its evaluated part b, and the rest b, which can be empty, but does not
begin with a value.

The rest of the binding b, is translated as follows. The pre-allocation pass, in the standard trans-
lation, consists in giving instructions for allocating dummy blocks. Here, these blocks are directly
allocated by the function TDum, which returns the heap of dummy blocks, and the substitution
replacing variables with the corresponding locations. The update pass, in the standard transla-
tion, consists in either updating a dummy block with the translation of the definition, or simply
binding it. Here, it is almost the same, except that the first definition is translated with the TOP
translation, while the remaining ones are translated with the standard translation. The TUp is in
charge of these operations.

Roughly, the binding b, is translated as a heap and a substitution, by the TOP function. Definitions
of unknown size x = v yield a translation of the shape () - V, and are included in the translation
as a substitution z — V. Definitions of known size £ = v are translated as a heap and a variable
allocation: v has a translation of the shape O F [, and it is included in the translation of b, as 0,
and the allocation z +— .

In practice, it is useful to distinguish substitutions coming from definitions of unknown size, which
can be of any shape, from substitutions coming from definitions of known size, which are allocations,
and therefore have the shape z — [. Indeed, when putting the results together, it is important
to take the order into account, for definitions of unknown size. For instance, a binding such as
y = z,x = y generates two substitutions y — z and = — y, but the first one must be performed last.
This is why, according to the definition of TOP, the result would be {z + y}o{y — z}. This works
because syntactically, definitions of unknown size can only be mentioned by subsequent definitions
in the binding. However, definitions of known size can be mentioned by previous definitions. The
key is that the substitutions they generate are allocations, so they are not modified by other
substitutions, and can be performed right in the end. Formally, the translation of b, is a heap O,
a substitution o, corresponding to the definitions of unknown size, and an allocation 7, giving the
locations allocated in © for the definitions of known size. Semantically, it corresponds to a heap
O and the substitution o o5, and will be used as such.

The three functions for translating bindings, TDum, TUp, and TOP, can be viewed as contexts.
The TDum returns a heap © and an allocation 7, and it forms a context © F O[n]. The TUp
function returns a heap © and a binding B, which form a context © F let B in O[id]. The
TOP function returns a heap ©, a substitution o, and an allocation 7, and it forms a context
© + Ofo o n]. Notice that the context corresponding to TUp is not an evaluation context. In
case the whole binding b,,b is evaluated (i.e. b is empty), then the contexts for pre-allocation
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and update, TDum(b) and TUp(b) are empty, and the translation of let rec b,,b in e is the TOP
translation of e, [e]T°F, put in the context TOP(b,). Otherwise, the translation of let rec b,,b in e
is the standard translation of e, put in the context TDum(b) o TOP(b,) o TUp(b).

7.4.3 Relating the two translations

An interesting fact is that the standard translation of any expression reduces to its TOP translation,
in any context. The proof of this property is in three steps. First, we prove it for values. Then, we
prove that the standard translation of a binding reduces to its TOP translation. Finally, we prove
the expected result.

In fact, for values, we prove a more powerful result, namely that the standard translation reduces
to the TOP translation, but only by rule CONTEXT, with a premise using ALLOCATE, which we
write CONTEXT (ALLOCATE).

We make some additional hypotheses related to the correctness of the Size function.

Hypothesis 3 For all expressions e, f,e’, for all value v, for all bindings b,b’, for all substitution
o, for all context C :

If Size(e) =n and bt e — b’ - €', then Size(e') =n ;

If Size(v) = n, then there exist © and | such that [v]T°F = © 1 and Size(0(l)) = n ;
If Size(e) = Size(f) = n, then Size(C [e]) = Size(C[f]).
Size(e{o}) = Size(e) ;

e Size(let rec b in e) = Size(e).

Proposition 15 (Translation of values reduces to TOP) For all context U and for all value
v, U[P F [v]] —* P[[v]TOF], only by rule CONTEXT (ALLOCATE).

Proof By induction on v.

e v =z, trivial.

e v = Az.e. Then [v] = Az.[e], so in any context @} F [v] reduces in one CONTEXT (ALLOCATE)
step to {l — Az.[e]} F I, which is the TOP translation of v.

e v={X; =v;...X, =v,}. Byinduction hypothesis, for any context ¥;, for each i, we have
U0 - [oi]] — ©l[wi] O]

Let for each i, [v;]T°F = ©; F V;. By a trivial induction on n, we prove that for any context
v

)

VOFHX =0 Xp=va}]] =" 9] [ O - {Xi =Vi ... X,, =V, }]

1<i<n

only by rule CONTEXT (ALLOCATE). By proposition 13, this configuration in turn reduces
by rule CONTEXT (ALLOCATE) to

U 0i+{lm{Xi=Vi.. X, =V, }} F1]
1<i<n

which is exactly [o]TOF.
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Corollary 9 For all weak evaluation context ¢, expression E, and binding b of the shape b = (z =
v,b'),
¢ o Update(b)[d - E] —* ¢ o TUp(b)[d + E]

Proof We know that ¢ o Update(b)[d - E] = ¢[let y = ®[[v]], Update(b') in EJ,

| (z,0) if Size(v) = [7]
where (y, ) = { (z,updatexz O) otherwise (z fresh).

This expression can be seen as ¥[() - v] for some ¥. By proposition 15, it reduces to ¥[[v]TOF]

so we obtain ¢ o let y = ®, Update(b') in E[[v]TOF], which is exactly ¢ o TUp(b)[} - E]. O

3

Now, let us have a look at the translation of bindings. The TOP translation splits the bindings
in two, according to the first non-value definition. But of course, one could split at another point,
provided the first part contains only values. Indeed, the first part is given as an argument to the
TOP function, which is defined only on evaluated bindings, whereas the second part is given as an
argument to the TDum and TUp functions, which work as well on value and non-value definitions.
We call a partial translation of a binding b = b,, b,’, b’ its TOP translation, computed as if b," was
not evaluated, i.e. TDum(b,’,b') o TOP(b,) o TUp(b,’,b’). We prove that any partial translation
reduces to the TOP translation. We proceed in three main steps: first, we prove that the pre-
allocation pass is performed at the object level by the code generated by the Dummy function,
and at the meta level by the TDum function, in the same way ; then we prove a similar property
for the functions Update and TUp ; and we eventually connect the two to prove the whole desired

property.

Proposition 16 (Dummy) For all binding B, for all weak evaluation context ¢,

@0 + let Dummy(b), B in E] —* (¢ o TDum(b))[} F let B in E].

