
Call-by-value mixin modulesTom HirshowitzMarh 21, 2003

2

Contents
I Modularity and mixin modules 151 Modularity and ode reuse 171.1 Motivation . 171.2 Safety versus exibility . 171.2.1 The diamond import problem . 171.2.2 The extensibility problem . 171.2.3 The modi�ability problem . 171.2.4 The reursion problem . 171.3 An overview of mixin modules . 171.3.1 Mixin modules . 181.3.2 An extended binding onstrut . 201.3.3 Typing issues . 201.3.4 What is a mixin module not? . 212 A brief history of mixin modules 252.1 Jigsaw . 252.2 Duggan and Sourelis' mixin modules . 282.2.1 Overview of the language . 282.2.2 Expressiveness and limitations . 292.3 Units . 322.3.1 MzSheme . 322.3.2 Theory . 332.3.3 Types . 372.4 CMS . 392.4.1 Syntax and semantis . 392.4.2 Types . 413

2.4.3 Expressiveness and inonvenients . 432.5 The m-alulus . 452.5.1 Syntax and semantis . 452.5.2 Expressiveness and inonvenients . 482.5.3 Comparison with CMS . 49II Dynami and stati semantisof all-by-value mixin modules 533 Dynami semantis: the MM language 553.1 Syntax . 553.2 Semantis . 574 Stati semantis 634.1 Type system . 634.2 A theory of dependeny graphs and degrees . 674.3 Graph soundness . 694.3.1 Modeling the redution with graphs . 694.3.2 Subjet ontration for graphs . 704.3.3 Manipulation of reursive bindings . 734.4 Soundness . 765 Re�ned stati semantis: type omponents 895.1 The MML language . 895.2 Type system . 915.2.1 Well-formedness . 925.2.2 Typing . 945.2.3 Subtyping . 965.2.4 Type equivalene . 995.2.5 Diretions for a proof of soundness . 995.2.6 Undeidability, prinipal types, syntati types 1015.3 Polymorphism and datatypes . 1025.3.1 Polymorphism . 1025.3.2 Datatypes . 1025.4 Examples . 1064

5.4.1 Lists . 1065.4.2 Simple interpreter . 1095.4.3 Bootstrapped data strutures . 1125.4.4 Mathematial data strutures . 116III Compilation of mixin modules 1256 Typed ompilation without loal de�nitions 1276.1 Intuitions . 1276.2 De�nition of the ompilation sheme . 1286.2.1 Restriting the soure language: MMe . 1286.2.2 The target language �Æ . 1296.2.3 Compilation sheme . 1336.3 Type soundness of the translation . 1356.3.1 A type system for the target language . 1356.3.2 Soundness of the target language . 1366.3.3 Soundness of the translation . 1497 Compilation of let re 1557.1 Overview . 1557.2 The soure language �Æ . 1567.2.1 Syntax . 1567.2.2 Strutural equivalene . 1587.2.3 Semantis . 1607.3 The target language �allo . 1627.3.1 Strutural equivalene . 1637.3.2 Semantis . 1657.3.3 The �allo alulus and its onuene . 1677.4 Translation . 1707.4.1 Generalized ontexts in �allo . 1707.4.2 De�nition of the two translations . 1727.4.3 Relating the two translations . 1777.5 Corretness . 1837.5.1 Translation of ontexts and ompositionality 1835

7.5.2 Translation of aess . 1867.5.3 Translation of internal merging . 1877.5.4 Simulation . 1897.6 Related work . 1948 Untyped ompilation with loal de�nitions 197

6

A faire
Graph subtyping In the ruleWf-Mixin, it is not neessary to hek that the graph has souresin I and targets in O, sine more edges would not break safety.Generativity What happens if datatype and reord type delarations are not generative? Isthis the end of funtional languages? Answer of Xavier: Harper et al. believe so, I don't, I ratherbelieve that abstration is important.Generativity seen as e�etful stati operation Can the e�ets of Dreyer et al. be related toSewell's interpretation of abstrat types with � quanti�ers? Types should be omputed and � reallyhas the e�et of reating a new variable that an be extruded to the top level. A question is whereexatly should the � omputations be suspended, i.e. what are the lambdas for �, under whihnothing happens? Generative funtors for sure, at least. Unfortunately, Sewell's interpreteationprobably does not aount for appliative ones anyway.On Duggan and Sourelis The method of Duggan and Sourelis for proving the soundness of theirmixin modules ould ause problems with reursive types, sine nothing prevents type de�nitionsfrom being reursive. But in fat, only datatypes an be mutually reursive, so there are onlyiso-reursive types.Ohter problems in Sourelis' masters thesis. The syntax does not mention the inner keyword. Typestrengthening is unde�ned on mixin module types, and wrong on funtor types (orreted in thepapers). Signature onstraint is present in the syntax, but not in the typing rules (orreted in thepaper), nor in the dynami semantis (impliitely eluded beause subj-red holds for the languagewithout abstration).Type inferene for MML Polymorphism is not aounted for here. Type inferene would notbe satisfatory, without hanging a bit the syntax. We onjeture that grouping outputs in single/ blok de�nitions in the orret order solves the problem.Xavier's leitmotiv about reursive modules Laks of expressiveness in Dreyer, Crary, andHarper's theory:module re A :sigtype tval f : B.t -> tend= strut... 7

endand B :sigtype tval x : tval y : A.tend= struttype t = intlet x = 1let y = A.f 2endThis program is ill-typed sine during the type-heking of y, there is no way to identify t, int andB.t. Mixin modules provide a way to ode suh programs in a more exible way.Enoding labeled and optional arguments Labeled argument an be enoded in any mixinmodule alulus in fCMS ;m;CMSv ;MM;MML; : : :g, as follows (here in MM syntax). A funtionexpeting n arguments x1 : : : xn, labeled l1 : : : ln, and returning the result e, an be represented bya mixin of the shape hl1 . x1 : : : ln . xn;RES . ei. Labels are mandatory in funtion appliations(e li1 :ei1 : : : lin :ein), whih are enoded as(lose(e+ h�; li1 . ei1 : : : lin . eini)):RESOptional arguments are added to the enoding by replaing omposition with overriding in theenoding of funtion appliation, and putting the default arguments in the funtion, with theorresponding labels.Subtyping mixin modules in a mobile ode senario: MoMiMo The nightmare paper byBettini, Bono, and Venneri [10℄ on depth subtyping for mixins in a distributed setting turns outtrivial with mixin modules. The problem with mixin lasses is that their types do not take theontravariane of methods into aount. But it exists indeed: oering a method spei�ation to asuper type may be unsafe, beause other methods may need the more preise typing. For instane,assume a mixin lass with two methods f and g of types � and � 0, respetively, and assume g needsf to be of type � at most. Covariant subtyping of methods an leed to giving f a type � 00, supertype of � . But then, f an be overrriden by a method of type � 00, whih makes the implementationof g unsound. With mixin modules, the input type of f is subtyped ontravariantly, so this problemdoes not appear. Moreover, if subtyping points are learly identi�ed, as in MoMi, a mehanismof impliit oerions allows to solve the issue with mixin modules, quite straightforwardly. Wherea mixin module is expeted at type � , insert a oerion to type � . Graph subtyping and inputssubtyping an be assumed to be impliit, sine they have no inidene on the runtime. A oerionto type hI ;O;!i of any mixin module e is implemented by (e+ hI ; �i):dom(O). It adds the missinginputs at the right types, oeres the present ones to the right types, and hides the unexpetedoutputs.Other possible designs (in future work setion) The thesis explores the solution of de�nitionreordering, but one ould imagine a more restritive, but perhaps more intuitive design where amixin module is a struture with holes, where de�nitions annot be reordered. Composition thenattempts to just �ll the holes, in a deterministi way. The idea would be: as de�nitions know exatlytheir plae in the mixin module, maybe it is not neessary to inlude dependeny information intypes. 8

Extension of MML with additional type expressions In the style of Odersky et al. [60℄,it would probably be bene�ial to MML to feature type expressions suh as M1 +M2 and p.typeand lose M.EÆieny Splitting the lose operator into a reordering operator and an instantiation operatorallows to perform reordering only one.Extension of the result on letre Ajouter une onstrution blok(e; n) au alul �Æ t.q.� blok(2; n) est un lift ontext et un strit ontext,� Size(blok(e; n)) = n,� blok(v; n)�! v, pourvu que Size(v) = n,� Jblok(e; n)K = JeK, mais on perd la ompltude, probablement.Referenes exemples Faire pointer les exemples du hapitre ompil vers la setion overview,des qu'elle sera prete.Order of evaluation Abstraire sur la fontion pour trouver un ordre d'evaluation orret etantdonne un graphe et les formes serait une bonne idee. On peut donner la fontion atuelle et lafontion qui ne depend que du graphe en exemple, et dire dans la ompilation qu'on hoisit ladeuxieme pour e hapitre.Modularizing the proofs Modulariser la preuve de surete sur les regles d'Ariola, notammentau niveau des dependanes, lari�erait grandement le rapport entre les preuves de surete de MMet de �Æ. De toute faon, pour �Æ, faut la refaire, a ause de es regles justement.Headers Ajouter des headers, a fait vahement mieux.Separate ompilation A paragraph explaining how to handle separate �les as losed mixins,and linking as a mixin omposition followed by a losure.Name spaes In some future work setion, disuss the possibility of expliit name spaes insidemixin modules. The idea is to have semanti sub-modules, but with less rigid boundaries. Inpartiular, losing a mixin modules ontaining name spaes would atten them during omputation,and reonstrut them when building the �nal module. Thus aess in name spaes works the sameas for modules, but dependenies an be �ner. Motivation is found in the �rst attempt to implementreursive polynomials.Notations Throughout the thesis, side-onditions are written as premises for readability. [?℄means \please �nd a orret bibtex entry for this before giving the thesis to the referees" or\please verify this information ...". Insrer au premier endroit ou 'est utilis la notation ? pourles ensembles disjoints, la notation j � j pour le ardinal d'un ensemble et la longueur d'une liste.Remplaer presque partout \variable" par \identi�er"? La he est parse droite. On utiliseplutt la syntaxe OCaml que la syntaxe SML. Substitution fx 7! yg signi�e que x remplae y.Meta-galits : =def signi�e \is de�ned as" et � signi�e \is syntatially equal to". Homognit desmots-lefs dans la setion type-omponents et overview mixins. Quand est-e que j'ai suppos qu'ily a des types produits, trouver et le dire. Faire plusieurs passes pour vri�er que es onventionssont respetes. Remplaer les \\ \noindent par \linebreak. Priorits: drire au dbut les prioritsimpliites, notamment la sletion : a priorit sur tout.9

A lire absolument Drossopoulou, Morrisett, Mahkasova, Jones, Odersky, Parnas, Szyperski.

10

Introdution: linguisti onstrutsfor ode reuseThe inreasing size and omplexity of programs ause important pragmati industrial problems.Maintenane beomes a full time task, sometimes almost unmanageable, and safety or orretnessoften happens to be impossible to prove. At the same time, more and more formerly human jobsare done eletronially, and it therefore beomes more important that programs really do whatthey are expeted to. An airplane pilot program, an underground driver program, or to a leastextent a train booking program, have to be orret. A natural idea to solve this problem { and itessentially was born enturies ago { is to divide problems into smaller, easier to solve ones, and toexploit and share the results. In software engineering, this an be done at several levels.Language abstrations A �rst level is provided by various forms of abstration in the onsideredlanguage. As de�ned by Leroy [51℄,\Modularization is the proess of deomposing a program in small units (modules)that an be understood in isolation by the programmers, and making the relationsbetween these units expliit to the programmers."Modules, funtors, or lasses for example, o�er a way to modularize programs. But funtions,or extensible datatypes, may perfetly be seen as modularization onstruts. Funtions, forinstane allow to write ode only one, whereas it otherwise ought to be inlined at everyplae of use. This level has been and is still being widely explored by the programminglanguage researh ommunity. However, it only promotes ode reuse at the level of oneprogram. With only funtions or objets, one annot reuse any ode from another program,whereas di�erent programs often need the same kind of funtionalities, suh as graphialinterfae tools. Sharing suh ode between them requires swithing to the level of separateompilation.Libraries From [51℄ again,\Separate ompilation is the proess of deomposing a program in small units (om-pilation units) that an be type-heked and ompiled separately by the ompiler,and making the relations between these units expliit to the ompiler and linker."If a program is divided in several ompilation units, some of these may be put in a repository,from where other programs an use them. Suh ompilation units are usually alled libraries,and provide means of reusing ode aross programs. Nevertheless, this does not allow fullode reuse yet, beause eah kind of program has its partiular best programming language.If graphial interfaes are often written in objet-oriented languages, this may not be thease for CPU intensive probabilisti simulations for instane. However, a simulation programwould be perfetly wrapped in a graphial interfae.Components The idea of the third and last level is to allow that, and even more, to allow it arossdi�erent sites. As advoated by MIlroy at the 1968 NATO onferene [57℄, programs shouldbe mainly built by assembling o�-the-shelf omponents { supplied by a software omponents11

industry, without having to modify their soure odes. (This is often alled \blak box".)The omponent-based approah bases on two main ideas.� First, di�erent parts of a program may be written in di�erent languages, keeping somesort of ompatibility between them, thanks to an ommon interfae de�nition language.� Seond, omponents are aessible by various ways, inluding the internet. The programmay all proedures de�ned in a remote omponent, and even ask for some kind ofomponents more or less automatially.In a omponent approah, ritial parts of programs may be written in a very fast language,whereas the user interfae, or ommuniation parts for example, an be written in a moreexpressive { or even dediated { high-level language. More than that, the program may relyon previously written omponents, without having to bother with their loations or imple-mentations. Nevertheless, safety properties of whole programs are diÆult to prove, sine itrequires the ability to analyze programs in di�erent languages within the same framework,and to model the protools for aessing remote omponents. Eventually, as a matter offat, most omponent arhitetures are more or less objet-oriented (see e.g. [49℄), in that aomponent looks very muh like a lass. This auses problems when writing omponents inlanguages with drastially di�erent programming paradigms, suh as funtional languages.These inreasingly ambitious proposals are very promising for what onerns ode reuse and redu-tion of program sizes, but one has to onsider them with respet to safety. The �rst level has beenextensively studied from this standpoint, spei�ally through the use of sound type systems: thereare well-known ways for ensuring statially (i.e. at ompilation time) that an objet-oriented or afuntional program will not rash (see e.g. [50, 78, 1℄). The seond level has been investigated, andsound type systems have been set up, whih are able to statially prove that a separately ompiledprogram will not go wrong [51, 40, 19, 56, 65, 70℄. The omponent approah is its early phase offormalization [69℄, and types or safety seem to hardly be under onsideration yet.We are onerned with the �rst and seond level, mainly. The work on designs for safe separateompilation [51, 40, 56℄ has lead to introdue linguisti onstruts for onsidering ompilation unitsas speial datastrutures, alled modules. Modules are therefore a bit ubiquitous, beause they maybe seen either as language onstruts, almost exatly as say, funtions, or as a kind of interfaebetween the program and the real world, here the operating system. In the OCaml language[55℄ for instane, ompilation units are onsidered exatly as modules. In SML, they are loserto strutures (the ontents of a module). A onsequene is that a language with modularizationonstruts is a language featuring separate ompilation, provided the onsidered onstruts supportit. This allows studies of linguisti modularization onstruts supporting separate ompilation tobe viewed as sudies about ode reuse inside the onsidered language, and therefore to be notablysimpli�ed. Indeed, instead of setting up a ompliated framework where the �le system, shellommands, objet �les, are modeled, one may study linguisti modularization onstruts, andthen argue that they support separate ompilation, as done in [51, 65℄ for example. Two mainideas for suh linguisti modularization onstruts have been explored, at least.Classes and mixins Languages like Java [48℄ base their modularization proess on lasses andobjets. Objets are basially reords, with a set of methods to operate on them. For example,a window objet would typially be a reord of a position, a size and some sub-objets, withmethods moving it, showing it, et. . . Classes are objet generators, and the idea is that theymay be inrementally re�ned. Methods may be added and rede�ned as needed, thanks tothe omplex mehanism of inheritane [48, 55℄. In order to de�ne a new lass, the programeran base on an existing lass, without having to edit the initial ode manually. Only themodi�ations have to be written. Mixins are an extension of lasses, where lass extensionsare parameterized over the extended lass, and thus may be applied to several base lasses.Important researh has been done on suh languages, and they are theoretially well-known.However, this approah onstrains the language very muh: a module is a lass, and all partsof the program using this module have to be written in objet-oriented style. This may12

impede the eÆieny, sine objet-oriented languages annot pretend to ompare with C onritial domains, suh as large probabilisti simulations, or symboli omputation. Moreover,separate ompilation for lasses is rather limited, sine for instane Java mutually reursivelasses annot be ompiled separately. Consequently, objet-oriented languages often rely ona system of pakages in order to group related lasses together.Modules Another approah investigates modules systems. A module system wraps the program-ming language, the ore language, with a typially seond-lass module language. The modulelanguage is in harge of all the gluing operations, and the ore language handles real om-putation. Most module systems are largely independent from the underlying ore language[54℄, thus not onstraining in any way the employed programming paradigm. Furthermore,modern module systems provide astrat data types, thus allowing for full abstration overimplementation details, and guaranteeing that invariants of a module are not broken outsideit. The main drawbak of module systems is their lak of exibility. There is a tensionbetween the need to preserve safety and the onveniene of being able to write programsaording to the intuition. Early module systems suh as the one of C are unsound, and lakparameterization, sine they entirely rely on the �le system. But even modern and sophis-tiated module systems, suh as the one of ML, severely limit the programmer's intuitions,for instane in not allowing mutually reursive de�nitions to span module boundaries.None of these two ideas really seems to be the ultimate modularization onept, although bothpossess features that are neessary for suh a onept. Classes allow very exible inrementalprogramming, sine they allow to speialize a lass without editing its soure ode, and only writingthe modi�ations. Modules have the advantage to be independent of the underlying language, andto provide onvenient abstration failities.This thesis examines an atlernative, hybrid idea of modularization onept, alled mixin modules.The original idea appeared in the early 90's with Braha, Cook, and Lindstrom [17, 16, 18℄, andwas further developed by Duggan and Sourelis [31℄, Flatt and Felleisen [36, 35℄, Anona and Zua[3, 6℄, and Wells and Vestergaard [76℄. It onsists in a module language { a modularization on-strut independent from the ore language { with features for inremental programming, inspiredby lasses and mixins. Basially, a mixin module is a olletion of named de�nitions and delara-tions. Delarations may be �lled with de�nitions by omposition with another mixin module. Thede�nitions of one mixin module then �ll the orresponding delarations of the other one, aordingto their names. De�nitions are not statially bound to one another, and may be overridden.The remainder of this thesis is organized as follows.Chapter 1 desribes known module languages and analyzes them from the viewpoints of exibilityand safety. A olletion of features is presented, that have been onsidered neessary somewhere inthe literature. Then, two widely used module systems are briey realled, whih serves as a basisfor disussing their respetive laks of expressiveness in the last setion.Chapter 2 summarizes previous work on mixins modules, from Braha's seminal thesis [16℄, to thelatest theoretial formalizations [6, 76, 45℄.Chapter 3 de�nes MM, our language of mixin modules, and its operational semantis. The seman-tis is de�ned thanks to the introdution in the language of a new onstrut let re for bindingmutually reursive de�nitions, whih is more general than most suh other ones.Chapter 4 presents and proves sound a simple type system for MM, dealing with the reursionproblem in an elegant manner.Chapter refsetion-implementation elaborates an implementation strategy for the let re onstrut.Its presentation abstrats over the implementation of the rest of the language.Eventually, hapter 8 examines the remaining problems and ideas for solving them.13

14

Part IModularity and mixin modules

15

Chapter 1Modularity and ode reuse
1.1 MotivationEnapsulation, abstration, hierarhy, ... f Braha, Wells, Harper, ...Transition: a onsequene of modularization is that programs (or programmers if the onstrutionsfor modularization are extra-linguisti) have to perform the assembly operations to onstrut theintended ode out of piees. These operations are subjet to failure, and it is diÆult to set upsound type systems for all of them. As a onsequene, more exible modularization onstruts(suh as objets or omponents) provide less abstration mehanisms and safety properties thatmore sound ones (suh as ML modules).1.2 Safety versus exibility1.2.1 The diamond import problem1.2.2 The extensibility problemf Flatt...1.2.3 The modi�ability problemf FOC1.2.4 The reursion problemf ML1.3 An overview of mixin modulesA haraterization of mixin modules In [6℄, Anona and Zua give a semanti harateri-zation of a system of mixin modules, in terms of a haraterization of module systems, and somerequested features. 17

De�nition 1 (Module system) A module system is a language dediated to modularization,built on top of a ore language, and meeting the two following requirements.� First, the module system must be as independent as possible from the ore language. Ideally,it an be instantiated over several ore languages, in a systemati way.� Seond, a module should orrespond to a ompilation unit, thus providing for separate om-pilation.Typially, module languages are expeted to feature parameterization (the ability to use a modulein di�erent ontexts). Then, a mixin module system is de�ned as module system providing twopartiularly important features for modularization.De�nition 2 (Mixin modules) A module system supports mixin modules if it supports ross-module reursion and overriding.Presentation by example [Maybe split this in : here, example hiding the problems with letre, moving them to an overview subsetion in the setion on MM℄1.3.1 Mixin modulesA mixin module is an unordered, unevaluated, possibly inomplete module: it is a set of namedde�nitions and delarations.Consider the following mixin module, in an OCaml-like syntax:mixin A =importval x : intval f : int -> intexportdefine y = (g 0) + xdefine g z = ... f ...endThe delaration val x : int is used by the de�nition define y = (g 0) + x.The delaration val f : int -> int is used by the de�nition define g z = ... f ...The sope is mutually reursive, as illustrated by the de�nition define y = (g 0) + x, dependingon g.The operator for linking mixin modules is omposition +, whih ombines two mixin modules,�lling the delarations of one argument with the de�nitions of the other, and vie versa. Considerthe following mixin module.mixin B =importval y : intval g : int -> intexportdefine x = y + 1define f z = ... g ...end 18

The omposition mixin C = A + B of A and B is equivalent to the mixin module:mixin C =importexportdefine y = (g 0) + xdefine g z = ... f ...define f z = ... g ...define x = y + 1endThe delarations of one mixin module are replaed with the similarly named de�nitions of theother. The export setion is the onatenation of the export setions of A and B. The ode remainsunevaluated, so the evaluation of C does not go wrong. However, there is an ill-founded reursionbetween x and y, and if we try to evaluate the ode ontained by C, a dynami error will our.Fortunately, mixin modules feature late binding: one may delete the de�nition of x in B, thanks tothe delete operator |-.mixin B' =importval x : intval y : intval g : int -> intexportdefine f z = ... g ...endA new de�nition for x may be de�ned in another mixin module:mixin D = importexportdefine x = 0endThe mixin module E = A + B' + D is equivalent tomixin E = importexportdefine y = (g 0) + xdefine g z = ... f ...define f z = ... g ...define x = 0endNow, all holes are �lled, and the mixin module an be instantiated. It is the role of the loseoperator, whih generates a module out of a mixin module without holes: module M = lose E.The semantis of lose inludes a reordering of de�nitions, in order to avoid referenes to a notyet evaluated de�nition. The initial ordering is kept, as far as possible. Here, it results in onlymoving the de�nition of y, beause it needs the values of g and x (and possibly f) to evaluate. Thede�nition module M = lose E is equivalent to:module M = strutlet re g z = ... f ... 19

f z = ... g ...let x = 0let y = (g 0) + xendThe evaluation of M onsists in suessively evaluating the de�nitions, and returning the evaluatedmodule:module M = strutlet re f z = ... g ...and g z = ... f ...let x = 0let y = Vend(Where V is the result of (g 0) + x.)We refer to [16, 6℄ for more details on mixin modules and other operators.1.3.2 An extended binding onstrutIn MM, the de�nitions of x and y ould not have been inluded in the mutually reursive de�nitionof f and g. Indeed, the let re onstrut of ML only allows to bind syntati funtions (oronstruted values in the ase of OCaml). Therefore, in the ase of more omplex dependeniesbetween the de�nitions of a mixin module, instantiation would lead to nested let and let rebindings. In order to avoid this ompliation, our alulus features a slightly more powerful let rethan that of ML, whih is reminisent of monadi reursive bindings [33℄. It evaluates the de�nitionsfrom left to right, and basially only goes wrong when the value of a variable de�ned to the rightof the urrent de�nition is needed. For instane, the de�nitionlet re f x = ... g ...g x = ... f ...x = 0y = (g 0) + xevaluates orretly: f, g, and x are already values, and y is de�ned last.Notie that the body of f makes a referene to g, whih is de�ned to the right of it. We allsuh a referene a forward referene. A forward referene is syntatially orret if it points to anexpression of preditable shape. In the above example, the de�nition of g is a syntati abstration,whih is onsidered an expression of preditable shape. A forward referene is semantially orretif it does not require the value of the referened variable. In the above example, the de�nition ofg is already evaluated, so it doesn't need to inspet the value of f.1.3.3 Typing issuesOur let re is not muh more powerful than that of ML. Its main interest is that omplexseries of sequential let bindings and mutually reursive let re bindings are now written asstraightforward de�nitions. Its typing is muh less straightforward of ourse, sine it requiresthe analysis of dependenies between the de�nitions. This analysis has to go beyond immediatedependenies, as shown by the following example.20

Example 1 Consider the following binding, where braes enlose reords and X and Z are reord�eld names.let re x = { X = z }y = x.X.Zz = { Z = 0 }There is a forward referene from x to z, but the de�nition of z is of preditable shape, so theexpression is syntatially orret. Moreover, there are no forward referenes needing the value ofthe referened de�nition. One ould expet it to be a suÆient ondition for the binding not to gowrong beause of dependenies. Unfortunately, the evaluation of the de�nition of y needs both thevalues of x and z.Roughly, the orret requirement is that no forward referene path starts with a strit dependeny.We say that a de�nition x = M stritly depends on another one y = N, when the evaluation ofM might require the value of y. What does \might require" mean here? It is a very restritivesyntati approximation: the only ase where we detet that an expression M will not need thevalue of one of its free variables x is when M is a value of preditable shape. In example 1, there is aforward referene path from x to z, whih does not end with a strit dependeny, sine { X = z }is a value of preditable shape. However, this path extends to a forward referene path from y toz, whih starts with a strit dependeny. Therefore, the binding is rejeted by the type system.We have seen that mixin modules are instantiated by the lose operator, whih generates a bindingout of them. In order to statially ensure that this binding is orret, the type system keeps trak ofthe dependenies between mixin omponents. The type of a mixin ontains both type informationabout its omponents, and a graph representing their dependenies. When omposing two mixinmodules, the type system takes the union of their dependeny graphs. When a onrete mixin (amixin with no delarations, only de�nitions), gets instantiated, its graph is required not to haveyles with strit dependenies. This is suÆient: if there is no yle with strit dependenies, thenan ordering of de�nitions an be found, suh that no forward referene path starts with a stritdependeny. The lose operator �nds this ordering.1.3.4 What is a mixin module not?A funtorThere are failities to extend an existing funtor with new �elds. However, this kind of extensiondi�ers in at least two important ways from the way a mixin extends another mixin.First, existing �elds will be shadowed by new de�nitions with the same name. With mixin modules,depending on the operator used for the extension, a previous �eld with the same name either yields alash or is overridden. In other words, mixin omponents are late-bound together, whereas moduleomponents are statially bound.As an example, onsider the following module:module A =strutlet f x = xlet x = f 0endIf we try to extend it with a mixin module, we de�ne:21

mixin B =importexportdefine f x = x + 1endAnd then, we ompose the two mixin modules by overriding (A <- B) to obtain a new mixin moduleequivalent toimportdefine x = f 0define f x = x + 1endThe previous value of f has been removed, and instantiating the result yields a module equivalenttostrutlet f x = x + 1let x = 1endIf onversely we try to extend it with a funtor, we rather write:module B' (X : sig val x : int end) = strutinlude Xlet f x = x + 1endThen, we apply the funtor (B'(lose A)). This time the result is equivalent tostrutlet f x = xlet x = f 0let f x = x + 1endwhih evaluates tostrutlet x = 0let f x = x + 1endAnother di�erene between funtors and mixin modules is that, a mixin module really extendssomething, whereas a funtor ould rather be said to oere it �rst, and then extend the result.Indeed the argument of a funtor is asribed a signature, and during funtor appliation, is oeredto this signature. As a result, if an argument with more �elds than expeted is passed as anargument to a funtor (that extends its argument), the result will not mention the unexpeted�elds.Consider for example the funtor 22

module F(X : sig end) = strutinlude Xendand the mixin modulemixin A =importexportendWhen applied to a module X = strut let x = 0 end, the funtor F generates an empty module,thus not extending X at all.On the ontrary, when omposed with a mixin module X = import export define x = 0 end,the mixin module A evaluates to a mixin module equivalent to X, thus really re-exporting all theomponents of it.A mixin lassA mixin lass is basially a lass extension parameterized over the superlass it extends. It is aspeial kind of funtion over lasses. At �rst glane, a �rst di�erene appears: mixin lasses are tiedto the objet-oriented programming paradigm. True, but not enough to make a lear distintion:a lass exports some de�nitions, as a module does, and �eld de�nitions require some omputationto happen at initialization time, whih is pretty muh the kind of interation mixin modules havewith their lients.A deeper di�erene is that (at least our) mixin modules feature omponent reordering aording totheir dependenies, thus allowing to automatially rearrange almost any kind of program parts. Onthe lass side, no reordering of initialization omputations is performed, so mixin lasses are lessexpressive in this respet. Further, mixin modules allow to speify the order in whih omputationsare performed, whih is not the ase with lasses.Aording to Braha [16℄, mixin module operators express inheritane mehanisms in a �ner waythan mixin lasses operators. Spei�ally, they allow to resolve onits during multiple inheritanemore exibly than with mixin lasses. However, sine then, new notions of mixin lasses haveappeared, whih ould invalidate this laim [35℄.On the whole, the underlying fundamental idea of any module system is onservativity. Conserva-tivity is a semi-formal term designing the property that any running ode obtained by ombinationof modules ould have been produed without the module system, by a monolithi program. Thisnotion onerns the struture of the program as well as the eÆieny, and it requires that, as faras possible, a module system only does modularization, and that it does not derease the overalleÆieny of programs. Mixin lass-based systems are extensions of lass-based systems. In pra-tie, it implies objet-oriented programming, so mixin lasses as a module system do more thanjust modularize some monolithi ode. In theory, one ould use mixin lasses as a pure modu-larization onstrut, but as suh they are not expressive enough. Indeed, they hardly allow morethan grouped, parameterized de�nition of funtions with late binding and inheritane. This isquite powerful already, and roughly orresponds to Jigsaw plus initialization (see setion 2.1), butis not exible enough with respet to initialization. In programs, omputations an be arbitrarilyinterleaved with funtion de�nitions, and this should be reeted by the module system.On the ontrary, some lass-based languages, suh as C++ [73℄, allow to share some data betweenall instanes of a same lass, through \stati members" de�nitions, whih mixin modules do notsupport diretly. 23

24

Chapter 2A brief history of mixin modules
2.1 JigsawIn his PhD thesis [16℄ and the related artiles with Cook [17℄ and Lindstrom [18℄, Braha presentsfor the �rst time the idea of mixins as a modularity mehanism relatively independent from thebase language { the Jigsaw \framework". His mixins are partially de�ned reords of named valuesunder a reursive sope. They are equipped with a set of novel operators on them, whih expressin a very lean way multiple inheritane with enhaned exibility, omponent sharing, renaming,hiding, and rede�nition (overriding).We briey give an idea of the language. Its syntax is in �gure 2.1. We abstrat over typing issues.A module is a sequene of omma separated delarations (a label X), and de�nitions def , whihan be ore de�nitions X = E or module de�nitions X = e. De�nitions must bind values, and mayrefer to one another and to delarations. Modules must be losed: they must not have any freevariable. This is really simple yet: no virtual de�nitions, no distintion between instane variablesand methods, no \friend" delarations, et. . . The omplexity and expressiveness of Jigsaw residesin the operator suite.Module omposition jj has the e�et of �lling the holes (the delarations) of both modules withthe de�nitions of the other, and vie versa. For example, if label X was delared in e1 and de�nedin e2, it is now de�ned in e1 jj e2, as in e2. Modules must not have any de�nition in ommon, onlydelarations, possibly.Module overriding is similar, but modules may de�ne ommon labels. The ones from the rightargument replae the ones from the left argument. De�nitions are late bound by default: assumethat in e1, the de�nition of X makes a all to Y , and that Y is de�ned in both e1 and e2. Then,in any instane of e1� e2, the one and only Y de�nition available is the one from e2, and X allsit as well.There is a way to make binding stati, through the freeze operator. After freezing a label Xin a module, it is still available to the outside world, but the other de�nitions of the modulesemantially rather refer to a loal opy of it, whih annot be modi�ed anymore. The dualoperator freeze all exept freezes all labels but the given ones.Name onits during a omposition e1 jj e2 may be solved in several basi ways. Assume forexample that the label X is de�ned in both e1 and e2.� If one of the oniting de�nitions, say the one of e1, must be hosen as the �nal one for bothmodules (overriding the one of e2), then X may be deleted from e2 (e2 nX). This an bedone another way, in the ase where only a few de�nitions have to be kept from one module,25

Module: e ::= module binding1; : : : ; bindingn end Basi modulej e1 jj e2 Compositionj e1� e2 Overridej e freezeX Freezingj e freeze all exeptfX1 : : : Xng Complementary freezingj e nX Deletionj e �X1 : : : Xn Projetionj e hideX Hidingj e showfX1 : : : Xng Showj e[X1 7! X2℄ Renamingj e opyX asY Copy asInstane: i ::= instantiate eDe�nition sequene: binding ::= X j def Bindingdef ::= X = e j X = E De�nitionFigure 2.1: Syntax of Jigsawby the projetion operator, whih deletes all de�nitions of a module, exept the given ones(ei �X1 : : :Xn).� If one of them, say X in e1, is the good one for the outside world, but the de�nition of X ine2 must still be referened by the de�nitions of e2 after omposition, then X an be hidden ine2 (e2 hideX). Other omponents will keep their anonymous opy of it, but it will not appearin the interfae of the module, whih may safely be merged with e1. Similarly to deletion,this an be done another way, in the ase where only a few labels have to remain visible, bythe show operator, whih hides all omponents but the given ones.� If oniting names have to be kept both, having di�erent apabilities, then de�nitions anddelarations may be renamed (ei[X 7! Y ℄). The new names must not be mentioned in theargument.Of ourse these operators may be used for di�erent purposes ; for example, renaming may be usedfor plugging a de�nition of a module in an input label of another module, even if they do notinitially have the same names.The last operator, opy, is not easy to understand ; espeially, it is not easy to see why it isimportant. Braha takes the example of a mixin supposed to add borders to windows, in theontext of a window manager, and of an objet-oriented ore language. Let Border be a mixinde�ning the funtions display and display border, and delaring only the missing funtiondisplay body. The funtion display suessively alls display border and display body.Border = moduledisplay body,display () =display border () ;display body ()endNow we dispose of another mixin de�ning the funtions for windows. Assume it has been de�nedas follows. 26