Proof By induction on b. If b is empty, then there is nothing to prove. Otherwise, we are in one
of the following cases.

e b = (x = e), with Size(e) = [?]. Then Dummy(b) = Dummy(d') and TDum(b) =
TDum(b'), so by induction hypothesis, we obtain the expected result.

e b = (z = el), with Size(e) = n. Then Dummy(b) = (z = allocn, Dummy(b')). Let
TDum(b') = © + 5, we have TDum(b) = © + {l — allocn} F nU {z — I}, for a fresh
I. Let ¢ be a weak evaluation context, and Ey = ¢[let Dummy(b), B in E]. We have
Ey = ¢[00 + let & = allocn, Dummy(b'), B in E]. By rule CONTEXT (ALLOCATE), we
have Ey — ¢[{l — allocn} + let z = [, Dummy(d’'),B in E]. By proposition 14, this
last expression reduces to ¢[{l — allocn} F (let Dummy(d'),B in E){z — l}]. Let ¢ =
TDum(z = e) = {l = allocn} F O[{z — I}] and ¢ = ¢ o #; we can view the expression as
¢1[0 + let Dummy(b'), B in E], which by induction hypothesis reduces to ¢;[TDum(d')[()
let B in E]]. In other words, we obtain ¢[TDum(z = e) o TDum(d')[} F let B in E]], which
is the expected result, since obviously TDum(z = e) o TDum(b') = TDum(b).

O

Proposition 17 (Update) Let b= (x = v,b’). For all weak evaluation context ¢, for all expres-
sion E, we have

¢ o TDum(b) o TUp(b)[} F E] —* ¢ o TDum(b') o TOP(z = v) o Update(b')[ - E].
Proof
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e If Size(v) = n, then [v]T°F = O, F 1, and we have
TUp(b) = ©, F y = update z [, Update(b'),

with a fresh y. Alternatively, we can choose another fresh location I’ for the result, and have
[v]TOF = ©), F I, with ©), = O, + {I' = ©,(I)}.

Let Eq = ¢ o TDum(b) o TUp(b)[D - E].

We have Ey = ¢ o TDum(b)[©) + let y = updatex I', Update(b') in E], and also Size(v) =n
and TDum(b) = TDum(b') o ({l — allocn} + {z —1}). So

Ey = ¢ o TDum(b')[(O©) + {l — allocn} - let y = updatex I', Update(b') in E){z ~ I}].
But by hypothesis 3, Size(®! (I')) = n, so rule UPDATE applies, and Ey reduces to
¢ o TDum(b")[(©), + {l — O, (I')} F let y = {}, Update(d') in E){z — 1}],
and then, as y is fresh, by rule LET to
¢ o TDum(b')[(OL + {I — O (I')} F let Update(d') in E){z — 1}].
But the location I’ is not used anymore, so by rule GC, the obtained expression reduces to
¢ o TDum(b')[(0\, + {l = ©,(I")} F let Update(t') in E){z > I1}].

And finally, we notice that 0}, + {l = 0, (')} = O, so Ey reduces to

¢ o TDum(b')[(©, - let Update(d') in E){z — 1}]
= ¢ o TDum(b') o TOP(z = v)[D F let Update(t') in E|
= ¢ o TDum(b') o TOP(x = v) o Update(b')[ F E].

e If Size(v) = [?], then there exists a y such that [v]T°F =0 F y, so
TUp(b) = 0 + = =y, Update(d').

Let Eq = ¢ o TDum(b) o TUp(b)[D - E].
We have Ey = ¢ o TDum(b)[ - let = =y, Update(d') in EJ,
and by rule LET, by proposition 14, Ey — ¢ o TDum(b)[} F (let Update(d') in E){z — y}].

But TOP(x =v) = TOP(z =y) =0+ (z — y,id), so Ey — ¢ o TDum(b) o TOP(z = v)[( -
let Update(b') in E], which is the expected result.

O

Proposition 18 (Pre-allocated locations are definitive) If TDum(b,) = ©1 F 1, then
there exist ©2, 09,1 such that TOP(b,) = Os F (02,12) and m = na.

In the following proposition, we consider a substitution o as a context () - O[a].

Proposition 19 (Decomposition of the translation of evaluated bindings) Let b, = (z =

v,b,") and TDum(b,") = Oy, F ny,. We have

TOP(b,) = ny,' o TOP(z = v) o TOP(b,").
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Proof Let TOP(z = v) = O, F (0,,1,), and TOP(b,') = O + (0,7). We have TOP(b,) =

O, + 0y, F (6 00,,mUn,). By proposition 18, we can choose 0,0, and 7 such that n = n, .
Then,

np,' © TOP(z = v) o TOP(b,")

=0+0,Fogonog,on, on,:

=0+0,Foon, 00,0, 0mn,

But 7, and n,,/ have disjoint domains and codomains, so they commute and we obtain

np,' © TOP(z = v) o TOP(b,")
= @+@v F 0 OT)p,” ©0y OTp,” Oy

Furthermore, 7, and o, also have disjoint domains and codomains, so they commute. Finally,
My, is idempotent, so

np,' © TOP(x = v) o TOP(b,")

:@+@v l_(foo'vo"]bu’ O Ty

=0+0,F (goay)o (m, Un)

= TOP(b,)

O

Proposition 20 (Commuting contexts) Let ¢; = 01 F Ofoy] and ¢ = O2 F Olos]. If
dom(os) L oy and 63 = o1, then ¢1 0 ¢ = 01 0 P30 5.

Proof This property is simple, provided o9 0 01 = 01 0 09 0 7. Recall that dom(oy) L o1. We
prove that the two total functions o = 09 o 01 and ¢’ = 01 0 03 0 o7 from variables to values are
pointwise equal.

e On z € dom(oy), by hypothesis ¢ ¢ dom(oy), so we have o'(z) = z{o1}{o2}{o1} =

x{o2 o1} = o(z).
e On z ¢ dom(o,), distinguish the two cases.

— If z € dom(oy), then o(z) = z{o2}{o1} = #{o1}. But by hypothesis o1 (z) € cod(a1) L
dom(c), so o' (z) = z{o1 Hoa H{on} = o1 (2){o2H{or} = o1 (2){on} = 2{of} = a{on } =

o(x).
— If ¢ dom(o1), then o(z) = z = o' ().

O

Corollary 10 Let b, = (byy,bys) be a syntactically correct binding. Let TDum(b,y) = O F .
We have m2 o TOP(by) 092 = n2 0 TOP(by,).

Proof Let TOP(b,,) = 01 F (o1,m). By proposition 20, it is enough to prove dom(oy on1) L 12
and 72 = n9. But we have dom(b,,) L dom(b,,), so dom(cy o) L dom(ns). Moreover, cod(ns)
contains only locations, whereas dom(o; o 71) contains only variables, so cod(os) L dom(cy ony).
Finally, as all variable allocations, 1, is idempotent. O

Corollary 11 Let b, = (by1,byo) and TDum(b,y) = O2 F no. We have

TOP(b,) = 12 0 TOP(by;) o TOP(bys).
Proof By induction on b,;.
e b,; = €, because 1, is idempotent.
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e byy = ( = v,b,}). Let b, = byy,byo, TDum(b,") = O} , 1, and TDum(b,}) = 0}, F
M, - By definition of TDum, we have n, = np,, Unz. Then, we can calculate

TOP(b,) =y, o TOP(x = v) o TOP(b,")
(by lemma 19)
=1y, o TOP(z = v) o g o TOP(b,}) o TOP(by5)

(by induction hypothesis)
=1y, Una 0 TOP(z = v) oy 0 TOP(b,}) 0 TOP(b,5)
=y, 0n2 0o TOP(z =v)om o TOP(b,}) o TOP(b,,)
=np,; 0Nz o TOP(z =v) o TOP(b,}) o TOP(b,,)

(by proposition 10)
=mngony, o TOP(z =v)o TOP(b,}) o TOP(b,,)
=19 0 TOP(b,1) o TOP(b,>)

(by proposition 19)
O

Proposition 21 (TOP Update pass) For all weak evaluation context ¢, and configuration C,
¢ o TDum(b,,b) o TUp(b,, b)[C] —* ¢ o TDum(b) o TOP(b,) o Update(b)[C].
Proof By induction on b,. If b, = ¢, there is nothing to prove. Otherwise, let b, = (z = v,b,").
By proposition 17,
¢ o TDum(b,,b) o TUp(b,,b)[C] —* ¢ o TDum(b,’,b) o TOP(x = v) o Update(b,’,b)[C].