Window = moduledisplay () =...endThe reasonable intention is to plug window.display in border.display body, keeping the nameborder.display. So a kind of renaming of display into display body in window is needed. But itis more ompliated than that. Other referenes to display inside window should refer to the �naldisplay funtion, i.e. border.display, and that would ertainly not be the ase with renaming:they would point to the renamed window.display funtion. The expression opy display asdisplay body opies the body of display, giving it the label display body. It is then possible tooverride display with the de�nition from border, obtaining the expeted behaviour.Conlusion From the standpoint of design, Jigsaw is rather onvining: mixins are more powerfulthan lasses, without their traditional problems with binary methods, or multiple inheritane forexample. They move the expressive power from the basi onstrut to the operator set, resultingin a more exible design. But more generally, mixins are presented as being usable \to introduemodularity into a variety of languages, regardless of whether they support �rst lass objets". Morethan that, it suggests that highly epxressive mehanisms for modularization suh as inheritane, latebinding, and so on, ould be exploited outside the ontext of objet-oriented languages. Indeed, oneof the main harateristis of objets is self appliation, whih is not at all a neessity in Jigsaw.Braha did not push this aspet of his work as muh as he ould have: the only examples andappliations given, inluding a full edged implementation of Modula-� (an extension of Modula-3 [20℄), are objet-oriented. The extension of non objet-oriented languages is only informallysuggested.The framework has oÆial weaknesses of ourse, suh as the lak of support for name based typing(type abbreviations, generative types), or for abstrat data types.Other drawbaks of Jigsaw are:� Modules do not ontain any free variable.� Modules ontain only values, whih almost redues mixin-based module systems to librariesof funtions. For example, if instantiation of a mixin requires some initialization ode to berun, it has to be done manually, whih breaks the abstration power of mixins modules.� The semantis of Jigsaw is given by translation to an untyped �-alulus with reords, andtyping rules are given. The type system is pretended to be sound, but there is no attemptto argue on that, and doubt remains about some oddities. For example, in the informaldesription, mixins look like lasses, with a global reursive sope, and in the formal de�nition,they are translated as reords of values. This leads to assume that the soure level reursivesope of modules will be translated as self aess to omponents, by reord label, but thisdoes not appear at all in the translation.From the standpoint of implementation, interesting ideas are introdued, espeially the notion ofdynami and stati o�sets for ompiling method alls. The implementation of the freeze operatorthough, seems strange, sine it does nothing, as if freezing would only at on the type system.Nevertheless, it seems that this does not �t the semantis.As a onlusion, Jigsaw is not really usable diretly as a sound theoretial basis for mixin modules,but its design must be a guideline for our investigations.27

Core identi�ersx 2 Varsx 2 Names Module identi�erss 2 MVarss 2 MNames Type identi�erst 2 TVarst 2 TNames Construtors 2 CNamesPath: p ::= � j s j p:sModule: Mt ::= strutM end j funtor(struture ss : St)Mt j (Mt : St)j p j p(p) jM�(Mb)M jMt
Mt j los(Mt)Mixin body: Mb ::= val ff = �x:E j type tt j t is� jMb;Mb j �Module body: M ::= struture ss =Mt j type tt j t = � j t is� jM ;M j DValue de�nition: D ::= fun f 1f = �x1:E1 jj : : : jj f 2f = �x2:E2j val xx = E j D;D j �Core: E ::= ? j x j p:x j p:(E1 : : : En) j EE j �x:Ej letD inE j aseE of R1 0j0 : : : 0j0 Rn j innerMathing: R ::= P) EPattern: P ::= x j p:(x1 : : : xn)Module type: St ::= sigS end j funsig(struture ss : St)St j S�(S)SSignature: S ::= type tt j t = � j t is� j val xx : �j struture ss : St j S;S j �Core type: � ::= t j p:t j �1 ! �2Data type de�nition: � ::= (�1 : : : �n) j � [�Figure 2.2: Syntax for DS2.2 Duggan and Sourelis' mixin modulesIn [31, 32℄, Duggan and Sourelis introdue a language of mixin modules, whih we will name DShere. It is a proposal for making ML modules more extensible. Their work is quite di�erent fromBraha's: they do not attempt to use his operators, exept omposition and instantiation. Aonsequene is that their mixin modules do not feature renaming, deletion, or opy. However, theyfeature a more powerful { and more spei� to ML { version of omposition. Indeed, when twomixin modules A and B de�ne and export a funtion f , and when this funtion is de�ned withpattern-mathing in both mixin modules, then the omposition of A and B attempts to mergethose pattern-mathings, thus building a less partial f from the two initial ones. There are similarmehanisms at the level of onrete data types, building a new data type with the onstrutors ofboth arguments. Also DS features a limited form of late binding, as explained below.2.2.1 Overview of the languageMore formally, DS is de�ned by the syntax in �gure 2.2. A distintion is made between names x, s,t and variables x , s , t , respetively for the ore language, for modules, and for types. A basi mixinmodule A =def M1�(Mb)M2 is deomposed into three parts: the prelude M1, the body Mb, and theinitialization M2. The module bodies M1 and M2 are usual ML struture bodies: they are lists ofnamed de�nitions, inluding any ore language expression, mutually reursive funtions, modules,or types. Eah de�nition is bound both by a name and a variable. In a mixin module, bindingvariables are alpha-onvertible, and binding names are not, beause linking mixin modules is based28

on names, as we will see. In A, the body Mb is a restrited form of struture body: only syntatifuntions and ML-like data type de�nitions are allowed. Mixin modules an be merged togetherwith the omposition operator
. The prelude and initialization parts of the two arguments aresequened one after another, and the bodies are merged, in the following sense.� Two funtions de�nitions �x:E1 and �y:E2 bound to the same external name (whih are thenrequired to have the same internal variable), are merged into one funtion �x:Efinner 7!�y:E2g� Two data type de�nitions �1 and �2 bound to the same external name (whih are thenrequired to have the same internal variable), are merged into a single data type de�nition�1 [�2, provided no onstrutor names are de�ned twie.Thus, the omposition of two basi mixin modules M11 �(M1b)M12 and M21 �(M2b)M22 is(M21 ;M11)�(M2b
M1b)(M22 ;M12);where
 denotes the above desribed merging. Apart from the mixin bodies, the two arguments'omponents should not interat, and their binding variables are required to be pairwise disjoint.Mixin modules ontain unevaluated ode, and the lose operator los allows to evaluate them, andreate a proper module with their exported omponents. Other syntati entries inlude the ones ofthe ML-module language, namely basi modules strutM end, funtors funtor(struture ss : St)Mt(where St is a mixin module type). The ore language is a toy funtional language with patternmathing, and two speial onstruts:� the ? \unde�ned" onstrut, whih arises in ase of an expression mathed by none of theproposed patterns ;� and the inner onstrut, whih alls a future extension of the onsidered funtion.2.2.2 Expressiveness and limitationsMain expressiveness exampleThe DS language allows to more intuitively modularize interpreters, and by extension any programoperating on strutures similar to abstrat syntax trees. The idea is demonstrated by writing aninterpreter for a toy language in DS , as skethed hereafter. The partiularity of the interpreteris that it is implemented as a set of mixin modules that only have to be omposed together tobuild the omplete program, even though these mixin modules split yli de�nitions. For instane,numerial onstants are treated by the following Num mixin module.Num =def �� type tterm; t isConst(int)type vvalue; v isNum(int)type eenv; e = string ! vevaleval = �x:�env : asex of0j0 Const(i)) Num(i)0j0 x) (inner x env)�The Num mixin module de�nes the Const onstrutor for the type term of terms, and the partof the eval evaluation funtion whih evaluates it to the orresponding Num onstrutor, bound29

to the value type for values. The mixin module may be omposed with the mixin module forfuntions and appliations, de�ned by Fun:Fun =def � fun bindbind = �x:�v:�env :�y: if x = y then v else(env y)�� type tterm; t is Var (string)[Abs (string ; t)[App (t ; t)type vvalue; v isClos(t ; e)type eenv; e = string ! vevaleval = �x:�env : asex of0j0 Var(s)) (env s)0j0 Abs(s; term)) Clos(Abs(s; term); env)0j0 App(f; term))(ase eval f env of0j0 Clos(Abs(s; fbody); env 0))eval fbody (bind s (eval term env) env 0)0j0 x) raise Error)0j0 x) (inner x env)��Similarly, Fun de�ne the onstrutors and the evaluation related to the handling of higher-orderfuntions in the interpreted language. The omposition of Num and Fun yields a mixin moduleequivalent toInterp =def � fun bindbind = �x:�v:�env :�y: if x = y then v else(env y)�� type tterm; t is Var (string)[Abs (string ; t)[App (t ; t)[Const(int)type vvalue; v is Clos (t ; e)[Num (int)type eenv; e = string ! vevaleval = �x:�env : asex of0j0 Const(i)) Num(i)0j0 Var(s)) (env s)0j0 Abs(s; term)) Clos(Abs(s; term); env)0j0 App(f; term))(ase eval f env of0j0 Clos(Abs(s; fbody); env 0))eval fbody (bind s (eval term env) env 0)0j0 x) raise Error)0j0 x) (inner x env)��Here Interp is observationally equivalent to the omposition of Num and Fun, but in DS , themerging of the two eval funtions would rather appear as a �rst mathing on theConst onstrutor,and another, nested one on the remaining onstrutors, replaing the initial all to inner.Notie also that in DS , stritly speaking, the env type ould not be shared during omposition asin Interp, sine only data type de�nitions are allowed in mixin bodies. A workaround would be toinline the de�nition of env in the mixin bodies, and possibly to export it in the initialization setion.Alternatively, an extension of DS , allowing any type de�nition in mixin bodies, and merging typeabbreviations when equal, would probably not be too diÆult to formalize.Other observations on expressivenessGeneralized abstration As Braha's mixins, mixin modules in DS allow to abstrat oversome module omponents in another way than with funtors. Indeed, putting a de�nition ff =30

funx:(inner x) in the body of a mixin module s1 has the same e�et as abstrating over ff . Theadvantage is that the mixin module s2 providing the de�nition for ff ould perfetly have abstratedover another de�nition gg, whih s1 would provide. However, in DS , as in Jigsaw, this abstrationmehanism does not work with mixin modules, sine they are not allowed in mixin bodies. The onlyway to abstrat over them is by funtor abstration. This makes the above example of abstrationimpossible to implement diretly with mixin modules instead of funtions. In other terms, mixinmodule spei� features in DS do not onern nested mixin modules.Extension In [32℄, mixin modules are slightly extended with extensible data types onstrutors.This means that during omposition, two type onstrutors with the same names, respetivelyexpeting two lists of types �11 : : : �1n1 and �21 : : : �2n2 , are merged. The result is a type onstrutorexpeting the list of types �11 : : : �1n1 ; �21 : : : �2n2 . The extended alulus is used to show how toimplement interpreters for domain-spei� languages in a modular way [30℄.Overriding The DS language features a limited form of overriding, for omponents de�ned inthe body of the onsidered mixin module. Indeed, a funtion f , exported by a mixin module A anbe overridden with the new de�nition E, not mentioning inner, by omposing A with the mixinmodule B =def �(fun ff = E), obtaining B
A. The de�nition of f in B
A is Efinner 7! E0g,where E0 is its de�nition in A. And it is equal to E, sine it does not mention inner. At lose time,other de�nitions will refer to the new de�nition.Typing The DS language is equipped with a type system based on manifest types [51, 40℄, andfeaturing type abstration. Soundness is known to be diÆult to prove in the presene of typeabstration. Indeed, an expression supposed to be of an abstrat type t only evaluates to a valueof its implementation type, say int for example. The equational theory of types does not ontainthe equality t = int , and therefore subjet redution does not hold. For DS , soundness is provedin a non-standard way. First, a new type system is de�ned, as the initial one, but without typeabstration. Basially, the types of modules in the seond system are types of the �rst one, but arerequired to only export manifest types. It is then showed that a term of type St in the system withtype abstration is neessarily well-typed in the one without type abstration. Finally, soundnessis proved for the type system without type abstration, whih entails soundness for the one typeabstration (see also [56℄). Notie that this is a proof of type soundness, in the sense that well-typed programs do not go wrong, but it does not guarantee that abstration is preserved duringredution. Indeed, it does not prove that during redution, values of abstrat types will not beused at other types.ConlusionDS ontains many interesting ideas for the design of a highly modular, ML-like language. However,all its features are expressed through the single omposition operator. Braha aimed at splittingthe omplexity of modularity into spei�, simpler operators. The language DS does not followthis reommendation. Moreover, it ties the module language to the partiular ore language ML,and spei�ally to extensible pattern mathing and data types. Extensible pattern mathing anddata types are ertainly useful, but not in every ase, and we prefer to onsider their treatmentas orthogonal to the module system. Finally, the fat that mixin module spei� features arerestrited to a dediated area, where only datatypes and funtions are admitted, seems a bit adho, and we would prefer a leaner treatment. 31

2.3 UnitsThe \Programming language team"(PLT), spei�ally Felleisen, Flatt, and Krishnamurthi, havewidely studied the subjet of language designs for inreasing the reusability of software omponents.The omponent-based and objet-oriented approahes have been investigated, but what interestsus here onerns the modular approah.2.3.1 MzShemeAn important result of their work is of pratial nature, and onsists in the extension of theprogramming language MzSheme with units. MzSheme [34℄ is an implementation of the pro-gramming language Sheme, a dynamially typed, funtional and imperative language, originatingin Lisp. Units are a language onstrut dediated to modularization. The idea omes from theobservation that if pakages were not hard-wired to their imports, then they would be extensi-ble. What is intended by \hard-wired" here is that pakages syntatially refer to �xed externalimports. Flatt's idea onsists in making these imports abstrat, i.e. parameters of the pakage,and making all further links between pakages expliit to the programmer: if a pakage A providesthe value f, and the pakage B imports a value g, and if the programmer estimates that A's forresponds to what B's g is expeted to do, then they may be linked together by an expressionsuh as (simpli�ed)(ompound-unit(import ...)(export ...)(link (A)(B (A f))))speifying that B's import if �lled by A's f.The language is designed aording to Flatt's priniple of external onnetions [35℄:A language should separate omponent de�nitions from omponent onnetions.In MzSheme, a unit is a ompletely standard data struture, resembling a reord of possiblymutually reursive named de�nitions, and initialization expressions. The thing is that de�nitionsan be empty ; in other terms, the reord has holes. Some of the reord de�nitions may be justdelared, instead of de�ned.As an example basi unit, onsider the following unit DB, de�ning a database struture, parame-terized over the way the lient wants to report errors.(unit(import error)(export new insert delete)(define new � � �)(define insert � � �)(define delete � � �))Nothing speial here, it resembles a funtion. But now, let GUI be:32

v ::= unit j j fnx) ee ::= ompound -expr j invoke-expr j letre-expr j e; e j x j ee j vunit-expr ::= unit import variable-mapping�export variable-mapping�de�nitions eompound -expr ::= ompound import y�export y�link e link and e linkinvoke-expr ::= invoke ewith value-invoke-link�letre-expr ::= let re de�nitions in ede�nitions ::= value-defn�value-defn ::= valx = vlink ::= with y� provides y�variable-mapping ::= y = xvalue-invoke-link ::= y = ex ::= variabley ::= linking variable ::= primitive onstantFigure 2.3: Syntax for Unitd(unit(import insert)(export open error)(define open � � �)(define error � � �))de�ning the user interfae for the previous database. Reursion is allowed to span unit boundaries,so DB and GUI may be onneted to form a ompound unit PROGRAM. As we have both DB dependingon GUI through error and vie versa through insert. This solves the reursion problem from thestandpoint of expressive power, but not with respet to safety, sine nothing ensures that thereursion is well-founded.Units are piees of unevaluated ode, and triggering the evaluation of a omplete unit is done bythe invoke form, as in invoke PROGRAM. This triggers a left to right evaluation of all the lausesin the unit body.Units are �rst-lass values, and this makes the language partiularly expressive. In partiular, unitsdiretly aount for dynami linking, sine a hoie between several units may be made at runtime.As a demonstration of expressive power, Flatt [35℄ elegantly solves an instane of the extensibilityproblem with units and lasses, through a straightforward enoding of mixins, as units importing alass and exporting the modi�ed lass. Units do not feature overriding of de�nitions, and thereforea solution to the modi�ation problem with units probably would use lass inheritane for this.2.3.2 TheoryIn his thesis [35℄, Flatt formalizes a theory of units, in three aluli. Unitd, the �rst unit alulusmore or less models the behavior of MzSheme. The next two ones (Unit and Unite) suessivelyadd onstruted types and type abbreviations to Unitd.33

yi 7! xix = v� � �eye 7! xe
:::::::��:::::::::�� :::::::::::::::::::::::::::::�� :::::::::::::::::::::��

��

::::::::::: :::::::::::&& ::::::::::::::::::::::~~
Figure 2.4: A basi unit and its syntati layersyi 7! xiyw1 7! xw1 yw2 7! xw2yi1 7! xi1 yi2 7! xi2x1 = v1e1 x2 = v2e2ye1 7! xe1 ye2 7! xe2yp1 7! xp1 yp2 7! xp2ye 7! xe