But by corollary 10, this is equal to

¢ omno TOP(z = v) o TDum(b,’,b) o Update(b,’, b)[C],
where TDum(b,’,b) = O F 1.
By induction hypothesis, we know that the obtained expression reduces to

¢ ono TOP(z = v) o TDum(b) o TOP(b,") o Update(b)[C].

But if we let TDum(b,') = ©; F 1, and TDum(b) = Oy F 15, we have n = n; U 1, so

¢ ono TOP(x = v) o TDum(b) o TOP(b,") o Update(b)[C]
= ¢ omny ony 0 TOP(z = v) o TDum(b) o TOP(b,") o Update(b)[C]
= ¢ om o TDum(b) o TOP(x = v) o TOP(b,") o Update(b)[C]
( by corollary 10 )
= ¢ o TDum(b) o n; o TOP(x = v) o TOP(b,") o Update(b)[C]
( because TDum(b) is not modified by any substitution )
¢ o TDum(b) o TOP(b,) o Update(b)[C]

( by proposition 19 )
O

Proposition 22 (Update pass) For all weak evaluation context ¢, and configuration C,

¢ o TDum(b,,b) o Update(b,, b)[C] —* ¢ o TDum(b) o TOP(b,) o Update(b)[C].

Proof By corollary 9, we have

¢ o TDum(b,,b) o Update(b,, b)[C]
—* ¢ o TDum(b,,b) o TUp(b,, b)[C].

By proposition 21, it further reduces to ¢ o TDum(b) o TOP(b,) o Update(b)[C]. O
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Proposition 23 (Partial translation of bindings) For all evaluation context ¥,

U[DF [let rec by,b in e]] —* ¥ o TDum(b) o TOP(b,) o Update(b)[D I- e].

Proof Let ¥ = O  ®[0], and ¢ = © - O[o]. Let

Ey =90+ [e]] = ©[ - let Dummy(b,,b), Update(b,,b) in [e]]

By rule LiFT and modulo variable renaming, we have

Ey —* ¢[0 +- let Dummy(b,,b), Update(b,,b) in ®[[e]]].

By proposition 16, this expression reduces to ¢ o TDum(b,,,b)[( - let Update(b,,b) in ®[[e]]].

By proposition 22, it in turn reduces to ¢ o TDum(b) o TOP(b,) o Update(b)[®[[e]]], which is equal
to ¥ o TDum(b) o TOP(b,) o Update(b)[[e]]. O

Lemma 39 (Standard translation reduces to TOP translation) For all context U and for
all expression e,

O[O - [e]] —* [[e]TO].
Proof By induction on e. If e is a value, we use proposition 15.

Application. Let e = ejes, U be a context, and Ey = P[0 F [e]] = P[0 F [ei][e2]]. Let also
[er]T©F = ©, F E;. By induction hypothesis, Ey —* ¥[0; F F;[e2]]. If e; is not a value,
this is directly ¥[[e]T°F]. Otherwise, E; is a value, say Vi, and ¥ = ¥[©, - (V;0O)[id]] is
an evaluation context, so by induction hypothesis again, if we let [ea]TOF = @5 F E, then
‘I/[)[w F IIE‘Q]H —* ‘1/0[62 F EQ], which is equal to \I![@l + @2 F VlEQ] = \I’[IIE‘]]TOP].

Record field selection. Simple by induction hypothesis.

Record. Let e = {s,, X = f, s}, where f is not a value. Let [s,]T°F = ©; F S,. By a trivial
induction on s,, we prove that ¥[} F [{s,,X = f,s}]] —* ¥[01 F {S,, X = [f],[s]}]-

3

This expression can be viewed as ¥o[@ F [f]], with ¥g = ¥[O; F {S,,X = O,[s]}]. Let

[f]T°F = ©, - F. By induction hypothesis, the above expression reduces to ¥y[@, - F]
which is equal to [0 + 02 F {S,, X = F,[s]}], and this is the expected result.

Binding. Let e =let rec b in f.

1. If b = ¢, then [B]T°F = 0 + O[id], so [e]™°F = [f]"°F. So, ¥[} F [e]] = ¥} +

let € in [f]]. By rules LiFT and then EMPTYLET, it reduces to ¥[() - [f]], which by
induction hypothesis reduces to ¥[[f]TOF], as expected.

2. If b = b,, non empty, then [e]TOF = TOP(b,)[[f]T°F]. We have

[0+ [e]

U0+ [let rec b, in f]]
—*Wo TOP(bv)[@ = IIf]]]
(by proposition 23%

)

—* W o TOP(b,)[[f]"°F
(by induction hypothesis
= U[[e] "]
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3. If b= b,,', with b’ non empty, then [e]T°F = TDum(d') o TOP(b,) o TUp(d")[0 - [£]]-
We have
U0+ [e]]
= U[) + [let rec b,,b" in f]]
——* W o TDum(b') o TOP(by,) o Update(b')[d F [f]]
(by proposition 23)

—* W o TDum(b') o TOP(b,) o TUp(d")[D F [f]]

(by induction hypothesis)
= T[[e] O]

7.5 Correctness

7.5.1 Translation of contexts and compositionality

Both the standard and the TOP translations rely on sizes. In a binding, if a definition x = e is of
known size, then it is translated as the binding y = update z [e], whereas otherwise, it is translated
as ¢ = [e]. For this reason, it is not compositional in the usual sense: a straightforward property
such as [E[e]] = [E][[e]] does not hold. Moreover, there is no straightforward translation for
contexts: consider let rec x = O in {} for instance; should it be translated as if the expression
filling the hole was of known size or unknown size?

The TOP translation retains a kind of compositionality though. We define complete contexts
in Ao, as normal contexts, except that the context hole is now annotated with a size indication
¢ € NU{[?]}. Complete context application is only valid if the argument as the expected size.
Complete contexts are then translated exactly as expressions. For this, the definition in figure
7.19 is simply extended with [O0.]T°F = [O.] = O, given that a context hole O¢ has size ¢, and
that it is not a value. Normal contexts are translated, with an additional argument giving the size
of the context hole. For instance, we write [[IE]]?OP for [E[0¢]]TCF. The standard translation is
compositional for this notion of contexts.