//
//

/

�� ��
��
�

��yy %%

��
�
����

�
��

���� ����

,,
,,

,,

�� ��
��
��

��

redues to yi 7! xix1 = v1x2 = v2e1; e2ye 7! xeFigure 2.5: A ompound unit and its redutionThe Unitd alulus The syntax for Unitd is de�ned in �gure 2.3. A unit is a quadruple of alist of imports, of the shape y1 = x1 : : : yn = xn, a list of exports, of the same shape, a list of valuede�nitions x1 = v1 : : : xn = vn, and an initialization expression e. Roughly, a unit is an inomplete,unevaluated program, and it may be ombined with other units, almost arbitrarily. The import andexport setions serve to mediate the internal name spae of the unit with its environment, throughthe use of linking variables. A syntati distintion is made between linking variables, denoted byy, and plain variables x. Linking variables at as external names for de�nitions. Indeed, we will seethat during the omposition of two units A and B, plain variables from A must be di�erent from theones from B (and vie versa), exept if they are imported or exported as the same linking variable.A pitorial view of a basi unit is given in �gure 2.4. Dotted arrows indiate a possible dependenyof the target on a plain variable de�ned by the soure: apart from free variables, the de�nitions areallowed to refer to themselves and to imported variables. The initialization expression is allowedto refer to both de�nitions, imported variables, and also external, free variables. The plain arrowrequires the internal variables of the target to be inluded in the ones of the soure: the exportedvariables must be de�ned within the unit (with arbitrary external names).The ompound onstrut omposes two units A and B as follows.ompoundimport yiexport yelinkAwith yw1 provides ye1andB with yw2 provides ye2The notation y represents a sequene of linking variables. Two intermediate layers of variablemappings are introdued: the import layer yw1 yw2 and the export layer ye1 ye2. Their role is34

to make onnetions between both arguments and with the external interfae of the result. Thearguments are expeted to evaluate to basi unit expressions, and the semantis of ompositionthen simply merges the sets of de�nitions and sequenes the two initialization expressions. ThediÆulty is that all layers must agree on internal variables, as indiated in �gure 2.5. The arrowsrepresent inlusion of variable mappings: the target variable mapping must be inluded in the unionof the soure variable mappings. Moreover, intermediate variable mappings allow to statially havean estimation of imports and exports of both arguments, even when they are not syntati basiunits. Besides, they enable to resolve some name onits. Indeed, if the two arguments exporta variable y, it is possible to ignore one of them, by simply not putting it in the orrespondingexport layer. We will see below that this enables a form of subtyping.The invoke form transforms a unit into a let re as expeted, and the rest of the alulus, featuringfuntions and let re bindings, is exatly as expeted.Restritions The alulus indeed models MzSheme, with some restritions.1. Pakages are not modeled (thus restriting separate ompilation to single units).2. The omposition operator is binary instead of n-ary and that it does not allow renamingduring omposition.3. De�nitions must be values.Simultaneously, it extends MzSheme's units on two points.1. Linking in ompound units is done by name, instead of position.2. In unit bodies, de�nitions are separated from initialization expressions, and during linking,they are all put after all de�nitions.Extensions should be a good thing. The �rst one has been introdued in MzSheme, with signedunits. The seond one has not, to our knowledge.We will not argue here about the �rst two restritions, sine they would probably be easily over-ome.But let us examine a bit the onsequenes of the third one. Restriting de�nitions to values onsid-erably simpli�es the semantis of invoke, sine it beomes a mutually reursive de�nition (let re)of values, followed by a unique initialization expression. In ontrast, without this restrition, anoperational semantis would have to speify the order of evaluation and to feature a more powerfullet re onstrut for desribing this evaluation. As a onsequene, the programmer must expliitlyevaluate all its de�nitions before building a unit, with the inonvenient that they annot be re-exported, sine variables are not values. This is probably not too restritive, sine units are �rstlass, but in some ases, it is annoying, as shown by the following example.Example 2 Assume that we are supposed to write a unit whih prints ML-like type variables:they are represented as reords, but are unnamed, and the unit must therefore hoose names 'a,'b, et. . . , and provide a reset funtion.In OCaml, this is done with the funtor of �gure 2.6, with an internal referene, whih the printfuntion inrements, and the reset funtion resets. With Unitd, it seems that either the referenewould have to be de�ned outside the unit, whih might break the abstration, or a better workaroundhas to be found. A possibility an be skethed as followsletPrintTyV ar = fn())letx = ref 'a' inunit import error eqexport print tyvar: : :35

module PrintTVar(Base : sigval error : string -> 'aend)(TVar : sigtype tval eq : t -> t -> boolend) = strutlet vars = ref ([℄ : (TVar.t * string) list)let urrent_name = ref 'a'let reset () = urrent_name := 'a' ; vars := [℄let new_name () =let = !urrent_name inlet n = Char.ode inif n > 122then Base.error "annot print that many type variables. "elselet ' = har_of_int (n + 1) inurrent_name := ';"'" ^ (String.make 1)let string_of_tyvar v =trysnd (List.find (fun (v', name_v') -> TVar.eq v v') !vars)with| Not_found ->let s = new_name () invars := (v, s) :: !vars;slet print_tyvar fmt v =Format.fprintf fmt "%s" (string_of_tyvar v)end Figure 2.6: Printing type variables in OCaml
36

(let x = e1 in e2 is syntati sugar for (fn x) e2) e1.) It onsists in wrapping the unitinside a funtion that de�nes a loal referene and returns the unit, whih may use the referene,without breaking the abstration. The restrition of de�nitions to values seems therefore reasonable,but still a bit ad ho. It learly would be preferable to allow any expression as a de�nition.In the other setions, we examine the other aspets of units independently of this importantdrawbak, and of the restritions.2.3.3 TypesStill in Flatt's thesis [35℄, two suessive extensions of Unitd with types are presented. Unitintrodues onstruted types in a simpli�ed form. Delarations of the shapetype t = x1 ; x1d �1 j x2 ; x2d �2 � xmare allowed, and should be read as the delaration of a type with two onstrutors x1 : �1 ! t andx2 : �2 ! t, two destrutors x1d : t ! �1 and x2d : t ! �2, and a �lter xm, whih takes a value oftype t as argument and returns true if it is of the form (x1 v) and false otherwise.Types may be exported (as abstrat types), thanks to type linking variables s. The programmermay deide to export the onstrutors and destrutors for his type, or not. In ontrast with themanifest types [51℄ { transluent sums [40℄ systems, there is no mehanism for externally seletingomponents, so every use of values related to onstruted types are in their unit of de�nition, orin a unit importing them. As a onsequene, there is no need for the usual intriate triks forreferring to abstrat types: they are syntatially bound by imports. A type system is presented,whih is proved sound, exept for variant errors: a term suh as x1d(x2e) is well-typed.The seond extension onerns type abbreviations. The only diÆulty is to prevent reursive typede�nitions, whih is done by keeping trak of type dependenies in the the unit types, and detetingyles at omposition site. Exporting type abbreviations as manifest types is not possible yet, butit seems to be easy to add.Subtyping There is no subsumption rule in the typed unit aluli (for algorithmi reasons), butsubtyping is inlined in the omposition and invoke rules. The well-known problem for subtypingextensible reords with symmetri onatenation [42℄ does not ause trouble here. Symmetrionatenation takes the union of two reords, provided labels do not lash. The problem basiallyis the following. The intuitive subtyping relation between extensible reords is that a reord de�ningmore labels, with �ner types, than another reord may safely replae it. This intuition is wrong,beause a reord with more labels than expeted may entail label lash during onatenation.Here, the omposition operator oeres its argument in one go to the expeted type. Indeed, theintermediate layers (see �gure 2.5) avoid unexpeted label lashes.A new idiom for modularization Semantially, modules are not nested, and there is no on-strution for aessing a de�nition inside a module. Instead, the idea is that the whole program is alet re de�nition, followed by initialization expressions, but that units allow to split it into parame-terizable fragments, whih may be separately distributed and used. This signi�antly departs fromtraditional modules, whih are more or less assimilated with reords. Module evaluation allows tode�ne a reord, and after that, other parts of the program have aess to its de�nitions, throughthe seletion operator. Here, idiomatially, the program struture is less hierarhial: in order touse a de�nition exported by a unit, the programmer has to merge his ode with it, to produe anew unit, whih stays at. (More than that, as only values are allowed as de�nitions, ompoundunits annot be de�ned inside units, thus restriting the possibilities of unit nesting.)As a anonial example, from [35℄ again, the diamond problem beomes more or less meaninglesswith units. In ML, assume for instane a Symbol module, used by funtors Parser and Lexer,37

Symbol : SYMBOLtype tfuntor Lexer : LEXER(Symbol : SYMBOL) =type sym = Symbol.t funtor Parser : PARSER(Symbol : SYMBOL) =type sym = Symbol.tfuntor Reader (Lexer : LEXER)(Parser : PARSERwith type sym = Lexer.sym). . .Figure 2.7: An example diamond problem, with funtors
Symbol = unitexport type symLexer = unitimport type symexport lex : str ! sym Parser = unitimport type symexport parse : sym ! exprReader = unit import type symlex : str ! symparse : sym ! exprexport read : str ! expr. . .Figure 2.8: An example diamond problem, with units

38

both of whih are later used by the main funtor Reader, as in �gure 2.7. Type sharing allows tospeify that the Symbol module imported by Parser and Lexer has to be the same, in order for themain program to be orret (f the type sharing spei�ation \type sym = Lexer.sym"). Moreover,the linking is performed by �rst building the real lexer and parser, by applying eah funtor toSymbol, and then applying Reader to the results. With units, there would be units for the symbol,lexer and parser entities, but instead of referring to an imported unit Symbol, the lexer and parserwould refer diretly to its de�nitions, as skethed in �gure 2.8. Similarly the Reader unit diretlyimports the type sym and the funtions lex and parse. Linking is done by omposing the four unitstogether. (It is not really possible in the unit aluli beause of the various restritions, but theidea should be lear.)This formalism is an interesting aspet of the PLT work, beause it reveals that the omplexityintrodued by the need for exporting data types and use them outside of their initial sope, asin traditional module systems, might be overome by di�erent design hoies, without loosingexpressive power. Given the depth of this omplexity [28℄, the issue is worth exploring. A drawbakof this approah might arise from the lak of a strutured name-spae. The dot notation [21℄ hasno meaning with units. One ould argue that the name spae is even more strutured with units,sine the internal names are irrelevant to the meaning of the unit, espeially during omposition.Therefore, the programmer may all variables exatly as she wishes aording to the ontext, linkingvariables making the onnetions. However, as argued by Szyperski in [74℄, it is often onvenient tofeature both stati linking, as when using library funtions, so hard-wired imports are still useful.From this perspetive, it is interesting to notie that the pakage system of MzSheme remains,even in the presene of units.2.4 CMSAfter the work of Braha et al., a ontemporary work to those of Duggan et al., and Flatt et al. isAnona's PhD work on a semanti haraterization of mixin modules [3℄. He de�nes mixin moduleswith the tools of ategory theory. After this, Anona and Zua reformulated and improved thisde�nition in terms of a alulus with an operational semantis, alled CMS [5℄. At the same time,Wells and Verstergaard developed their m-alulus [76℄, whih is similar to CMS in many ways.These two ontributions are less pragmati and more foundational than previous work on mixinmodules. We give an overview of both of them, and ompare their respetive merits, beginningwith CMS in this setion. For both aluli, we hange notations and names a bit for homogeneityreasons.2.4.1 Syntax and semantisSyntax CMS [5, 6℄ de�ned by the pseudo-syntax in �gure 2.9. Contrarily to Flatt and Felleisen'swork, the distintion between �-onvertible variables and �xed external names is here syntatiallyenfored: variables are ranged over by x; y; z and names are ranged over by X;Y; Z.CMS is parameterized over an arbitrary ore language, with some onditions, not expliited here,sine they are very intuitive, see [5℄ for details. C denotes a ore expression. In CMS , a oreexpression must be wrapped in an expliit substitution � in the style of [2℄, whih must over thewhole set of its free variables, and not be reursive (FV(od(�)) ? dom(�)).CMS basi modules are onstruted by the [�; o; �℄ form. The meta-variable � ranges over inputassignments, whih are lists of bindings from variables to names, written xi i2I7! Xi. The notation isused also below for output and loal assignments, in the same sense. Assignments must orrespondto surjetive �nite maps and the xis must be di�erent. Output assignments o map names toexpressions, and represent the de�nitions exported by the module. Loal assignments � mapvariables to expressions, and are the hidden de�nitions of the module. The sope of the variables39

Expression: E ::= x Variablej C[�℄ Core expressionj [�; o; �℄ Basi modulej E1 +E2 Sumj ��jEj�o Redutj freeze�f (E) Freezej E:X SeletFinite maps: � ::= xi i2I7! Xi Input assignmento ::= Xi i2I7! Ei Output assignment� ::= xi i2I7! Ei Loal assignment� ::= Xi i2I7! Yi; Y j2Jj RenamingFigure 2.9: CMS syntaxbound by � and � is the whole mixin module. A basi module is well-formed if � and � do not bindany variable in ommon. Composition �1 Æ�2 is de�ned on �nite maps, only if od(�2) � dom(�1).Union �1 + �2 is de�ned on �nite maps �1 and �2, provided dom(�1) ? dom(�2).Module operators inlude omposition, here alled the sum, whih links two modules together. Theredut operator ��jEj�o , is roughly a powerful renaming operator, but not only, sine it expressesde�nition hiding. Here �� and �o are renaming, whih syntatially are pairs of an assignmentmapping names to names and a list of names, whih we all the unused names. The unusednames must not be in the odomain of the assignment. In other terms, renamings are �nite maps,as assignments, but they are not fored to be surjetive. CMS also inludes a powerful freezingoperator, for making some de�nitions early bound, and the usual seletion operator.Variables are �-onvertible in basi modules, and we will onsider expressions modulo �-onversion.Semantis The semantis of CMS is de�ned as the least ontextually losed relation respetingthe rules in �gure 2.10. The rules only apply when both sides of the �! symbol are well-formedexpressions. The strength of CMS is the way inputs and outputs are kept separated, whih allowsfor very powerful yet simple operators.By rule AZ-Core, the redution relation �! of CMS inludes the transitive losure of the re-dution on ore expressions �!C , whih is a parameter of the system. Moreover, sometimes theevaluation of a ore expression C[�℄ an require the value of a variable x, expliitely bound in thesurrounding substitution �. Then, by rule AZ-Sub, if the expression to whih x is bound has theform C 0f�1g, then x is replaed with C 0 in C, (thanks to the ore substitution, whih is also aparameter of the system,) while the pending substitution now inludes the bindings in �1, and nolonger binds x.Rule AZ-Sum simply takes the unions of the present �nite maps, provided no lash or variableapture ours. Spei�ally, writing o1+o2 implies that o1 and o2 have disjoint domains. Inputs areshared, but variables mapping to the same name are kept di�erent. Another operator, alled theleft preferential sum E1�E2 is also de�ned, whih does not require the outputs to be disjoints, butrather gives preedene to outputs oming from the right. It is de�ned by the following redutionrule: (dom(�1) [dom(�1)) ? (FV([�2; o2; �2℄))(dom(�2) [dom(�2)) ? (FV([�1; o1 + o; �1℄)) dom(o) � dom(o2)([�1; o1 + o; �1℄� [�2; o2; �2℄)�! [�1 + �2; o1 + o2; �1 + �2℄ (AZ-Override)40

Rule AZ-Redut desribes the ation of the redut operator ��jEj�o . In fat, it ould be dividedinto two operators, one for reduing input ��jE, and one for reduing outputs Ej�o . Both ationsare similar though. Eah of them bases on a renaming �� and �o, respetively. Input renaminghanges the input names, but not the orresponding variables, and possibly adds new (unused)input variables. This is done by omposing the renaming with the former input assignment. Forinstane, if a name X is renamed into another name Y , then �� inludes a binding X 7! Y , and� inludes a binding x 7! X . Then, the omposition of � and �� has a binding x 7! Y . If therenaming has unused names, or if dom(��) ontains names not in od(�), then a fresh variable isassoiated to eah of them, thus adding dummy inputs. If the renaming is not injetive, then someinputs get shared. Similarly, output renaming omposes the renaming with the output assignment,possibly forgetting some exported names. Renaming X to Y as above would here be done with abinding Y 7! X , the initial output assignment having a binding X 7! E. The renamed output,o Æ �o, then has a binding Y 7! E.The freeze operator, desribed by rule AZ-Freeze, makes some de�nitions early bound in a mixinmodule. As an additional argument, it takes a renaming from some input names to some outputnames. The �nite map tells whih de�nitions must be assoiated to the frozen input names. Theinternal variables orresponding to the frozen names are de�nitely bound as loal de�nitions. Asan example, onsider the following mixin modulefreezeX 7!Z;Y 7!Z([X 7! x; Y 7! y;Z 7! E; ℄)whih redues to [;Z 7! E;x 7! E; y 7! E℄:As a side observation, CMS does not at all bother with sharing omputations.Finally, a mixin module without any input is ready to be used by the outer world.De�nition 3 (Conrete and open mixin modules) A mixin module is said onrete if it doesnot have any input. Otherwise, it is alled open.Rule AZ-Selet selets a de�nition out of a onrete mixin module [; o; �℄, with � = xi i2I7! Ei.One annot simply opy the body E = o(X), beause it might ontain referenes to the loalde�nitions. Suh internal alls are implemented as follows. Eah free ourene of xi 2 dom(�) inE is replaed with a kind of losure: the loal de�nitions � of the mixin module are put in a newmixin module, whih only exports a name Y , bound to the de�nition Ei. xi then orresponds toseleting Y in this mixin module.The operational semantis of CMS is onuent, as stated by the following theorem by Anona andZua [5℄.Theorem 1 (CMS is Churh-Rosser) If E �!� E1 and E �!� E2, then there exists E0 suhthat E1 �!� E0 and E2 �!� E0.2.4.2 TypesCMS is equipped with a type system that reets the distintion between input and outputs. Coreexpressions have ore types, and mixin modules have types of the form [��; �o℄, where �� and �oare signatures, i.e. �nite sets of pairs of a name and a type. �� is the input signature, representingthe requirements put on inputs, while �o is the output signature, delaring the apabilities o�eredby the output de�nitions. Typing judgments are parameterized by the orresponding judgments41

C �!+C C 0C[�℄�! C 0[�℄ (AZ-Core) C[x 7! C 0[�1℄; �2℄�! Cfx 7! C 0g[�1; �2℄ (AZ-Sub)E1 = [�1; o1; �1℄ E2 = [�2; o2; �2℄ BV(E1) ? FV(E2) BV(E2) ? FV(E1)E1 +E2 �! [�1 + �2; o1 + o2; �1 + �2℄ (AZ-Sum)��j[�; o; �℄j�o �! [�� Æ �; o Æ �o; �℄ (AZ-Redut)od(�2) ? dom(�f)freeze�f ([�1 + �2; o; �℄)�! [�2; o; �+ o Æ �f Æ �1℄ (AZ-Freeze)[; o;xi i2I7! Ei℄:X �! o(X)fxj j2I7! [;Y 7! Ej ;xi i2I7! Ei℄:Y g (AZ-Selet)Figure 2.10: Redution rules for CMSon ore expressions and types. The typing rules are presented in �gure 2.11. Our presentation isa bit di�erent from that of Anona and Zua, in that we do not use type annotations to guide apossible typing algorithm. In a sense, our presentation ould be viewed as the Curry-style versionof their Churh-style presentation.By rule AZ-T-Var, a variable has the type it is assigned in the environment. By rule AZ-T-Core,the expliit substitution onstrut is typed as a let binding. The bound expressions Ei must haveore types. They are added to the environment to type the �nal ore expression C, thanks to theore type system.Rule AZ-T-Basi desribes the typing of a basi mixin module. A type has to be guessed for eahbound variable, those of the input � = xi i2I7! Xi and those of the loal de�nitions � = xk k2K7! Ek,say xi : � i2I[Ki . With these types, the loal de�nitions an be heked to have the expeted types�k2Kk , and the exported de�nitions an be typed � j2Jj . The �nal type of the expression an then beformed: it has the input types as an input signature, and the export types as an output signature.This type must be heked well formed, whih means that the signatures are �nite maps.Rule AZ-T-Sum desribes how the sum of two mixin modules is typed. Provided the two outputsdo not de�ne any name in ommon, the sum takes the union of the input types and of the outputtypes. Thus, some ommon inputs an be shared during omposition. The result type must beheked well formed, as for instane two similarly named inputs ould have di�erent types in thetwo input signatures.Rule AZ-T-Redut, given that the argument mixin module has type [��; �o℄, guesses two signa-tures ��0 and �o0 suh that the input and output renamings respetively map �� to ��0 and �o0 to�o, preserving types, as witnessed by the side-onditions �� : �� ! ��0 and �o : ��0 ! �o. Notiethat the renamings are allowed not to be surjetive, whih lets some hoie to the type system inattributing types to the names that are not present in the original type.Similarly, rule AZ-T-Freeze heks that the freezing map �f maps some input spei�ations tooutput spe�ation, preserving types, and removes the frozen delarations from the input signature.Finally, in the ase of a seletion, rule Projet hoose the type assoiated to the seleted name.42

�(x) = �� ` x : � (AZ-T-Var) xi : � i2Ii `C C : � 8i 2 I;� ` Ei : �i� ` C[xi i2I7! Ei℄ : � (AZ-T-Core)` [Xi : � i2Ii ;Xj : � j2Jj ℄ 8j 2 J [K;� + xi : � i2I[Ki ` Ej : �j� ` [xi i2I7! Xi;Xj j2J7! Ej ;xk k2K7! Ek ℄ : [Xi : � i2Ii ;Xj : � j2Jj ℄ (AZ-T-Basi)` [��1 +��2; �o1 +�o2℄�o1 ? �o2 � ` E1 : [��1; �o1℄ � ` E2 : [��2; �o2℄� ` E1 +E2 : [��1 +��2; �o1 +�o2℄ (AZ-T-Sum)� ` E : [��; �o℄ �� : �� ! ��0 �o : ��0 ! �o� ` ��jEj�o : [��0; �o0℄ (AZ-T-Redut)� ` E : [�f +��; �o℄ �f : �f ! �o �f ? ��� ` freeze�f (E) : [��; �o℄ (AZ-T-Freeze)� ` E : [;Xi : � i2Ii ℄ k 2 I� ` E:Xk : �k (AZ-T-Selet)
Figure 2.11: Typing CMS2.4.3 Expressiveness and inonvenientsEnodings In [6℄, Anona and Zua present enodings for the untyped �-alulus, whih a-ounts for an enoding of ML-style module systems, an enoding of Abadi and Cardelli's ACCalulus of objets [1℄. This aounts for the omputational power of the alulus. We informallypresent the two enodings.The �-alulus is easily enoded by using the abstration faility provided by mixin modules: hoosetwo reserved names ARG and RES , and enode any funtion �x:e, as [x 7! ARG ;RES 7! JeK; ℄(where J�K denotes the enoding funtion). Funtion appliation e1e2 an then be expressed as(freezeARG 7!ARG(Je1K+ [;ARG 7! Je2K; ℄)):RES :During appliation, the ARG �eld is �lled with the translation of the argument, and then frozen.Computation is then triggered by seletion of the RES �eld from the result. The usual � onversionand � redution are modeled by this enoding.Enoding Abadi and Cardelli's ACC alulus of objets is more diÆult, so we do not detail it here.Basially, the SELF parameter is modeled as a deferred omponent, and eah method is de�ned asan output omponent. Overriding is trivial to implement with the left preferential sum of setion2.4.1. For method alls, the SELF input has to be �lled with a de�nition. The adopted solution,introdued in [1℄ already, onsists in �lling it with the objet itself. The result an then be frozenand the needed method seleted. A method all e:l is then enoded as (freezeSELF 7!SELF (JeK +[;SELF 7! JeK; ℄)):l.CMS as an implementation language and other operators Also, CMS is further used as animplementation language for DCMS , a typed surfae language with mixin modules. The interest43

is that the power of CMS is used to enode more usual operators. The fundamental di�erenebetween CMS and DCMS is that mixin module types are divided into deferred, virtual, and frozenomponents. Virtual omponents orrespond to CMS omponents present both as inputs and asoutputs, whereas frozen omponents are those that are only outputs. This allows for a re�nedoverriding poliy: frozen omponents annot be deleted in DCMS , whereas virtual ones an. Thispoliy is only enfored by typing, sine the dynami semantis of DCMS is given by translation toCMS .Additionally, the operators are not exatly the same as in CMS . For instane, the redut operator issplit into more atomi operators. For instane, restrition allows to delete some virtual de�nitions,and freezing only allows to map input omponents to virtual omponents of the same name. Infat, renaming is not possible at all anymore. We think that it should have been maintained,maybe as a separate operator. Hiding takes some virtual and frozen omponents, freezes the notalready frozen ones, and deletes them from the result. Thus, other de�nitions will ontinue usingthe hidden de�nitions even if at some point the orresponding names are de�ned again, di�erently.Finally, seletion allows to selet a omponent from a mixin module that still has some virtualomponents (whih semantially orresponds to �rst freezing those omponents before to performthe seletion).The type system of DCMS does not guarantee that frozen de�nitions of a mixin module will remainthe same whatever use an be made of it, as is the ase for �nal lass methods in Java [48℄. Itdoes not seem too far from it though: probably, only the hiding operator breaks this property.Aording to the authors 1, frozen omponents are loser to stati methods in Java than to �nalmethods. However, it should not be diÆult to enode �nal methods with a re�ned typing poliy.CMS is all-by-name In all-by-name or lazy programming languages suh as Haskell [?℄, mod-ules are basially �nite sets of de�nitions, i.e. unevaluated ode. In that sense, CMS onretemixin modules are rather similar to modules. The operational semantis given by Anona andZua does not model the sharing taking plae with the lazy strategy for instane, but it is rathera matter of level of abstration or of presentation than a semanti inadequay. Moreover, ompu-tational aspets of modules, espeially with respet to monads, an be easily introdued in CMS ,as shown by Anona et al. [4℄.On the ontrary, in all-by-value languages, a module is rather a piee of ode at �rst, whih isevaluated, and results in a set of values. The de�nitions ontained by a module are thus evaluatedprior to be used by other parts of the program. As an example, onsider the very simple module(in OCaml-style syntax)strutlet f x = x + 1let res = f 0endIntuitively, this module should be represented in CMS as [f 7! F; res 7! RES ;F 7! �x:x +1;RES 7! f0; ℄. However, there is no hope that this mixin module redues to the expeted value,i.e. [f 7! F; res 7! RES ;F 7! �x:x + 1;RES 7! 1; ℄. Indeed, in CMS modules, one de�nitionis never allowed to use de�nitions of the same mixin module. And this is oherent with the latebinding semantis: if we override F above, the de�nition of RES must use the new de�nition. Asa onsequene, in our quest for a all-by-value language with mixin modules, we need a mehanismfor triggering module evaluation, reminisent of Duggan and Sourelis' los() operator, and of Flatt'sinstantiation operator. In the following, we all this operation lose. Mixin modules have to ontainunevaluated ode, beause of the late binding semantis, but they must be mapped somehow tothe usual all-by-value notion of modules, by evaluating their de�nitions.1Elena Zua, personal ommuniation, 2003 44

x; y; z 2 Vars VariableX;Y; Z 2 Names NameL ::= X j LabelB ::= e j � Bodyd ::= L . x = B De�nitionb ::= d1 : : : dn Binding (n � 0)e; f ::= x Variablej hbi Mixin modulej e� f Linkingj e:�X Hidingj e:X Seletionj let re b in e Let reFigure 2.12: Syntax of the m-alulusHint 1 (Close operator) In a all-by-value setting, mixin modules should ontain unevaluatedode, and the language must feature a lose operator for triggering this ode, thereby transformingonrete any mixin module into a module, the de�nitions of whih an then be seleted by the restof the program.Types, reursion, and all-by-value In all-by-value languages, it is usual to restrit reursivede�nitions to syntati funtions [58℄, possibly with some extensions [55℄. Suh restritions ruleout some ill-founded reursive de�nitions, and that they allow more eÆient ompilation.Nevertheless, with respet to reursive de�nitions, mixin modules go farther than onservativity.Indeed, arbitrary reursive de�nitions an appear at runtime, as we saw in setion 1.2.4. It isundesirable that mixin modules fore language designers to restart writing their ompilers fromsrath, or to forget about their useful optimizations.Therefore, it is important to �nd a way of statially ruling out forbidden reursive de�nitions,whih the type system of CMS does not provide.2.5 The m-alulusIn [76, 75℄, Wells and Vestergaard present the m-alulus. It is presented as a alulus for linking,but aording to de�nition 2, it features mixin modules. We desribe it briey in this setion.2.5.1 Syntax and semantisSyntax The syntax of them-alulus is presented in �gure 2.12. Syntati onventions are similarto those hosen for CMS : variables x; y; z 2 Vars are distinguished from names X;Y; Z 2 Names.A mixin module hbi in m onsists of binding b. A binding is a list hd1 : : : dni of de�nitions di. Ade�nition d = (L . x = B) binds a label L and a variable x to a de�nition body B. A label iseither a name X or the anonymous label , whih allows to write loal de�nitions. A body is eitheran expression e or the empty body �, whih allows to write input de�nitions. An expression anbe a variable x, a module hbi, the linking of two expressions e � f , the hiding of a name in anexpression e:�X , the seletion of a name in an expression e:X , and the mutually reursive bindingof expressions in another one, let re b in e. 45

Syntati orretness Some onditions are required for syntati orretness.� First, bindings should not bind the same name or variable twie.� Seond, bindings in let re should be anonymous and non-empty, i.e. of the shape . x = e.� There are no unnamed, empty de�nitions.Contrarily to CMS , input, output, and loal de�nitions are here mixed in the same binding. Wereover the same struture though: inputs are named, empty de�nitions, outputs are named, non-empty de�nitions, and loals are unnamed, non-empty de�nitions. Bindings an be seen as �nitemaps from pairs of a label and a variable to bodies. We will use standard operations on �nite mapson them, suh as the union +. By slight abuse of notation, we denote by bjN (where N is a set ofnames) the restrition of the �nite map b to de�nitions named with an element of N . Similarly, wedenote by bnN the restrition of the �nite map b to anonymous de�nitions and de�nitions namedwith an element out of N . We do the same abuse of notation for variables, in partiular, fordesigning the de�nition assoiated to a variable x in a binding b, we write b(x).Strutural equivalene Variables in mixin modules and let re are �-onvertible, as usual.Moreover, expressions are onsidered equivalent modulo ommutation of the arguments to a linking,and modulo the order of de�nitions in a binding.Dynami semantis The dynami semantis of m is de�ned as the least ontextually losedrelation respeting the rules in �gure 2.13.The main and most ompliated rule is the WV-Link for linking two mixin modules hbi and hb0i.First, the de�nitions bound by the same names in the two bindings are isolated, the other onesbeing opied straightfowardly into the result mixin module. The notation DN(b) denotes the set ofnames de�ned by a binding, so N = DN(b)\DN(b0) is the set of names de�ned in ommon by thetwo mixin modules. Let those ommon de�nitions be bjN = (X1 . x1 = B1 : : :Xn . xn = Bn) andb0j N = (X1 . x1 = B01 : : :Xn . xn = B0n). Then, for eah pair of similarly named de�nitions, thefuntion PikBody hoose the non-empty body if any, and otherwise denotes �: PikBody(e; �) =PikBody(�; e) = e and PikBody(�; �) = �. In the ase of two non-empty bodies, PikBody isunde�ned, and thus if the rule applies, it implies that no suh onit ours. Notie that ontrarilyto CMS , variables binding the same names in the two bindings are assumed to be equal here. Itan be reahed by strutural equivalene, of ourse, exatly as the ondition imposed by CMS .Rule WV-ISubst (for internal substitution) desribes the use of a de�nition to evaluate anotherde�nition in the same binding. If a de�nition is of the shape L1 .x1 = C [x2℄, and x2 binds anotherde�nition L2 . x2 = e, it is allowed to opy e into C [x2℄, provided no apture ours and theseond de�nition does not risk to depend on the �rst one. This is formalized by onsidering thedependeny graph !hbi of our binding b. This graph has the variables de�ned by the binding asnodes, and its edges are built as follows. If the body of a de�nition L1 . x1 = e1 is non-emptyand has x2 as a free variable, then there is an edge x2 !hbi x1. Moreover, an input de�nition (ade�nition with an empty body) potentially depends on all the named de�nitions of the binding,so there are edges from eah of the variables binding named de�nitions to all empty de�nitions.We say that a de�nition d1 depends on a de�nition d2 if the reexive, transitive losure of thedependeny graph has and edge from the variable binding d2 to the one binding d1. To sum up,rule WV-ISubst allows substitution outside of dependeny yles. The reason for this restritionis that onuene would be lost otherwise, as notied by Ariola and Klop in [8℄. Notie that ruleWV-ISubst applies as well in mixin modules as in let re.In let re, however, the values de�ned in the binding an also be used in the body of the let re, asstated by rule WV-ESubst. The side-ondition just ensures that no variable apture ours, andthat the ourene of x in the body of the let re atually refers to the onsidered binding of x.46

N = DN(b) \ DN(b0) bjN = (X1 . x1 = B1 : : :Xn . xn = Bn)b0jN = (X1 . x1 = B01 : : : Xn . xn = B0n)b00 = (X1 . x1 = B001 : : : Xn . xn = B00n) 81 � i � n;B00i = PikBody(Bi; B0i)hbi � hb0i �! hbnN + bnN + b00i (WV-Link)b = (L1 . x1 = C [x2℄; L2 . x2 = e; b0)Capt2(C) ? (fx2g [FV(e)) x1 9�hbi x2b�! (L1 . x1 = C [e℄; L2 . x2 = e; b0) (WV-ISubst)Capt2(C) ? fxg [FV(b(x))let re b in C [x℄�! let re b in C [b(x)℄ (WV-ESubst)DN(b0) = ; DV(b0) ? FV(b) b0 6= �hb+ b0i �! hbi (WV-GC-Module)DV(b0) ? (FV(b) [FV(e)) b0 6= �let re b+ b0 in e�! let re b in e (WV-GC-Letre)let re � in e�! e (WV-Empty-Letre)b0 6= � DV(b) ? (DV(b0) [FV(b0))let re b0 in hbi �! hb0 + bi (WV-Closure) X =2 DN(b)hbi:�X �! hbi (WV-Hide-Absent)hX . x = B + bi:�X �! h . x = B + bi (WV-Hide-Present)Figure 2.13: Redution rules for mThe WV-GC-Module rule desribes the garbage olletion of a non-empty set of unused loalde�nitions, and similarly, the WV-GC-Letre rule desribes the garbage olletion of a non-empty set of unused de�nitions in a let re.The rule WV-Closure desribes the elimination of let res. What happens when an argument ofa linking operation turns out to evaluate to an expression of the shape let re b in hb0i? The ruleWV-Link does not apply diretly. Contrarily to Ariola et al. [8, 7℄, who lift the let res to the topof the expression, Wells and Vestergaard hoose to merge the let res into the mixin module, asformalized by theWV-Closure rule. The expression above redues to hb+ b0i. This treatment oflet re resembles expliit substitutions [2℄, and is possible beause all strit operators expet mixinmodules as arguments.Finally, rules WV-Hide-Absent and WV-Hide-Present de�ne the semantis of de�nition hid-ing. By rule WV-Hide-Absent, hiding an absent de�nition does nothing, whereas by rule WV-Hide-Present, hiding a present de�nition replaes its name with the anonymous label.Properties of the redution relation The redution relation is onuent, and enjoys thestrong �nite developments property [75℄. Roughly, this means that reduing all the redexes presentin an expression and their residuals in any order leads to a unique normal form.47

2.5.2 Expressiveness and inonvenientsWells and Vestergaard [75℄ show enodings for even more features than Anona and Zua. Besidesreord operations, �rst-lass funtions, and Abadi and Cardelli's objet alulus (ACC), Wells andVestergaard show enodings for C-style modules, pakages (Haskell style), higher-order ML stylemodules, at least of their type-free aspets. Finally, they ompare the expressiveness of m withother aluli for linking, inluding �rst-lass ontexts [44℄, �rst-lass environments [68, 67℄, andCMS . An enoding of CMS is given, whih is not exatly a simulation, but is onjetured topreserve observable behaviour. This enoding is interesting beause m initially features neitherde�nition renaming nor late binding, and the enoding shows that they are in fat present in thealulus, in a quite intuitive way.Late binding The set of names an be partitioned into input names { written here with thesupersript i, as in X i { and output names { written here with the supersript o.A virtual de�nition of CMS named X , i.e. a ouple of an input x 7! X and an output X 7! ean then be represented by a ouple of an input de�nition X i . x = � and an output de�nitionXo . y = e. The variable y must not be used by any de�nition. This way, the WV-ISubst neverapplies for virtual de�nitions, thus preserving the late binding semantis. Overriding an then beimplemented by �rst hiding the de�nition of Xo, then garbage-olleting it (sine y is unused), and�nally linking with a mixin module de�ning Xo again.De�nition renaming A positive atomi renaming in m is a pair of names, written X +:= Y . Itis used for renaming output de�nitions, and applied to an expression e by(e� hX . x = �; Y . y = xi):�X :The e�et is that the de�nition provided by e is bound to x and re-exported as Y . When X isthen hidden, Y still exports the right de�nition, and has semantially replaed X in the interfaeof the mixin module.A negative atomi renaming X �:= Y allows to rename input de�nitions, by a dual mehanism. Itis applied to an expression e by applying the inverse positive atomi renaming, i.e. X +:= Y .A more ompliated notion of simultaneous renaming is given, whih follows the same idea, but isslightly more powerful sine it allows to dupliate output omponents and to merge input ompo-nents.Additionally (atomi) renaming has an ation that realls freezing. If an input name is renamedto an output name, this has the e�et of resolving the input with the output, as shown by thefollowing example redution.hX . x = �; Y . y = ei[X �:= Y ℄= (hX . x = �; Y . y = ei � hY . y =; X . x = yi):�X�!hX . x = y; Y . y = ei:�X�!h . x = y; Y . y = eiThe result mixin module is observationally equivalent to h . x = e; Y . y = ei, whih orrespondsto the result of freezing X as Y .Thus,m and CMS o�er similar features, from the standpoint of dynami semantis. It is interestingto list the di�erenes, and reord what they bring to the theoretial study of mixin modules.48