Proposition 24 (Compositionality of the standard translation) For all contest E and ex-
pression e,

[E [e]] = [E Isize(e)[Te]]-

The translation is compositional with respect to this notion of contexts, provided the right size
indication is chosen, and that the expression filling the hole is not a value. Indeed, in the translation
of bindings, a distinction is made between evaluated and unevaluated definitions, which breaks
compositionality in this case, because the context hole is not considered a value. Fortunately, for
values, a weaker property of compositionality modulo reduction holds, which allows to prove that
the translation is faithfull.

Proposition 25 (Compositionality for lift contexts) If e ¢ Values, then

[L el ™07 = [LT gm0 [[e] 7]

Proof By case analysis on .. We treat one example case, application: L. = Of. We have
[L[e]™" = [ef]™" = © F B[f], where [] ™" = @ - E. But [L]{OF, = 0 F O[f], which is
the expected result. O

Proposition 26 (Compositionality for multiple lift contexts) If e ¢ Values, then

[F [e]]"°7 = [F Dsie) [Te] T©7.
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Proof By induction on F. If F = 0O, there is nothing to prove. Otherwise, let F = L [F'] and

(=

Size(e).

By induction hypothesis, [F'[e]]TOF = [F ]]TOP[[[P]]TOP]

As the Size function is compositional, ' = Size(F'[e]) = Size(F'[O¢]).

By proposition 26, [L [F'[e]]]TO = [LJZOP[[F'[e]]TOP] = [LJZOP[[F JXOP [[e] "OP]].

By proposition 26, [L [F']]{°" = [L{F'[0 ] = [LIEOV[IF OO = [LTEOP[IF 1M

So, [L.[F'[e]]] ™" = [L[F'IIF°"[[e] "% O

Lemma 40 (Compositionality for evaluation contexts) If e ¢ Values, then

[E[]C7 = [E Tgiue) [Ie] 7.

Size

Proof By case on E. Let { = Size(e).

O

e If E =T, use proposition 26.

o If E =b, -, then
[E[e]] " =TOP(b, )[[F [e]] "°"]
=TOP(b,)[[F]EO"[[e] ""]]
=(TOP(b,) o [[IF]]TOP)[[[ I
—[E1TOP[[e] 0P,

¢ IfE = (by,z = F,bF f), then let by = (x = F[e],b). We have [E[e]]"°F = TDum(by) o
TOP(b,) o TUp(bo)[0 - [f]], since F [e] cannot be a value.

Let ©' F E' = [F[e]]*°F = [[IF]]TOP[[[P]]TOP] (by proposition 26).
Let ©, F B = TUp(b), and (' = Size(F [e]) = Size(F [O¢]).

Let (2',9') = { (z, B') if ' = [7]

(z,updatex E') otherwise
We have TUp(by) = ©, +O' F 2/ = ®'[E'],B. Let ¥g = O, F let '’ = &', B in [f]. We
have
[E [e]]"°F =TDum(bo) o TOP(by) o Wq o [F ¥ [[e]TOF]
7[[E]]TOP[[[6]]TOP]

When the expression filling the context hole is a value, we have seen that this compositionality
property is false. We nevertheless prove a weaker one.

Proposition 27 (Semi-compositionality for lift contexts) For all evaluation context ¥,

UL TG [T OF )] —* C[IL[o]] 7).

Size(v)

Proof By case on L. Let ( = Size(v) and ©, -V = [v]TCF.

e If L. is of the shape v'0 or O.X, then \Il[[[L]]TOP [[w]TCF]] = Y[[L [v]]T°F].

Size(v)

o L =oe. Let [e]TF = © F E. We have [e][°F = 0 + Ofe] and ¥ o [LITOP[[o]TOF] =
¥[O, F V[e]], which by lemma 39 reduces to ¥[0, + © F V E] = ¥[[L [v]]TOF].
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L] ]L = {Sv; = D S} Let [[S ]]TOP O’ I— S’U , [[s]] S} and [[S]]TOP — (_)I l_ S’.
We have Wo [[L]]ZOP[[[U]]TOP] =9[0,+0), - {S,’, X =V,S}], which by lemma 39 reduces to
V[C] = ¥[0,+0+0"F {S,', X =V, S'}]. If s is not evaluated, then C is exactly [L [v]]TOF.

Otherwise, ¥[C] reduces by rule CONTEXT (ALLOCATE) to ¥[0, + 0! +0'+{l — {S,', X =
V,8'}} 1], which is exactly ¥[[L [v]]TOF].

O

Proposition 28 (Semi-compositionality for multiple lift contexts) For all evaluation con-
text W,

U[[F Jion(o [[0] VT —* C[IF [0]] 7OV,
Proof By induction on F. If F = 0O, there is nothing to prove. Otherwise, F = L[F']. Let
¢ = Size(v) and (' = Size(F'[0;]) = Size(F'[v]) (by hypothesis 3).

By proposition 27, as neither F'[O¢] nor F'[v] are values, we have [F]FO7 = [IL[LOF[[F']FOF] and
[F [o]]"°F = [L1¢°7 [[F o]l ).

By induction hypothesis,
¥ o IUF]]TOP[II,U]]TOP]
—Po [[]L gOP o [[F ]]TOP[[[,U]]TOP]
= Wo [L]OP[[F 17 OF [[o] TOP]]
—" Vo [[L]]TOP[[UF )] "]
= ‘I’[[UL]]TOP[[UF []]"OV]]
= Y[[F [?J]]]TOP]

O

Proposition 29 (Semi-compositionality for evaluation contexts) For all evaluation
context U,
U[[E Diomo [[0] 7O ]] —* CIE [o]] O]

Size

Proof By case analysis on E.

e E = (b, F F). Let ¢ = Size(v) and (' = Size(F[O¢]) = Size(F [v]) (by hypothesis 3). We
have
(T o [E]FOM)[0] "]
= U o TOP(b,) o [F]°"[[v]"°"]
—* W o TOP(b,)[[F [v]]TOF]
(by proposition 28)
U[[b, F F[v]]TOF]

T[] "],

e E =(B[F|Fe), with B = (by,2 = 0,b). Let { = Size(v) and (' = Size(F [O¢]) = Size(F [v])
(by hypothesis 3). Let also by = (z = O¢,b). We have

To [E]EOP[[0] O]
= U o TDum(by) o TOP(b,) o (TUp(bo)[0  [e]]) o [F [ [[v]"¥]
—* W o TDum(by) o TOP(b,) o (TUp(bo)[d F [e])[[F [v]]TOF]

( by proposition 28)

If F[v] is not a value, the obtained expression is exactly ¥[[E [v]]T°F]. Otherwise, the
obtained expression is a partial translation of E[v], so by proposition 23, it reduces to
U[[E [0]]TOF], as expected.
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7.5.2 Translation of access

In A,, the topmost binding is used as a heap, to store the values of variables. These values may
then be copied when the corresponding bound variable is used in a strict context. In Ay 0., heaps
can only contain blocks, i.e. records and functions. Variables (or constants if the calculus featured
them) cannot be stored in them. Instead, we have seen that they are substituted on the fly during
the translation. This distinction makes the translation of access a bit weird.