2.5.3 Comparison with CMSShape of the basi mixin modules and subtyping Basi mixin modules in the m-alulusare very lose to an aeptable onrete syntax, beause deferred, loal, and exported de�nitionsan be interleaved. Furthermore, this gives an intuition about a possible order of evaluation of thede�nitions. However, the shape of CMS basi mixin modules provides more information about thestatus of de�nitions. In partiular, in CMS , a de�nition an be exported without being imported(i.e. without being bound by a variable). In the m-alulus, this information is hidden in the fatthat the variable binding the observed de�nition is unused.This has onsequenes on typing, espeially in the presene of depth subtyping, whih will probablyappear more natural in CMS . Depth subtyping is likely to work well with mixin modules, beausethe inputs are ontravariant, whereas the outputs are ovariant, and the distintion appears intypes. (Width subtyping for mixin modules has to do with extensible reords subtyping [42, 63, 11℄,and is not onerned here.) With CMS -like basi modules, it is intuitive to speify the importtype of a virtual omponent X , even if it is di�erent from the type of the de�nition. For instane,a typed mixin module like [x 7! X : T ;X 7! e; ℄ would have a type like [X : T ;X : T 0℄, where T 0is the type of e. The onstraint is that T 0 must be a subtype of T . It is then possible to delete X ,and replae it with a de�nition of type T 00, as long as it is also a subtype of T . In the m-alulus,the shape of basi mixin modules suggests that an exported de�nition will only be spei�ed by onetype, whih ompromises this kind of feature. Of ourse, this is just syntax, and a distintion oninput and output an be made for types, even if it does not appear in expressions.We onjeture that this form of subtyping allows for a great simpli�ation of a paper by Bono et al.on subtyping mixins in a mobile setting [10℄. Indeed, in their framework, the subtyping points arelearly loated at reeive time, whih allows for automati oerion insertion, with width subtyping.More preisely, for width subtyping, a mixin module E of type [��; �o℄ an be oered to the type[��0; �o0℄, provided the following inlusions hold: �� � ��0, �o0 � �o. The oerion is ��jEj�o ,where �� and �o are the anonial injetions from dom(��) to dom(��0) and from dom(�o0) todom(�o), respetively.Independene with respet to the ore language The most obvious semanti di�erenebetween both aluli is that CMS features seond-lass mixin modules, expliitely abstrating overan almost arbitrary ore language. The standpoint of m is rather to have �rst-lass mixin modules,and rely on the expressiveness of the mixin module language to aount for other ore languagefeatures.Partly beause of the parameterization over the ore language, CMS seems more diÆult toadapt to a all-by-value setting. In CMS , when the evaluation of a ore expression uses areursive de�nition, it an be represented by seleting a omponent out of a mixin module,and storing it in a losure. Consider the following example, where the ore language is as-sumed to inlude integers, arithmeti operators, and an if : : : then : : : else : : : operator. LetC =def �x:if x = 0 then 1 else fat(x� 1), and E0 =def C[fat 7! fat ℄, whih injets C into themixin module language. Then, the mixin module E1 =def [;FACT 7! E0; fat 7! E0℄ exports afuntion FACT that omputes the fatorial of an integer argument. Suppose now that we want toompute the fatorial of 0.Here is how the redution proeeds(fat 0)[fat 7! E1:FACT ℄�! (fat 0)[fat 7! (E0ffat 7! E1:FACTg)℄ (by rule AZ-Selet)� (fat 0)[fat 7! (C[fat 7! E1:FACT ℄)℄�! (fat 0)ffat 7! Cg[fat 7! E1:FACT ℄ (by rule AZ-Sub)� (C 0)[fat 7! E1:FACT ℄�! 1[fat 7! E1:FACT ℄ 49

In CMS , the obtained expression is not a value and loops, trying to evaluate the losure. However,one ould imagine a garbage olletion rule for unused bindings in losures. Unfortunately, in a all-by-value setting, the redution would evaluate the E1:FACT in the losure �rst, and unfortunatelythis would not terminate, sine the same expression appears again after one redution step. In thisthesis, we will hoose the m way, and rely on the mixin module language to express usual orelanguage features.From onrete mixin modules to modules In m, a mixin module without input de�nitionsand without dependeny problems an be evaluated, thanks to theWV-ISubst rule. What we alla dependeny problem is a ase where one or more de�nitions would need to opy the value of eahother in order to evaluate. For instane, an expression suh as hX . x = x� xi has a dependenyproblem. Nevertheless, all the ommon reursive de�nitions behave well in the m-alulus. Areursive de�nition of funtions, for instane, is perfetly evaluated and an be further used byother de�nitions, in the same binding. In this respet, m is not as all-by-name as CMS . In CMS ,a onrete mixin module (see de�nition 3) with unevaluated de�nitions never further evaluates.This fat leads to the onlusion that m is lose to a language of all-by-value mixin modules.Indeed, if mixin modules are represented as explained by the enoding of setion 2.5.2, we have seenthat the late binding semantis is preserved. Call-by-value mixin modules ould then be de�nedby restriting the redution relation to a all-by-value strategy. Roughly, this ould be done asfollows.� Re�ne the notion of value. Open mixin modules are values (do not evaluate inside open mixinmodules). Only fully evaluated onrete mixin modules are values.� Restrit both substitution rules WV-ISubst and WV-ESubst to opy only values,� Restrit seletion to value onrete mixin modules.� (Maybe this ould also require to modify the handling of let re bindings.)The obtained alulus respets hint 1, by distinguishing open mixin modules from onrete ones,only allowing evaluation inside the latter, and seleting omponents only from evaluated onretemixin modules. The lose operator is not diretly in the language, but its role an be played byfreezing. If we all virtually onrete mixin modules the ones suh that all input names orrespondto an output name, losing a virtually onrete mixin module an be done by freezing all itsomponents.The obtained language still remains unsatisfatory though, in at least two aspets.� First, there is a need for a polymorphi lose operator. Indeed, the above solution onlyenodes lose loally, for a mixin module whose shape is known.� Seond, one a virtually onrete mixin module has been losed (by freezing all its inputomponents), evaluation remains undeterministi (as the evaluation of let re is).The �rst point is not too hard to solve: losing a virtually onrete mixin module onsists inreplaing the input variables with the orresponding output variables, and removing the inputdelarations, thus making the mixin module onrete and ready for evaluation.The seond point is more problemati however. Making evaluation deterministi turns out diÆult.Indeed, in m, bindings are onsidered equivalent modulo reordering of de�nitions. But given abinding, evaluation has to �nd a unique orret order of evaluation for de�nitions, that does notviolate dependenies. The uniqueness omes from the requirement that in a all-by-value language,side-e�ets must appear in a preditable order. In usual all-by-value module systems, the order of50

evaluation is given syntatially, but here, in some ases, it does not exist. For instane, onsiderthe binding . x = 1 + 2; . y = 2 � 1. There are two possible orders of evaluation.A �rst idea to solve the problem is to stop onsidering bindings equivalent modulo the order ofde�nitions, and speify an order of evaluation inside them, say from left to right. However, thisbreaks the de�nition of linking. As an example, onsider the two mixin modules e1 =def hX . x =�; Y . y = x+ 1i and e2 =def hX . x = 0i. Aording to the semantis of m, e1 � e2 an be eitherhX .x = 0; Y .y = x+1i or hY .y = x+1; X .x = 0i, alternatively. Assume that we de�ne linkingto remove empty de�nitions when a non-empty one is provided, so that non-empty de�nitions donot hange their relative positions. (A semantis remains to be given for the ase where two emptyde�nitions meet, but this informal disussion does not speify it.) The above linking then resultsin hY . y = x+ 1; X . x = 0i, whose evaluation fails, beause the value of x is needed to evaluatex+ 1, and X . x = 0 is to the right of Y . y = x+ 1.in many ases, this will appear too rigid.

51

52

Part IIDynami and stati semantisof all-by-value mixin modules

53

Chapter 3Dynami semantis: the MMlanguage
3.1 SyntaxThe syntax of MM is de�ned in �gure 3.1. The meta-variables X and x range over names andvariables, respetively. Variables are used as binders, as usual. Names are used for aessing tode�nitions in mixin modules, as an external interfae to other parts of the expression. Figure 3.2reapitulates the meta-variables and notations we introdue in the remainder of this setion.Expressions inlude variables x, reords (labeled by names) fX1 = e1 : : : Xn = eng, and reordseletion e:X , whih are standard.MM features mutually reursive bindings of the shape let re b in e (where b is a list of de�nitionsx1 = e1 : : : xn = en). Note that there is no restrition to binding only value forms.Expressions also inlude strutures. A struture is a pair of an input � of the shapeX1.x1 : : : Xn.xn,and of an output o of the shape d1 : : : dm. � maps external names imported by the struture tointernal variables (used in o). o is a list (the order matters) of de�nitions d. A de�nition is of theshape L[x1 : : : xn℄.x = e, where the label L may be either a name X or the anonymous label ande is the body of the de�nition. The possibly empty �nite set of names x1 : : : xn is the set of fakedependenies of this de�nition on other de�nitions of the struture. (This allows the programmerto fore an order of evaluation.)Finally, MM follows the literature about mixin modules [16, 6, 45℄ in its set of operators, inludingomposition e1+ e2, losure lose e, freezing e !X , projetion ejX1:::Xn , deletion ej�X1:::Xn , showinge:X1:::Xn , hiding e:�X1:::Xn , and renaming e[X1 7! Y1 : : : Xn 7! Yn℄. There is a new operator alledsplitting eX�Y . We let op range over the set of operators (see �gure 3.2), and denote by op[e℄ theappliation of op to the expression e.Syntati orretness Renamings r = (X1 7! Y1 : : : Xn 7! Yn), inputs � = (X1 .x1 : : : Xn .xn),reords s = (X1 = e1 : : : Xn = en), bindings b = (x1 = e1 : : : xn = en), are required to be �nitemaps: a renaming is a �nite map from names to names, an input is a �nite map from namesto variables, a reord is a �nite map from names to expressions, and a binding is a �nite mapfrom variables to expressions. Requiring them to be �nite maps means that they should not bindthe same variable or name twie. Renamings and inputs are required to be injetive. Outputso = (d1 : : : dn) are required not to de�ne the same name twie, and not to de�ne the same variabletwie. Strutures are required not to de�ne the same name twie and not to de�ne the samevariable twie. Fake dependenies in a de�nition must be bound in the same struture.55

x 2 Vars VariableX 2 Names NameExpression: e ::= x Variablej fX1 = e1 : : : Xn = eng Reordj e:X Reord seletionj let re x1 = e1 : : : xn = en in e let rej hX1 . x1 : : :Xn . xn; d1 : : : dmi Struturej e1 + e2 j lose e j e !X Composition, losure, freezingj ejX1:::Xn j ej�X1:::Xn Projetion, deletionj e:X1:::Xn j e:�X1:::Xn Showing, hidingj e[X1 7! Y1 : : :Xn 7! Yn℄ Renamingj eX�Y SplittingDe�nition: d ::= X [x1 : : : xn℄ . x = e Named de�nitionj [x1 : : : xn℄ . x = e Anonymous de�nition
Figure 3.1: Syntax of MM

s ::= X1 = e1 : : : Xn = en Reordb ::= x1 = e1 : : : xn = en Binding� ::= X1 . x1 : : : Xn . xn Input (injetive)o ::= d1 : : : d2 Outputr ::= X1 7! Y1 : : : Xn 7! Yn Renaming (injetive)op[e℄ ::= e:X Reord seletionj lose e j e !X Closure, freezingj ejX1:::Xn j ej�X1:::Xn Projetion, deletionj e:X1:::Xn j e:�X1:::Xn Showing, hidingj e[X1 7! Y1 : : :Xn 7! Yn℄ Renamingj eX�Y SplittingFor a �nite map f , and a set of variables P ,dom(f) is its domain, od(f) is its odomainfjP is its restrition to P , and fnP is its restrition to Vars nP .Figure 3.2: Meta-variables and notations
56

Value: v ::= x j fsvgj hX1 . x1 : : :Xn . xn; d1 : : : dniAnswer: a ::= v j let re bv in vValue sequene: sv ::= X1 = v1 : : : X1 = v1bv ::= x1 = v1 : : : xn = vnFigure 3.3: Values in MMh�1; o1i m h�2; o2i means � h�1; o1i l h�2; o2i andh�2; o2i l h�1; o1i:h�1; o1i l h�2; o2i means that for all (L . x) 2 dom(h�1; o1i),x 2 FV(o2) [Variables(h�2; o2i)) (L . x) 2 dom(h�2; o2i) and L 2 Names :Figure 3.4: De�nition of mIn a let re binding b = (x1 = e1 : : : xn = en), when for some 1 � i � j � n, xj 2 FV(ei), we saythat there is a forward referene from xi to xj . Forward referenes in bindings are syntatiallyforbidden, exept when they point to a ertain lass of expressions, the lass of expressions witha preditable shape. We approximate that the shape of an expression is preditable if it is astruture, a reord, or a binding followed by an expression of preditable shape. Formally e# 2Preditable ::= fog j h�; oi j let re b in e#.Sequenes Outputs may be viewed as �nite maps from pairs of a label and a variable (L; x)to pairs of a �nite set of variables (x1 : : : xn) and an expression e. Renamings, inputs, reords,bindings, and outputs are often onsidered as �nite maps in the sequel. We refer to them olletivelyas sequenes, and use the usual notions on �nite maps, suh as the domain dom, the odomainod, the restrition �jP to a set P , or the o-restrition �nP outside of a set P . Notie that theodomain of an output o, restrited to pairs of a name and a variable (no anonymous label), mayin turn be viewed as an input, sine it is an injetive �nite map. We denote it by Input(o).Strutural equivalene We onsider the expressions equivalent up to alpha-onversion of bind-ing variables in strutures and let re expressions. In the following, we assume that no unduevariable apture ours.3.2 SemantisThe semantis of MM is de�ned in two steps: a ontration relation desribes the ation of theoperators, and a redution relation extends it properly to any expression.Values As de�ned in �gure 3.3, anMM value is either a variable x, or an evaluated reord fX1 =v1 : : : X1 = v1g, or a struture h�; oi. A valid result of the evaluation of anMM expression is a value,possibly surrounded by an evaluated binding. It thus has the shape let re x1 = v1 : : : xn = vn in v.The meta-variables sv and bv respetively range over evaluated reord sequenes and bindings.57

dom(b) ? FV(L)L [let re b in e℄ let re b in L [e℄ (Lift) fX1 = v1 : : : Xn = vng:Xi vi (Selet)h�; oij�X1 :::Xn h�; Input(o)j fX1:::Xng; onfX1:::Xngi (Delete)h�; oijX1:::Xn h�; Input(o)nfX1:::Xng; oj f ;X1:::Xngi (Projet)h�; oi:X1 :::Xn h�; Show(o; fX1 : : :Xng)i (Show)h�; oi:�X1 :::Xn h�; Show(o;Names nfX1 : : : Xng)i (Hide)h�; o1; X [y�℄ . x = e; o2i !X h�; o1; [y�℄ . x = e; o2; X . = xi (Freeze)Names(h�; oi) ? (od(r) n dom(r))h�; oi[r℄ h�frg; ofrgi (Rename)h�; o1; X [z�℄ . x = e; o2iX�Y h�;X . x; o1; Y [z�℄ . = e; o2i (Split)h�1; o1i m h�2; o2i Names(o1) ? Names(o2)h�1; o1i+ h�2; o2i h(�1 [�2) n Input(o1; o2); o1; o2i (Sum)Bind(o) is orretloseh;; oi let reBind(o) inReord(o) (Close)Figure 3.5: Computational ontration relation

58

The ontration relation The ontration relation is de�ned by the rules in �gure 3.5, wherefor any sets P1 : : : Pn, P1 ? : : : ? Pn means that the Pi's are pairwise disjoint.The �rst rule Lift desribes how let re bindings are lifted up to the top of the term. When theevaluation of a sub-expression results in a let re binding, MM lifts it one level up, as follows. Liftontexts L are de�ned as L ::= fSg j op[2℄ j 2+ e j v +2S ::= sv ; X = 2; s:Rule Lift states that an expression of the shape L [let re b in e℄ evaluates tolet re b in L [e℄, provided no variable apture ours.The reord seletion rule Selet straightforwardly desribes the seletion of a reord �eld.The rules for mixin deletion Delete and projetion Projet are dual. Rule Delete desribeshow MM deletes a �nite set of names X1 : : :Xn from a struture h�; oi. First, o is restrited tothe other de�nitions, to obtain onfX1:::Xng (whih is shorthand for onfX1:::Xng�Vars). Seond, theremoved de�nitions remain bound as inputs, by adding the orresponding inputs to �.Rule Projet desribes how MM projets a mixin to some �nite set of names X1 : : :Xn froma struture h�; oi. First, o is restrited to the orresponding de�nitions and to the loal ones, toobtain oj f ;X1:::Xng (whih is a shorthand for oj f ;X1:::Xng�Vars). Then, the removed de�nitionsremain bound as inputs, by adding the orresponding inputs to �.Rules Show and Hide are dual. Rule Show allows to hide all the exported names of a struture,exept the given ones. It proeeds by making the other de�nitions loal, as de�ned byShow(L[y�℄ . x = e;N) = � L[y�℄ . x = e if L 2 N[y�℄ . x = e otherwise.Rule Hide symmetrially hides the given names in a struture. It proeeds by showing the otherones.Rule Freeze desribes how a name X is frozen in a struture h�; oi. First, the orrespondingde�nition X [y�℄.x = e is made loal, by replaing X with the loal label . Then, a new de�nitionis added at the end of the output. It is named X , is bound to a fresh variable (denoted by in therule by abuse of notation), and is de�ned by referring to x.Renaming of a struture h�; oi by a renaming r, de�ned by rule Rename, replaes the names in� and o with the new ones. Formally, for N � Names, we de�ne rN by r [id jNndom(r) and fora �nite map f with dom(f) � Names, we de�ne ffrg by f Æ (rdom(f))�1. The �nite map ffrg iswell-de�ned provided rdom(f) is injetive, whih holds as soon as od(r) \ dom(f) � dom(r) or inother words dom(f) ? (od(r) ndom(r)). By the side-ondition Names(h�; oi) ? (od(r) ndom(r)),this is the ase for �frg. (We denote by Names(h�; oi) the set of names bound by the struture, i.e.dom(�) [dom(Input(o)).) Finally, we de�ne ofrg by o Æ (rNames(o); idVars)�1, with the order keptfrom o, and where (f1; f2)(x1; x2) = (f1(x1); f2(x2)). Notie that when omposing two funtionsf Æ g, we onsider a funtion whose domain is g�1(dom(f)) and on this domain is f(g(x)). In therule, ofrg is well-de�ned, thanks to the side-ondition. Syntati orretness is preserved, sinerNames(h�;oi) is injetive. So, after renaming, no name is de�ned twie.The Split rule introdues a new operator \split". If there is a de�nition X [z�℄.x = e for the nameX in h�; oi, the split operator h�; oiX�Y splits it into an input X . x and a de�nition Y [z�℄ . y = e(with a fresh y). Referenes to x ontinue referening it as an input, but the former de�nition eremains exported as Y . The operation is di�erent from renaming X to Y or deleting X .The Sum rule de�nes the omposition of two strutures h�1; o1i and h�2; o2i. The result is a strutureh�; oi, de�ned as follows. � is the union of �1 and �2, where names de�ned in o1 or o2 are removed. ois de�ned as the onatenation of o1 and o2. The side ondition h�1; o1i m h�2; o2i heks that bothstrutures agree on bound variables, and that no free variable is aptured. It is de�ned in �gure59