Proposition 30 If TOP(b,) = O, (0,7), by(x) = v, and [v]T°F =0, -V, then ©, C O, and
(o on)(z) =V{oon}.

Proof By induction on b,.

e b, = e. Contradicts b, (z) = v.
e b, = (z =v,b,') and Size(v) = n. We have
[o]TOF = 0,FI
TOP(b,") = ©.Fa'y
TOP(by) = Thy+0,F (o, (n +{z—1})) =064t (0.n)

Obviously, we have ©, C ©,. Furthermore, by syntactic correctness of b,, = ¢ dom(o), so
(con)(z) =n(x) =1=V =V{oon}

e b, = (x =wv,b,'), with Size(v) = [?]. We have

[o]TOP = fQFy=0,+V
TOP(b,') = ©,F (o',7)
TOP(b,) = OLF (¢ o{zw—y},7n'),

and therefore (o o n)(z) = y{n'} = V{n}.
e b, = (y=1',b,’) and Size(v') = n. We have

7P = ekl
TOP(bv') = ®la F (0’,77')
TOP(b,) = ©,+0,F (0", 0 +{y—1})=0,F (o,n).

By induction hypothesis, ©, C ©!, so 0, C 0. By induction hypothesis, (¢’ o p')(z) =
V{n'}, so (con)(z) = (o' on)(@){y = 1} = V{c o' o{y = I}} = V{con}.

e b, = (y=1',b,") and Size(v') = unde fined. We have

[[,U/]]TOP — @ [
TOP(b,) = O, F (o7
TOP(b,) = Ok (o' o{ym 2z},n') =04t (0.n).

By induction hypothesis, ©, C ©!, so ©, C ©!. By induction hypothesis, (¢' o n')(x) =
V{n'}. But by syntactic correctness of b,, we know that y is not free in b,’, so y ¢ cod(n'),
and as we additionally have y ¢ dom(n'), we can deduce that {y — z}on' =n'o{y — 2{n'}}.
So, we have

(0 om)(x)

=a{o'o{y = z}on'}

=a{o'on' o{y = 2{n'}}}

= ((a" o) (@) {y — z{n'}}

=V{co' on'Hy — 2{n'}}

=V{d'on' o{y = 2{n'}}}

=V{o'o{y = z}on'}

=V{oon}.
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Proposition 31 (Access) Let ¥ = [[E]]EFOP =0+ ®o]. IfE(x) =v and [v]T°F =0, F V,
then o(z) =V{o} and ©, C O.

Proof By case analysis on the proof of E (z) = v.

EA. E =b,FF, and b,(z) = v. We have
[E]I°F = TOP(b,) o [F[1°F.
Let TOP(b,) = O, F (04,7,) and [[IF]]ZFOP = O' I ®'[id]. We can deduce o = 0, 01,. By

proposition 30, we have 0, C ©, C © and (0, o 7,)(z) = V{6, 01,}, or in other words
o(z) = V{o}, which is the expected result.

IA. E = (b,,z = F,b F e). Then, [[E]]EFOP = TDum(z = F[O¢],b) o TOP(b,) o TUp(zx =
F[Oc],0)[0 F [e]l-

Let TDum(xz = F[O¢],b) = Ogkmng
TOP(b,) = 04k (04,M)
TUp(z =F[O¢],b)[0 - [e]] = ©'F .

We have o0 = g,0n,0n4. By proposition 30, ©, C ©,4, so @, C 0. Furthermore, (o,0n,)(z) =
V{oson.},soo(z) = z{oson.ona} = z{oaon. }{na} = V{owon.}{na} = V{o}, as expected.

7.5.3 Translation of internal merging
Proposition 32 (Internal merging) IfbF e DL b ke, then [bF e]TOF —* [ | e']TOP.

Proof Let b+ e = (b,,z = (letrec by in e1),by - f), and &' F €' = (by,b1,2 = e1,b2 F f). Let
bp = (x = (let rec by in e1),bs) and by = (x = e, ba).

We have [b - €] TP = TDum(bg) o TOP(b,) o TUp(bo)[0 F [f]]-

(z,0) if Size(e;) = Size(let rec by in e1) = [?] (cf hypothesis 3)

! ny __
Let now (a', ') = { (y,updatex O) with y fresh otherwise.

Let also ©; F E; be defined as follows. If b; is evaluated, let ©; F E; = [e;]"°", and otherwise
O, F E; =0 [e;]. This way, we always have [let rec by in 61]]TOP = [[b1]]TOP[(-)1 F Eq).

Finally, let ®; = 0 I let ' = ®' Update(bs) in [f], and by = b,, b}, where b} does not begin with

a value. We have
TUp(bo)[0 F f]
= &, [[0:]"°7[01 F E4]]
= ®&; o TDum(b}) o TOP(b,;) o TUp(b})[®1 F E4].

But the context TDum(b}) o TOP(b,;) is a weak evaluation context, and the domain of its substi-
tution only concerns variables in the domain of by, which are disjoint from free variables in bo, f,
by the side condition to the rule IM. Therefore, this context commutes with ®;, and

TUp(bo)[0 - f]
= TDum(b}) o TOP(b,,) o ®; o TUp(b})[O1 + E4].

Now, if by is not fully evaluated, the two translation are semantically identical. But if b; is fully
evaluated, i.e. b} = ¢, then [b' I ']TOF translates with the TOP translation until e;, and possibly
further, if e; is a value too. We distinguish the two cases.
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1. by is not fully evaluated. Let TUp(b}) = ©7 F B;. We have ©; F E; = () - [e;] and with
¢ = TDum(by) o TOP(b,) o TDum(b;) o TOP(by),

[[b [ e]]TOP

= ¢[0@) Flet z' =let B} in [e1][,] Update(b2) in [f]]
M 4[©1 F let B in let o' = [e1][,] Update(bs) in [f]]
M ¢[O] Flet B,z' = [e1][,] Update(bs) in [f]]

= ¢[@) - let By, z' = [e1][,] Update(ba) in [f]]

= ¢ o TUp(b;, bp) [0 + [fT]-

But let us now examine ¢ a bit TDum(bg) ¢ TOP(b,) o TDum(b}) o TOP(b,;). First, notice
that TDum(by) = TDum(bj), by hypothesis 3.

Then, TOP(b,) and TDum(b|) are two weak evaluation contexts, and the domain of the
substitution of TDum(b}) is included in dom(b}), which is disjoint from the free variables
of by, so if TDum(b}) = O, + ), then TOP(b,) o TDum(b}) = ), o TOP(b,) o TDum(b,).
Moreover, 17}, is a variable allocation, and is therefore idempotent, so we can apply proposition
20 to obtain
¢ = TDum(bj) o TDum(by) o TOP(b,) o TOP(b,)
= TDum(by,b}) o TOP(b,) o TOP(b,;)
= TDum(b},by) o TOP(b,) o TOP(by1).