Evaluation ontext:E ::= F j let re bv in F j let re B [F ℄ in eLift ontext:L ::= fSg j op[2℄ j 2+ e j v +2 Multiple lift ontext:F ::= 2 j L [F ℄Binding ontext:B ::= bv; x = 2; bReord ontext:S ::= sv; X = 2; sFigure 3.6: Evaluation ontexts(let re bv in F)(x) = bv(x) (EA) (let re bv; y = F ; b in e)(x) = bv(x) (IA)Figure 3.7: Aess in evaluation ontexts3.4, where dom(h�; oi) = � [dom(o), and Variables(h�; oi) denotes od(�) [fx j (L; x) 2 dom(o)g.Lastly, o1 and o2 are required not to de�ne the same names.Eventually, the Close rule desribes the instantiation of a struture h�; oi. � must be empty. Theinstantiation is in three steps. First, o is reordered to o, aording to its dependenies, to its fakedependenies, and to its default ordering. Seond, a binding Bind(o) is generated, de�ning, foreah de�nition d = L[y�℄ . x = e in o, the de�nition x = e, in the same order as in o. Third, thenamed de�nitions of o are put in a reord Reord(o), with, for eah named de�nition X [y�℄.x = e,a �eld X = x, and this reord is the result of the instantiation. The side ondition ensures that thegenerated binding is syntatially orret, espeially that there is no forward referene to bindingsof unpreditable shapes.The redution relation The redution relation is de�ned by the rules in �gure 3.8, using notionsde�ned in �gures 3.6 and 3.7.Rule Context extends the ontration relation to any evaluation ontext. Evaluation ontextsare de�ned in �gure 3.6. We all a multiple lift ontext F a series of nested lift ontexts. Anevaluation ontext E is a multiple lift ontext, possibly inside a partially evaluated binding, orunder a fully evaluated binding. This unusual formulation of evaluation ontexts is intended toenfore determinism of the redution relation. The idea is that evaluation never takes plae insideor under a let re, exept the topmost one. Other bindings inside the expression �rst have to belifted to the top by rule Lift, and then merged with the topmost let re if any, by rules EM andIM. In the ase where the topmost binding is of the shape bv; x = (let re b1 in e); b2, rule IMallows to merge b1 with the urrent binding. When an inner binding has been lifted to the top, ife e0E [e℄ 9 9 K E [e0℄ (Context) E [N ℄(x) = vE [N [x℄℄ 9 9 K E [N [v℄℄ (Subst)dom(b1) ? fxg [dom(bv ; b2) [FV(bv; b2) [FV(f)let re bv; x = (let re b1 in e); b2 in f let re bv; b1; x = e; b2 in f (IM)dom(b) ? (dom(bv) [FV(bv))let re bv in let re b in e 9 9 K let re bv; b in e (EM)Figure 3.8: Redution relation60

there is already a topmost binding, then the two bindings are merged together by rule EM. As aresult, when the evaluation enounters a binding, it is always possible to lift it up to the top andthen merge it with the topmost binding if any.Eventually, rule Subst desribes the use of bound values when needed. The notion of a neededvalue is formalized by need ontexts, whih are de�ned byN ::= op[2℄ j 2+ v1 j v2 +2 (v2 is not a variable).In MM the value of a variable is opied only when needed for the appliation of an operator, orfor omposition. The value of a variable x is found in the urrent evaluation ontext, by lookingfor the �rst binding of x above the alling site, as formalized by the notion of aess in evaluationontexts in �gure 3.7. There are two kinds of aesses.� In the ase of a ontext of the shape let re bv in F , if the alled variable x is bound in thetopmost binding bv, then bv(x) is the requested value, provided the two apture onditionsare respeted. First, no variable free in bv(x) should be aptured by F . Seond, x should notbe aptured by F either, beause this would mean that another binding is onerned, insideF .� In the ase of a ontext of the shape E [let re bv; y = F ; b in e℄, if the alled variable xis bound in the binding bv, then bv(x) is the requested value, provided the two aptureonditions are respeted. First, no variable free in bv(x) should be aptured by F . Seond,x should not be aptured by F either, beause this would mean that another binding isonerned, inside F .In �gure 3.7, the apture onditions are formalized with the Capt funtion. Capt2(E) is the set ofbound variables above 2 in E . If 2 is �lled with another variable, then it is free in the obtainedexpression.Instantiation The Close rule makes use of a reordering operation on outputs o, whih wede�ne in this setion. This operation takes four aspets of its argument into aount: its internaldependenies, its fake dependenies, the shapes of its de�nitions, and its original ordering. Internaldependenies and fake dependenies are onsidered imperative requirements on the �nal ordering: ifa de�nition dmight all another de�nition d0, then d0 must be put before d in the �nal ordering. Theshapes of the de�nitions are examined in order not to generate a binding with forward referenes tode�nitions of unpreditable shape. The original ordering is only used as a hint, in the ase whereno onstraint fores one de�nition to be put before the other.Remark 1 (Warning) The riterion on bindings mentioned in setion ??, forbidding forwarddependeny paths starting with a strit edge, will look reversed here. Indeed, when a de�nition d1alls another de�nition d2, it is also possible to see it as a onstraint on their ordering, suh as\the de�nition d2 must be put before the de�nition d1". As we will use this relation on de�nitionsas an ordering for generating a binding, the seond way is more intuitive. A onsequene is thatthe riterium now forbids bakward dependeny paths ending with a strit edge.More formally, the dependeny graph of an output is de�ned in �gure 3.9. For eah pair ofde�nitions L[y�℄ . x = e and L0[z�℄ . x0 = e0 in o, there may be two kinds of edges.� If x0 is free in e, then an edge is drawn from x0 to x. This edge is labeled with a degree� 2 f,;/g. � is determined by Degree(x0; e), where the Degree funtion is de�ned forx 2 FV(e) by Degree(x; h�; oi) = ,Degree(x; fsvg) = ,Degree(x; e) = / otherwise.The Degree funtion is simple, and ould be extended as in [12, 45℄.61

(L[y�℄ . x = e) 2 o (L0[z�℄ . x0 = e0) 2 o � = Degree(x0; e)x0 ��!o x(L[x1 : : : xn℄ . x = e) 2 o (L0[z�℄ . xi = e0) 2 oxi /�!o xFigure 3.9: Dependenies in an outputx �1�!+ z z �2�! yx �2�!+ y x ��! yx ��!+ yFigure 3.10: Transitive losure of !� If x0 is mentioned in y�, then an edge from x0 to x is drawn, with degree/. Fake dependeniesat as real strit dependenies.The transitive losure of this relation is de�ned in �gure 3.10, by de�ning the degree of a path as thedegree of its last edge. The relation /�!+o gives a onservative approximation of whih de�nitionneeds the value of whih other one in Bind(o). Reordering o aording to �!o it is not enoughthough, beause the generated binding might be syntatially inorret. Indeed, it is forbiddento make forward referenes to de�nitions of unpreditable shape inside a binding. Strit forwardreferenes to de�nitions of unpreditable shape already orrespond to edges labeled / in �!o, andare therefore taken into aount when reordering aording to /�!+o . Weak forward referenesto de�nitions of unpreditable shape orrespond to edges labeled , in �!o, and are therefore nottaken into aount when reordering aording to /�!+o . Let �o= f(x1; x2) j x1 ,�! x2; o(x1) =2Preditableg. This relation exatly puts weak referenes to de�nitions of unpreditable shape inthe right order.We de�ne the binary relation mo by the lexial ordering mo = �(/�!+o [�o)+; >o�, where >o isthe initial ordering in o. If mo ontains no yle, o is said orret. This is written ` o. In this ase,o denotes o reordered by mo.

62

Chapter 4Stati semantis
4.1 Type systemIn this setion, we present a type system for MM.Types are de�ned in �gure 4.1. There are only two kinds of types, reord types fOg and mixintypes hI ;O;Gi, where I and O range over �nite maps from names to types and G is a �nite graphover names, labeled by degrees. Suh a graph is alled an abstrat dependeny graph. (Rememberthat dependeny graphs over the whole set of nodes are alled onrete.) An environment � isa �nite map from variables to types. We write �h�0i for the map where the bindings of �0 haveoverridden the ones from �.Remark 2 Graphs are onsidered equal modulo removal of isolated nodes, and modulo the follow-ing rewriting rule: N1 �1 **�2 44 N2 //___ N1 �1^�2 // N2 (4.1)where ^ gives the most dangerous of two degrees:�1 ^ �2 = , if �1 = �2 = ,�1 ^ �2 = / otherwiseIn �gure 4.2, the type system is de�ned by means of a set of inferene rules.The �rst rule T-Strut onerns the typing of basi strutures h�; oi. Given an input I (whih isarbitrary here, we do not onsider type inferene or type-heking issues) orresponding to �, anda type environment �o orreponding to o, it heks that the de�nitions in o indeed have the typesmentioned in �o. M 2 Types ::= fOg j hI ;O;GiI; O 2 Names Fin��! TypesG �Fin fX ��! Y j X;Y 2 Names; � 2 Degreesg� 2 Vars Fin��! TypesFigure 4.1: Types63

Expressions:dom(�) = dom(I) ` I ` �o ` �!h�;oi �hI Æ ��1 ℄ �oi ` o : �o� ` h�; oi : hI ; �o Æ Input(o); b�!h�;oii (T-Strut)I1 ℄ O1 m I2 ℄ O2 ` G1 [G2 � ` e1 : hI1;O1;G1i � ` e2 : hI2;O2;G2i� ` e1 + e2 : h(I1 [I2) n (O1 [O2);O1 ℄ O2;G1 [G2i (T-Sum)� ` e : hI ;O;Gi X 2 dom(O)� ` e !X : hI ;O; bG !Xi (T-Freeze) � ` e : h;;O;Gi� ` lose e : fOg (T-Close)� ` e : hI ;O;Gi� ` ejX1:::Xn : hI ℄ OnfX1:::Xng;Oj fX1:::Xng;GjfX1:::Xngi (T-Projet)� ` e : hI ;O;Gi� ` ej�X1:::Xn : hI ℄Oj fX1:::Xng;OnfX1:::Xng;Gj�fX1:::Xngi (T-Delete)� ` e : hI ;O;Gi fX1 : : : Xng � dom(O)� ` e:�X1:::Xn : hI ;OnfX1:::Xng; bG:�fX1:::Xngi (T-Hide)� ` e : hI ;O;Gi fX1 : : : Xng � dom(O)� ` e:X1:::Xn : hI ;Oj fX1:::Xng; bG:fX1:::Xngi (T-Show)� ` e : hI ;O;Gi (od(r) n dom(r)) ? (dom(I) [dom(O))� ` e[r℄ : hIfrg;O Æ frg;Gfrgi (T-Rename)� ` e : hI ;O;Gi Y =2 dom(I) [dom(O)� ` eX�Y : hI ℄ fX : O(X)g;OfX 7! Y g;GX�Y i (T-Split)8i 2 f1 : : : ng;� ` ei :Mi� ` fX1 = e1 : : : Xn = eng : fX1 :M1 : : :Xn :Mng (T-Reord)� ` e : fOg� ` e:X : O(X) (T-Rselet)` b ` �b �h�bi ` b : �b �h�bi ` e :M� ` let re b in e :M (T-LetRe) x 2 dom(�)� ` x : �(x) (T-Variable)Sequenes:� ` � : ; � ` e :M � ` o : �o� ` (L[x�℄ . x = e; o) : fx :Mg ℄ �o � ` e :M � ` b : �b� ` (x = e; b) : fx :Mg ℄ �bFigure 4.2: Type system
64

LiftTransitive losure through loal omponentsN1 �1�! x x �2�!2 N2N1 �1^�2����!2 N2 N1 ��! N2N1 ��!2 N2Lift b! = !2jNames�NamesSum G1 +G2 = G1 [G2Freeze G !X = GfX � xg [fx /�! Xg (x not mentioned in G)Projet GjN = GjNames�N�DegreesDelete Gj�N = GnNames�N�DegreesHide G:�X1:::Xn = GfX1 7! x1 : : : Xn 7! xng (x1 : : : xn fresh)Show G:X1:::Xn = G:�Targets(G)nfX1:::XmgRename Gfrg = f(N1frg; N2frg; �) j (N1; N2; �) 2 GgSplit GX�Y = (G nGjf:�Xg) [f(Z; Y; �) j (Z;X; �) 2 GgFigure 4.3: Graph operations

� = Degree(x0; e) (L0; x0) 2 dom(h�; oi) (L[z�℄ . x = e) 2 oNode(L0; x0) ��!h�;oi Node(L; x)(Li; xi) 2 dom(h�; oi) (L[x1 : : : xn℄ . x = e) 2 oNode(Li; xi) /�!h�;oi Node(L; x)Figure 4.4: Dependenies in a struture
65

` I ` O dom(I) ? dom(O) Targets(G) � dom(O) ` G` hI ;O;Gi ` O` fOg8X 2 dom(I) ` I(X)` IFigure 4.5: Well-formed typesThe ondition ` �!h�;oi requires some explanation. We saw in setion 3.2 that dependenies inan output are represented by its dependeny graph �!o. For strutures (whih are inompleteoutputs), the orresponding notion is the onrete dependeny graph. A onrete dependenygraph is a graph over nodes. A node N is an element of Nodes = Vars[Names. The dependenygraph of a struture is de�ned in �gure 4.4. It reords dependenies in the struture (as wasdone for outputs), but takes external names into aount, when possible. Named de�nitions arerepresented by a name, and loal de�nitions are represented by their variables. In order for typesnot to mention loal omponents, we introdue a lift operation b�!h�;oi, whih, as desribed in�gure 4.3, �rst ensures to keep trak of loal omponents by shifting their dependenies to the nextexported omponents, and then erases them. The result is an abstrat dependeny graph.Finally, the rule heks that the imported types are well-formed, whih would otherwise not befored, with the following notion of well-formedness.De�nition 4 (Corret graphs) A graph ! is orret i� /�!+ is an ordering on its nodes(written `!).De�nition 5 (Well-formed types) Figure 4.5 de�nes the sets of well-formed types an inputs(or outputs), as the least relation respeting the rules. A mixin type hI ;O;Gi must import andde�ne disjoint sets of names, the targets of G must be de�ned, and G must be orret.The seond rule T-Sum types the sum of two expressions. It veri�es that names are bound tothe same types in both expressions (relation m overloaded to types), that the union of the twodependeny graphs is still orret, and that two names are not de�ned twie (i.e. are not in thetwo outputs). The result type shares the inputs, where de�ned names have been removed, andtakes the union of the outputs and of the dependeny graphs.The third rule T-Freeze introdues a new operation G!X . x on abstrat graphs, whih is againde�ned in �gure 4.3. To freeze a name X , it �rst replaes X with a fresh loal variable x, makingthe graph temporarily non-abstrat. Then, it adds a strit link from x to X . This follows loselythe semantis of freezing from �gure 3.5, �rst making all other omponents all the loal omponentx instead of X , and then re-exporting X as x exatly. The link is fored to be a strit one byhypothesis 2.The T-Close rule transforms a mixin type with no input into a reord type. It looks very simple,but to prove it orret, we must show that well-ordered outputs yield well-ordered bindings byontration rule Close.The mixin projetion rule T-Projet, exatly as the orresponding ontration rule, keeps in theoutput types only the seleted ones, reporting the other ones in the input types. The abstratgraph is modi�ed aordingly by the operation GjfX1:::Xng, whih removes the edges leading tounseleted omponents. The T-Delete rule is its dual again.The T-Hide removes the given names from the output. Additionally, it ats on the abstrat graphG as desribed in �gure 4.3. It �rst replaes the given names by fresh variables, and then lifts theresult, in order to obtain an abstrat graph. Rule T-Show is its dual, as expeted.66

Rule T-Rename, given a mixin e of type hI ;O;Gi, dedues that e renamed by r has the sametype, with input I and output O redireted to use the new names (od(r)). As the ontrationrule Rename, it makes use of the rN funtion, omposed with I and O. The abstrat graph isrenamed as well.Given an expression e of type hI ;O;Gi, aording to rule T-Split, the type of eX�Y is as follows.X is added to the input, with the type it had in O. X is renamed to Y in the output. The graphG is modi�ed aording to �gure 4.3. Gjf:�Xg is the set of edges leading to X in G. Basially,these edges are redireted to Y .The T-Rselet and T-Reord rules for typing reord onstrution and seletion are standard.The T-LetRe for typing bindings let re b in e is almost standard, exept for its side-ondition:the binding must be well-ordered with respet to its dependenies. The dependeny graph of abinding b is de�ned via the dependeny graph of the equivalent output Output(b) = Output(x1 =e1 : : : xn = en) = ([℄ . x1 = e1 : : : [℄ . xn = en). We de�ne mb by mOutput(b). A binding b is saidorret with respet to an ordering > (written >` b) if >b (the de�nition order in b) respets >(in other words >�>b). We abbreviate mb ` b with ` b.Eventually, the typing of outputs and bindings is straightforward, sine it onsists in suessivelytyping their de�nitions.4.2 A theory of dependeny graphs and degreesFor proving the soundness of MM, we will have to prove some properties of the operations we useon dependeny graphs. Suh operations will be used later in this thesis, so we abstrat over theurrent de�nitions in order to make the proofs valid for further use.We begin with a haraterization of the properties needed for degrees.De�nition 6 (Degrees) A set Degrees has a struture of degrees i� it is a omplete lattie, andits elements are divided into positive and negative elements, ompatible with the ordering.We �x an arbitrary struture of degrees Degrees for this setion, whose elements are denoted by �,ordering is denoted by �, greatest lower bound operation is denoted by ^. We denote by Positiveand Negative the sets of positive and negative degrees, respetively. The ompatibility onditionmeans that for all �1 2 Positive and �2 2 Negative, we have �1 � �2.De�nition 7 (Dependeny graph) A dependeny graph is a �nite, oriented graph, labeled withdegrees.The nodes of dependeny graphs are not relevant to the properties we want to establish, so we donot onstrain them at all. We denote them by N , and denote �nite sets of them by N . We denotethe set of nodes of a graph ! by Nodes(gD).De�nition 8 (Transitive losure) We de�ne the transitive losure on dependeny graphs asthe �xed-point of the operation that adds an edge N1 �2�!N3 for eah pair of edges N1 �1�!N2 andN2 �2�!N3 in its argument !.This �xed-point is always well-de�ned, sine the onsidered operation does not introdue anydegree, so the number of edges of the generated graphs is bounded. The transitive losure of agraph ! is written !+. Its reexive transitive losure is written !�.Some notions on paths are de�ned as follows. 67