Furthermore, TOP(b,{) = ©y,, F (0b,,:Mb,,)- As m,, is idempotent, we have TOP(b,;) =
M, © TOP(by,). But we know that the domain of n,, is disjoint from the free variables
of TOP(b,), so TOP(b,) o np,, = m,, © TOP(b,), and therefore ¢ = TDum(b}, by) o np,, ©
TOP(b,) o TOP(b,;). But by corollary 10, n;,, o TOP(b,) ¢ TOP(by1) = TOP(by, by1), so
¢ = TDum(b',by) o TOP(by,by1).

Finally, we obtain that

[bF el = TDum(bi,by) o TOP(by,byy) o TUp(by, b)[@ - [f]]
- [[bv:bvlzbll7b6]]TOP[w F [[f]]]
= IIbv,bl,.T = elabQ]]TOP[w l_ IIf]]]
[[b/ - el]]TOP'

2. by is fully evaluated. We have [b F ¢]TOF = TDum(by) o TOP(b,) o TOP(b,,) o ®1[0; F E].

Let TOP(byy) = Os,, + (ob,,:M,,)- We know that n,, is idempotent, so TOP(b,;) =
M., © TOP(by1). As above, dom(n,,,) L FV(TOP(b,)), so TOP(b,) o TOP(b,1) = ms,, ©
TOP(b,) o TOP(b,,), in which by corollary 10 we recognize TOP(b,, b, ).

Therefore, [b F e]T°F = TDum(bg) o TOP(b,, b,;) o ®,[0; F E].

But we notice that ®,[0 - Ey] = TUp(by)[0 + [f]]. And by hypothesis 3, TDum(by) =
TDum(by). Let TDum(by) = Oy, F mp,- By proposition 20, we have TDum(bg)OT()P( vy Do ) =]
Ny © TOP(by, by1) o TDum(b}y), so [b + e]TOF =, o TOP(bv, by1) o TDum(by) o TUp(by)[0 -

[710-

Let by = (byg,bp), with by not beginning with a value. By proposition 21, [b - €]
bo © TOP(by,by1) o TDum(by) o TOP(byq) o Update(by)[0 + [f]]-

But if TDum(b,o) = Oy, & m,,, and TDum(by) = Oy & nyy , then ny, = ns,, + npy, 50 by
proposition 20, the obtained expression is equal to 7, ;o TDum(bg ) o TOP(b,, b,y )o TOP (b, )0
Update(by)[0 + [f]]. But ns,, commutes with TDum(bf), so we obtain TDum(bg) o ns,, ©
TOP(by, by1) o TOP(byq) o Update(by)[0 F [ f]], which by corollary 10 is equal to TDum(by) o
Mo, © TOP(by, by, byg) o Update(by)[0 F [f]], which is exactly [o' - e']TOF.

TOP *
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e Evaluated binding contexts
B, ::=by1,2 = O,bys with Depth(by,,x = O, byy) defined as 1+ | by |
e Depth of an evaluation context

Depth(O) = 0
Depth(LL[F]) 1 + Depth(F)
Depth(b, F F) 1+ | b, | + Depth(F)

Depth(B, [F]+e) = Depth(B, )+ Depth(F)

e Measuring the number of let rec nodes
i (e) is the number of let rec nodes not under a A in e (same for configurations).
e Measuring the depth of the let rec to lift (same for configurations)

pq(F[Llet rec b, in €]]) = 1+ Depth(FF)
ng(e) = 0 otherwise

well defined since the sum of the depths of let rec nodes strictly decreases.
e Measuring the binding level of the hot variable
tp(e) is the depth of the binder of the hot variable, if any:

(B, [o],y = Fla],bre) = Depth(B,) if (B, [o])(z) = v
up (B, [v] FF[z]) = Depth(B,) if (B, [v])(z)="wv
up(e) = 0 otherwise
e Measure pu.(e) = (y(e),unqle)) (lexicographically ordered).
p(e) = (m(e), palc); uy(c))

Figure 7.21: Measure

7.5.4 Simulation

Due to their different ways of handling bindings, the two calculus A\, and gy, do not yield a
step by step simulation. Indeed, a redex and its reduct in A\, may have the same translation. As
an example, consider any expressions of the shape L[let rec b, in e] and let rec b, in L[e]. The
binding b, is translated as a heap © and a substitution o, in both cases, and the fact that it is
under or above the I context is not visible in the translation. The only problem with this is
that in some cases an infinite reduction sequence in A, could be translated as an empty one in
Aalloc, thus possibly changing the infinite looping observable behaviour. In order to ensure that
this doesn’t happen, we prove that such silent reduction steps cannot happen indefinitely. For
this, we introduce a measure on expressions and configurations that strictly decreases during silent
reductions steps. Its definition is given in figure 7.21.

It first defines two functions from expressions to N. The first, y;, is the number of let rec nodes
not under a lambda in the given expression. The second, ug4 is the depth of the let rec node to lift
in the given expression, if any. Formally, if e is of the shape F[L[let rec b in f]], then the let rec
node can be lifted by rule L1FT, so the result is the depth of the context F[L], or 1 plus the depth
of F.

The functions p; and pg form a measure p, on expressions, defined by p, = (uy, tq), ordered
lexicographically.

Moreover, these two functions are straightforwardly extended to configurations, replacing F with
E for the second definition.

A third function py, is defined, but only on configurations, giving the depth of the binder for the
hot variable, if any. We say that x is the hot variable in ¢ if ¢ is of the shape E[N[z]]. Then
iy (€e) is the depth at which z is bound in E. Formally, we define evaluated binding contexts as
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binding contexts of the shape b,;,z = O, by, and their depth as 1 plus the cardinal of b,;. Then
the depth of multiple lift contexts is defined as the number of nested lift contexts, and the depth
of evaluation contexts is defined accordingly.

A property of this measure is that it is monotone through contextual closure.

Proposition 33 If u,(e) > u.(e'), then for any evaluation context E, u(Ele]) > u(E [e']).

Proof The property clearly holds for both measures y; and pg, thus for their lexicographic product
as well. O

Lemma 41 (Contraction simulated) Ife~e', then [e]TOF —* [e’]TOF or [e]TOF = [e’]TOF
and for any E, u(E[e]) > u(E[e]).

Proof By case analysis on the applied rule.

Beta. e = ((Az.f)v), and €' = letrecinz =vf. Let [v]T°F = 0, F V. We have [¢]TOF =
0, + {l = (Az.[f])} F IV, which reduces by rule BETA to O, + {l = (Az.[f])} F f{z —» V}.

Let us now calculate TOP(z = v).
o If Size(v) = [?], then O, F V =0 F V, and TOP(z = v) = 0 - (x — V,id); so
[t =v]"°" =pF Oz~ V]=0,F Oz~ V]
e Otherwise, ©, F V = 0, F I, and TOP(z = v) = O, F (id,z ~ [); so [z = v]TOF =
O, FOz—I=0,F0z—V].

So, in both cases, we have [z = v]T°F = 0, F Oz — V]. Therefore, [z = v]T°F reduces
to [z = v]TOP[[f]], which by lemma 39 reduces to [z = v]TOP[[f]TOF], which is exactly

[[el]]TOP
Project. e = {s,}.X and €' = 5,(X). Let s, = (X1 = v1...X,, = v,), X = X;,, and for
each i, [v;]T°F = ©; F V;. We have [5,]T°F = U 0, F(Xh =WV..X,= V ), and
<i<n
[e]TOF = L.{j O, +{l—»{Xi=0V...X,= Vn}}ll— I.X. By rule PROJECT, it reduces to
<i<n
tl—J (—)H—l{gv; {X; =V;,...X,, =V,}} F V,,, which by rule GC reduces to 9;, - V;,, which

1<i<n
is exactly [e']TOF.
Lift. e=L[let rec b in f] and e’ =let rec b in L[f].

e If b is evaluated, then [e]TOF = [L]TCF o TOP(b)[[f]TCF]. Let TOP(b) = © F (O,0).
In the context [L]T°F o TOP(b), the only substitution is o, whose domain is dom(b),
which by the side condition to the LiFT rule is disjoint from the free variables of I, so
the contexts commute, and [e]T°F = TOP(b) o [L]TOF[[f]TOF] = [€']TCF.

e If b is not evaluated, then b = b,,b’, with b’ non empty and not beginning with a value.
We have [e]T°F = [L]TF o TDum(b') o TOP(b,) o TUp(¥')[0 + [f]]. But as above,
the context [L]TOF has not substitution and is not affected by the ones of TDum(b'),

TOP(b,), and TUp(¥'). So [e]TOF = TDum(b')o TOP(b,)o TUp(b") o [LITOP[B F [£]] =
[[e/]]TOP.

This is the only case where the two translations are directly equal. We thus have to show

that pugq(e) > pugq(e’). And indeed pg(e) = pg(Llet rec b in f]) = 2 + 0, whereas uqy(e') =
ig(let rec b in L[f]) = 0. Conclude by proposition 33.
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There is a last difficulty lying in the way to the theorem of simulation, due to different sharing
properties of the two calculi. Consider the configuration ¢ = (z = {X = Ay.y} F (z.X)z). It
reduces by rule SUBST to ¢’ = (z = {X = Ay.y} F ({X = Ay.y}.X)z). By the TOP translation, ¢
is translated to a configuration

_ ) L= Ay,
C_{ b s (X = 1) }l— (Iy.X)l5.

By the same translation, ¢’ is translated to a configuration

I = \y.y,
12 = {X = 11}7
ls — A\y.y,

Cl - " (I4X)l2

The heap ©' of C' contains an additional copy of the record and the function. This phenomenon
happens at each application of the SUBST rule. But except in case of a faulty configuration (see
below), such a reduction step is necessarily followed by a BETA or a PROJECT step. In our example,
a PROJECT step occurs, that destroys the copied record: ¢’ reduces to ¢’ = (z = {X = Ay.y} F
(Ay.y)z). This reduction step destroys the copied record immediately after it has been copied.
Similarly, when a function is copied, it is immediately destroyed by a BETA reduction step. In
both cases, the translated configuration reduces in one step, by the same rule (PROJECT or BETA).
As a consequence, our simulation theorem takes this possibility into account, and allows a couple
of successive reductions steps to be simulated by a single one.

But this is not yet sufficient. Indeed, in the case of the PROJECT rule, not only the record is
duplicated, but also the values it contains. In our example, the function Ay.y is copied. And even
after applying the PROJECT rule, it remains, as shown by the translation of ¢

lh = Ay.y,
C”: lQ'—){X:l]}
I3 — Ay.y

Flsls.

Our solution to this problem consists in only considering expressions where all the record fields
are variables, which we call R-normal expressions. Any expression can be transformed into an
R-normal one, by applying the following NAMEFIELDS rule, in any context.

i, e; ¢ Vars Vi, j,xz; ¢ FV(ej)

R (NAMEFIELDS)
{Xi=e1..Xpn=¢€p} —letrec z1=€1...2p, =¢e, in { X1y =21...X, =z,}

This process necessarily terminates since the number of records not containing only variables stricly
decreases. The reduction rules of A\, obviously preserve the R-normality. This way, after a sequence
of a SuBST step followed by a PROJECT step, no duplication has been made: an expression of the
shape z.X has been replaced with another variable.

We can now state our final theorem. A )\, configuration is said stuck on a free variable when it
is of the shape E [N [z]] and E (z) is undefined. This definition is extended to Ag. configurations
(replace E with ¥). We say that a configuration is faulty if it is in normal form and is not a valid
answer and is not stuck on a free variable. Roughly, the theorem states that if a configuration ¢
reduces to another one ¢, then

e either ¢ is faulty and so is the translation of ¢,

e or the translation of ¢ reduces to the one of ¢,
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e or ¢ itself reduces to ¢, such that the translation of ¢ reduces to the one of ¢”,

e or c and ¢ are translated to the same configuration, but u(c) > u(c').

This complicated result is due to the fact that A, first needs to duplicate a function before to apply
it, and to duplicate a record before to select a component from it, and to the fact that the TOP
translation identifies some configurations, by performing some lifting and merging steps by itself.

Theorem 5 (Small steps encoding) For all R-normal configuration ¢, if c— ¢ and ¢

JTOP =

C, then one of the four situations below holds:

1.

Either ¢ is faulty, and then C is faulty c—— ¢ —/—
too ;
1
C—/—
or there exists C' such that [e'] = C' c—=s¢
and C —+ " ;
1 |
C—>c
or there exists ¢, C' such that ["] = c——¢ ——"
C' and C —* C' ; “l l“

or [¢'] = C directly, and u(c) > p(c') c—> ¢

Proof By case analysis on the applied rule.

Context. By lemma 41.

IM. By proposition 32, noting that the number of let rec nodes decreases by one when applying

EM.

the rule.

c=by,letrec bin eandc =b,, bt e. Let us now define Cy by 0 I [e] if b is not evaluated,
and [e] TOF otherwise. Then [¢]TOF = TOP(b,)o[b]"°F[C1]. Let b = b,’,b', where b’ does not
begin with a value. We have [¢]T°F = TOP(b,)o TDum(b')o TOP(b,")o TUp(b')[C1]. But the
substitution of the context TDum(b') does not affect TOP(b,) and conversely the substitution
of TOP(b,) does not affect TDum(b'), so the two contexts commute. But then TOP(b,) is
next to TOP(b,"). Let n be the substitution of TDum(b,"). It does not affect TOP(b,), by
the side condition to the EM rule, so TOP(b,) o TOP(b,") = 1o TOP(b,) o TOP(b,"), which
by corollary 10 is equal to TOP(b,,b,"). Therefore, [c]T°F = TDum(b') o TOP(b,,b,") o
TUp(H")[C1] = [by, b]TOF[C1]. The number of let rec nodes again decreases by one.

Subst. ¢ =E[N[z]], ¢ = E[N[v]], and E (2) = v. Let ¥ = [E]TOF = 0 I- ®[0].

e If v is a variable y, then [v]T°" = @ g, and by proposition 31, o(z) = y{o}, so

[e]TOF = [¢']T©F. But, the depth of the binder of the hot variable, from the depth of
x =y in [E, becomes either an upper y = v’ definition, or the depth 0, if y is not defined

by E, so u(c) > p(c').
o If ¢! is faulty, i.e. either N = 0o’ and v is a record, or N = 0.X and v is a function or
a record with no X field, then C' is faulty too.
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o Ifv=2Ay.eand N =00, then ¢ — " =E[let rec y =v' in €.
Let [v']"°P = 0! F V'. Let ¢ = O I O[id]. We have C = ¥ o ¢[IV'].
But by proposition 31, the location I = o(z) is such that ©(l) = Ay.[e]. Therefore, C
reduces by rule CONTEXT (BETA) to ¥ o ¢[[e]{y — V'}]. By lemma 39, this reduces to
T o glfe] "7 {y = V'}].
Let now ¢' = ¢ o {y = V'}. The obtained configuration can be written ¥ o ¢'[[e]T°F].
But TOP(y = v') = O F Oy = V'] = ¢/, so [let rec y = v' in e]TOF = ¢'[[e]TOF],
and the obtained term can also be written [E]TOF[[let rec y = v in €]TOF], which by
proposition 29, reduces to [E[let rec y = v’ in €]]T9F, which is exactly [¢"]TOF.

o If v ={s,}, N =0.X, with X € dom(s,), then ¢/ — "' = E[s,(X)].
By hypothesis, ¢ is in R-normal form, so there exist names X; ... X, and variables
xy...%y such that s, = (X1 =21 ... X, = x,,). Then, s, can be viewed as a record of
Nattoc; and [u]TOP = {l +— {s,}} F 1.
By proposition 31, we have o(z) = [ and O(l) = {s,}. We have [¢]TOF = ¥[z.X] =
U[I.X]. As c reduces to ¢, there exists an index iy such that X = X; . So, [¢]T°P
reduces in one PROJECT step to ¥[x;, ], which is [E]JTOF [[z;,]T°F], so by lemma 39, it
reduces to [E [x;,]]TOF, which is exactly the translation of ¢”.

O

Eventually, we state a less precise theorem, more like what we would obtain with big step semantics.

Theorem 6 (Big steps encoding)

1. For all expression e, if 0 F e —* a, then 0 - [e] —* [a] TOF.

2. For all expression e, if e goes wrong, i.e. O b e reduces to a faulty configuration, then [e]
also goes wrong.

3. For all expression e, if e loops, i.e. there exists an infinite reduction sequence starting from
0 ke, then [e] also loops.

4. For all expression e, if e gets stuck on a free variable, then so does [e].
Proof For items 1 and 2, notice that §) - [e] reduces to [e]T°F, and then reason by induction
on the length of the reduction sequence. For item 3, by contrapositive: we know that there is a
reduction sequence in A,y simulating the one in A,, but it could be of phantom steps, i.e. the
same configuration could be a translation for all steps. However this would contradict the strict
decreasing of the measure, which is of course bounded by 0. For item 4, the reduction leading to

the configuration stuck on a free variable is simulated, and the reached configuration being the
translation of a stuck configuration is also stuck. O

The initial goal here was to prove the correctness of our compilation scheme, but in fact we have
a completeness result for free.

Theorem 7 (Big steps completeness)
1. If O F [e] —* A, then there exists a such that ) - e —* a and [a] TOF = A.
2. If [e] goes wrong, then e also goes wrong.

3. If [e] loops, then e also loops.

4. If [e] gets stuck on a free variable, then so does e.
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Proof There are four possible final states for a configuration: it can reduce to a value, or it can
get stuck on a free variable, or it can go wrong, or it can loop. We know that if a configuration
0 e reaches a final state, then so does [ - ¢]TOF. But the four possible final states are mutually
exclusive. Therefore, if the translation of an expression reaches a final state, then the original
configuration necessarily reaches the same one. O

Remark 3 (Free variables) Free variables do not appear during reduction, and the cases where
the evaluation gets stuck on a free variable do not occur if the initial expression is closed.

7.6 Related work

Cyclic explicit substitutions In [64], Rose defines a calculus with mutually recursive defi-
nitions, where the dedicated construct for recursion is presented as explicit cyclic substitution,
referring to the explicit substitutions of Lévy et al. [2]. Instead of lifting recursive bindings to the
top of terms as we do, the calculus pushes them inside terms, as usual with explicit substitutions.
This results in the loss of sharing information. Any term is allowed in recursive bindings, but
inside a recursive binding, when computing a definition, it is not possible to use the value of any
definition from the same binding. In A, the rule for substitution SUBST allows this, in conjunction
with the internal access rule IA. In Rose’s calculus, correct call by value reduction requires that in
any binding, recursive definitions reduce to values, without really using each other. In this respect,
it is less powerful than \,. Besides, it does not impose size constraints on definitions, but is also
not concerned with data representation.

Lescanne et al. [9] study sharing and different evaluation strategies, with a slightly different notion
of cyclic explicit substitution. Any term is accepted in a recursive definition, but instead of going
wrong when the recursive value is really needed, as in our system, the system of [9] loops. The focus
of the paper is on the comparison between A-graph reduction and environment based evaluation,
and different evaluation strategies. No emphasis is put on data representation either.

Equational theories of the A-calculus with explicit recursion Ariola et al. [7] study a
A-calculus with explicit recursion. Its semantics is given by source-to-source rewrite rules, where
let rec is lifted to the top of terms, and definitions in a binding may use each other, as in A,.
The semantics of our source language A, is largely inspired by their call-by-value calculus, as a
quite straightforward specialization of it. Thus, our work can be seen as importing the internal
substitution rule TA from equational theory to language design. Nevertheless, the concerns are
different: we deal with implementation and data representation, while Ariola et al. rather examine
confluence, sharing and different evaluation strategies, including strong reduction (reduction under
A-abstraction).

let rec for objects and mixin modules Boudol’s construct [12], or Hirschowitz and Leroy’s

[45], are different from the one of A, in several aspects. First, they accept strictly more expressions
as recursive definitions. For instance, Boudol’s semantics of objects makes an extensive use of
recursive definitions such as let rec 0 = generator(o) in e. Such definitions are impossible in A.
However, A, allows to define in the same binding some recursive values, followed by computations
using these values. The semantics of mixin modules [47] requires complex sequences of alternate
recursive and non-recursive bindings, which are trivial to write in A,. On the whole, the loss of
flexibility for valid recursive definitions allows to improve efficiency, thanks to the loss of additional
indirections.

We believe that it is possible to combine the ideas of [12] and [47]. Consider a language where a

recursive definition can be of any shape, and can now be syntactically annotated with integers
representing its expected size. This language can be compiled exactly as A,, but it features a more
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powerful let rec construct. The idea should be seen as a compilation technique for Boudol’s objects
and Hirschowitz and Leroy’s mixin modules, where the necessary size informations are statically
available.
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Chapter 8

Untyped compilation with local
definitions
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Future work and conclusions
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