De�nition 9 (Paths) A path of the dependeny graph ! is a possibly empty list of onseutiveedges. Its length is its number of edges. If its length is stritly positive, then its degree is de�nedas the degree of its last edge. A yle is a non-empty path whose the soure and target nodes arethe same.We denote paths by Æ. The onatenation of two onseutive paths is written Æ1; Æ2. For a de-pendeny graph !, a path is also an edge of !�. The degree of a non-empty path is de�ned asthe degree of its last edge. We write N1 ��!+ N2 for a non-empty path of degree �. Also, theonatenation of a non-empty path N1 �1�!+ N2 and a possibly empty path Æ from N2 to N3 iswritten N1 �1�!+ N2;N2 �2�!� , where �2 is �1 if Æ is empty, and the degree of Æ otherwise. Finally,when the two ends of suessive paths or edges are syntatially the same, we merge them. Forinstane, the onatenation above ould have been written N1 �1�!+ N2 �2�!� .Let us introdue two notions of orretness for dependeny graphs. It relies on the notion of a safeyle: a yle is safe if all its edges are labeled with positive degrees. Otherwise, the yle is saidunsafe.De�nition 10 (Corretness) A dependeny graph ! is said orret if its transitive losure doesnot ontain any unsafe yle. We write it `!.This notion is related to the following notion of ordered orretness, whih relies on an order onnodes. Orders on nodes are denoted by the symbol D. Their strit versions are denoted by B. Forany dependeny graph!, let Negative! be the set of edges of! that are labeled with negative edges.De�nition 11 (Ordered orretness) A dependeny graph ! is orret with respet to the or-der D, or respets the order D, if Negative!+ is ompatible with B. We write it ` (!;D) (or ` (!;B)).We have the following equivalene.Property 1 `! i� there exists an ordering D on Nodes(!) suh that ` (!;D).For proving it, we introdue the notion of a bakward edge and a bakward path.De�nition 12 (Bakward edges and paths) Given a dependeny graph ! and an order D onnodes, a edge N1 ��!N2, or a path N1 ��!� is said bakward if N2 D N1.Proof� If ` (!;D), then `!. By ontrapositive. Assume ! has a yle with an edge of degree� 2 Negative. Let N be the target of this edge. Then, the transitive losure !+ of ! hasan edge N ��!+ N whih is bakward, so Negative!+ is not ompatible with B, and therefore` (!;D) does not hold.� If `!, then any topologial sort of ! gives an order suh that the only bakward paths arein yles, but as ! is assumed orret, these paths all have positive degrees, so Negative!+ isompatible with B.2Now, we prove two properties that we will diretly use later in soundness proofs. Their names arerelated to the redution rules they orrespond to. Eah of them is assoiated with a piture thatis supposed to help the reader understand them.Property 2 (External merge) 68

4.3 Graph soundnessIn setion 3, we presented MM with onrete, simple instanes of IsDe�nedSize() and Degree. Wenow axiomatize the minimum onditions that they must satisfy.Hypothesis 1 (Shape)� x =2 Preditable.� h�; oi 2 Preditable and fsvg 2 Preditable.� Let � be a variable renaming. ef�g 2 Preditable i� e 2 Preditable.� If E [x℄ 2 Preditable, then E [v℄ 2 Preditable, for all v.� If e�! e0 and e 2 Preditable, then e0 2 Preditable.� If e 2 Preditable and e0 2 Preditable, then for any ontext E ,E [e℄ 2 Preditable i� E [e0℄ 2 Preditable.We require the degree funtion to meet the following ondition.Hypothesis 2 (Degree funtion)� If Degree(x; e) = ,, then e 2 Preditable.� If e�! e0 and Degree(x; e) 6= /, then Degree(x; e0) 6= /.� If x 2 FV(e) nCapt2(E [N ℄), then Degree(x; E [N [e℄℄) = /.� If y =2 FV(v) nCapt2(F), then Degree(y; F [v℄) = Degree(y; F).� If for all x 2 FV(e), Degree(x; e0) � Degree(x; e), then for any ontext E , for any x 2FV(E [e℄), Degree(x; E [e0℄) � Degree(x; E [e℄).� 8x =2 dom(b); X 6= Y;8� 2 f� j X ��!hX.x;oi N; o = (Output(b); Y . = e)g;Degree(x; let re b in e) � �:4.3.1 Modeling the redution with graphsDe�nition 13 (Mixin redex) Mixin redexes e" are de�ned bye" ::= h�1; o1i+ h�2; o2i j op[h�; oi℄:The graph operations on abstrat graphs de�ned in �gure 4.3 are trivially generalized to onretegraphs. These operations are used to guess the onrete graph of a mixin redex.De�nition 14 (Graph of a mixin redex)�!h�1;o1i+h�2;o2i = �!h�1;o1i +�!h�2;o2i�!op[h�;oi℄ = op(�!h�;oi)Proposition 1 (Graphs operations model ontration) If e" e, then �!e" = �!e.Proof By ase analysis on the redution. 69

Sum. We have e" = h�1; o1i+ h�2; o2i and e = h�; o1; o2i, with � = (�1[�2)n Input(o1; o2). Trivially,�!e" = �!h�1;o1i [�!h�2;o2i = �!h�;o1i [�!h�;o2i by h�1; o1i m h�2; o2i. Then, �!h�;o1i [�!h�;o2i =�!h�;o1;o2i.Freeze. Let e" = h�; o1; X [y�℄ . x = f; o2i ! X , and e = h�; o1; [y�℄ . x = f; o2; X . = xi. Firstonsider the struture e0 = h�; o1; [y�℄.x = f; o2i. Its graph is exatly the same as the one ofe exept that instead of the node X , we �nd the node Node(. x), whih is x. Then, appendthe omponent X . y = x with a fresh y. This adds a strit dependeny from X to x, so theresult is exatly �!e" .Other ases similar.24.3.2 Subjet ontration for graphsThe goal of this setion is to ensure that abstrat graphs detet all errors in the underlying onretegraphs. We write Æ for paths in graphs. The minimum degree of a path Æ = X �1�!N1 : : :Nn�1 �n��!Yis � = ^1�i�n�i.Proposition 2 (Lift preserve paths between names) Let Æ be a path for the! relation, start-ing with name X, ending with name Y , and having minimum degree �. Let G = b!. There existsa path from X to Y in G, with the same minimum degree.Proof Let Æ = N0 �1�!N1 : : : Nn�1 �n��!Nn. We proeed by indution on the number of names inthe path.Base. Two names, Æ = X �1�! x1 : : : xn�1 �n��! Y . An easy indution on n proves that X ��!2 Y ,and therefore (X;Y; �) 2 G.Indution. By indution hypothesis.2Corollary 1 If /�!+ has a yle with at least one name, then b!/+ also has one.On the other hand, lifting ommutes with the other operations on graphs.Proposition 3 (Lift ommutes with operators) Let!1, !2, and ! be onrete dependenygraphs (i.e. graphs over Nodes).� If the variables from!1 and the ones from !2 are disjoint, then b!1 [!2 = b!1[b!2.� bop[!℄ = op[b!℄, for op 2 f!X;j�N ; jN ; [r℄; :�N ; :N ;X�Y g (with od(r) ? Nodes(!)).ProofSum. It is obvious that b!1 [b!2 � b!1 [!2, sine !1�!1 [!2 and lift is monotone.Now, an edge between namesX and Y in b!1 [!2, implies the existene of a path betweenX and Y through variables only, in !1 [!2, but as variables annot interat, this path isentirely in either one of the two subgraphs.70

Freeze. Let x be a fresh variable. By de�nition, we have to prove that b! !X .x = bb!!X .x.Let!1 = ! !X . x!01 = b!1 and !2 = b!!02 = !2 !X . x!002 = b!02First, notie that both in !01 and !002 , no edge starts from X , and edges arriving to X omefrom paths to X through x with degree / in !1 and !02, respetively, so they have degree/.� !002�!01.{ Let Y ��! 002 X , with X 6= Y . Neessarily, � = /.This implies that there exists a path of !02 of the shapeY �0�! 02 x �1�! 02 x : : : �n��! 02 x /�! 02 X;beause x is the only variable in !02.n ould be zero, in whih ase we would have Y /�! 02 X .But this means that we have Y �0�!2X �1�!2X : : : �n��!2X:So by de�nition of b, we have Y �0�!2X �1�!2X : : : �n��!2X:So, we have Y �0�!21 x �1�!21 x : : : �n��!21 x /�!1X;and therefore Y /�! 01 X .{ Let Y ��! 002 Z, with Y and Z di�erent from X . ThenY �0�! 02 x �1�! 02 x : : : x �n��! 02 Z;beause x is the only variable in !02.We have � = ^0�i�n�i. n ould possibly be 0, in whih ase the path would ratherlook like Y �0�! 02 Z:We an dedue Y �0�!2 X �1�!2 X : : :X �n��!2 Z;so Y �0�!2 X �1�!2 X : : :X �n��!2 Z;and therefore Y �0�!21 x �1�!21 x : : : x �n��!21 Z:So we have Y ��! 01 Z.� !01�!002 .{ Let Y ��!01 X , with Y 6= X . We haveY �0�!21 x �1�!21 x : : : x �n��!21 x /�!1 X;where for all i, �i�!21 does not go through x.As above, we have � = / and n ould possibly be 0, in whih ase the path wouldrather look like Y �0�!21 x /�!1 X:This implies that Y �0�!2 X �1�!2 X : : :X �n��!2 X:Therefore, Y �0�!2 X �1�!2 X : : :X �n��!2 X:So, Y �0�! 02 x �1�! 02 x : : : x �n��! 02 x /�! 02 X;and so Y /�! 002 X:{ Let Y ��! 01 Z, with Y and Z di�erent from X .We dedue Y �0�!21 x �1�!21 x : : : x �n��!21 Z;where for all i, �i�!21 does not go through x.As above, we have � = ^0�i�n�i and n ould possibly be 0, in whih ase the pathwould rather look like Y �0�!21 Z:71

Then, Y �0�!2 X �1�!2 X : : :X �n��!2 Z;and so Y �0�!2 X �1�!2 X : : :X �n��!2 Z;whih leads to Y �0�! 02 x �1�! 02 x : : : x �n��! 02 Z;and so Y ��! 002 Z.Other ases. Easy.2Corollary 2 If `!, then ` op(!). If `!1, `!2, Variables(!1) ? Variables(!2), and ` b!1 [b!2, then `!1 [!2.ProofFreeze. Assume op = !X .x. This operation �rst replaes X by x in!, whih does not introdueany yle, and then adds one-way edges to X , whih annot reate any yle.Sum. Let!=!1 [!2. Assume there is a yle in /�!+. First notie that if there were no namednode in it, as variables from both graphs do not interat, the yle would ome entirely fromone of the two graphs, whih are supposed orret, therefore ontraditing the hypothesis.Otherwise, by lemma 3, b! = b!1 [b!2. Moreover, there is at least one named node Xin our yle, so by lemma 2, our yle is a path from X to X , so it appears in b! with thesame valuation, whih ontradits its orretness.Other ases. Easy, sine they do not add any edge to the dependenies.2Proposition 4 If � ` e" : hI ;O;Gi, then G = b�!e".As a onsequene, if a mixin redex is well-typed, then the struture(s) in it have a orret graph,and by typing the redex also has a orret graph.Corollary 3 If � ` e" :M , then ` �!e" .Lemma 1 If � ` e" : hI ;O;Gi and e" e, then e is a struture and ` �!e and G = b�!e.We have proven that strutures obtained by redution are orret, whih means that their depen-denies do not have strit yles. It is now neessary to prove that this property is enough for astruture without inputs to be losed. In other words, it is neessary for our type system to besound that an output with a orret dependeny graph generate an be reordered.Lemma 2 (Typing is enough for lose) If ` �!o, then ` o.Proof Assume there is a yle in mo = (�o [/�!+o)+. This yle annot ontain only �o edges,sine for all nodes N1; N2; N3 suh that N1 �o N2 �o N3, by de�nition N1 ,�!o N2 ,�!o N3, witho(N1) =2 Preditable and o(N2) =2 Preditable, and by de�nition of �o and hypothesis 2, we haveo(N2) 2 Preditable, whih is a ontradition.So there is at least one /�!+o edge in our yle. But �o is inluded in ,�!o , so this is a yle for/�!+o too. 2 72

4.3.3 Manipulation of reursive bindingsDe�nition 15 (Graph omparison) We de�ne !1<!2 by� for all N1 /�!2 N2, there exists N1 /�!+1 N2� for all N1 ,�!2 N2, there exists N1 ��!1 N2.In partiular, if !2�!1, then !1<!2 ; and if for all edge in !2 there exists an edge with thesame ends and an inferior degree in !1, then !1<!2. Notie that this relation is transitive.De�nition 16 (Binding omparison) A binding b1 is more restritive than a binding b2 (writ-ten b1 < b2) i� they have the same domains (dom(b1) = dom(b2)), they de�ne variables in thesame order (>b=>b0), the dependenies and shapes of b1 are more restritive than those of b2(�!b1 < �!b2 , and for all x 2 dom(b2), if b2(x) =2 Preditable, then b1(x) =2 Preditable).The desired property is that if a binding is well-ordered for the ordering indued by a more restri-tive binding, then it is well-ordered.Lemma 3 (Relax) If b0 < b and mb0 ` b, then ` b.Proof We proeed by ontrapositive. First notie that mb0 ` b implies mb0 ` b0, sine they de�nevariables in the same order. If mb ` b does not hold, it implies that there is a right-to-left edge in(�Output(b) [/�!+b)+. So, there exists x = e and y = f de�ned in b in this order, suh that eithery �Output(b) x or y /�!+b x.� If y �Output(b) x, then y ,�!b x and b(y) =2 Preditable. By de�nition of b0 < b, this impliesthat b0(y) =2 Preditable and y ��!b0 x. Whatever � is, it is a right-to-left edge in mb0 , whihontradits ` b0.� If y /�!+b x, by de�nition of b0 < b, this implies that y /�!+b0 x, so it is a right-to-left edge inmb0 , whih ontradits ` b0.2Lemma 4 If ` �!h�;oi, then ` Bind(o).Proof Bind(o) is in the same order as o, and its graph does not take fake dependenies intoaount. Lemma 3 allows to onlude. 2Our omputational redution relation manipulates let re onstruts as bloks of data, not worryingtoo muh about dependenies issues. The soundness proof requires some properties to be veri�ed,espeially onerning the IM rule, whih merges two nested bindings. We want to be sure thatmerging two well-orderd internally nested bindings { i.e. the seond binding appears in one of thede�nitions of the �rst one { yield a well-ordered new binding (orollary 4).De�nition 17 (Paths) For a path Æ = (N0 �1�! : : : �n��!Nn), we de�ne the degree of Æ as �n, andwe write Æ� for a path of degree �, and Æ �! if Æ is a path of !.Eventually, we write edges as triples (soure, target, degree), and paths as lists of paths suh thatthe target of one is the soure of the next one, separated by ommas, as in Æ�11 ; (x; y; �); Æ�22 .73

Proposition 5 (Let re internal dependenies)For all y, for all x 2 FV(e) n dom(b), Degree(x; let re b in e) � Degree(x; e).For all y, for all x 2 FV(b(y)) n dom(b), Degree(x; let re b in e) � Degree(x; b(y)).ProofLet X 6= Y , b = (x1 = e1 : : : xn = en), and o = (Output(b); Y . = e).� For the �rst point, as x 2 FV(e), there is an edge X ��!hX.x;oi Y , where � = Degree(x; e).By hypothesis 2, Degree(x; let re b in e) � �.� The seond point is similar. Suppose y = xi0 and f = b(y). There is an edge X ��!hX.x;oi xi0 ,where � = Degree(x; f). By hypothesis 2, Degree(x; let re b in e) � �.2Proposition 6 (Merging nested bindings)Let b = (b1; x = let re b2 in e; b3), b0 = (b1; b2; x = e; b3), with ` b and dom(b2) ? dom(b) [FV(b1; b3).Let Æ a path of �!b0 , from x1 to x2, of degree �.1. If x1; x2 2 dom(b), then x1 �0�!+b x2, with �0 � �.2. If x1 2 dom(b); x2 2 dom(b2), then x1 �0�!+b x, with �0 � �.3. If x1 2 dom(b2); x2 2 dom(b), then if � = /, then x2 2 (fxg [dom(b3)).4. If x1; x2 2 dom(b2), then either Æ � �!b2or x �0�!+b x for some �0 � �.Proof By indution on the length of Æ.Base Æ is an edge.1. x1; x2 2 dom(b). If x2 6= x, � = Degree(x1; b0(x2)) = Degree(x1; b(x2)), so x1 ��!b x2.Otherwise, � = Degree(x1; e).But as x1 =2 dom(b2), by lemma 5, Degree(x1; let re b2 in e) � Degree(x1; e), so wehave an edge x1 �0�!b x, with �0 � �.2. x1 2 dom(b); x2 2 dom(b2). Let b2(x2) = f . We have � = Degree(x1; f), so similarly bylemma 5, �0 = Degree(x1; let re b2 in e) � Degree(x1; f), so we have an edge x1 �0�!b x,with �0 � �.3. x1 2 dom(b2); x2 2 dom(b). We have x1 2 FV(b0(x2)) and x2 2 dom(b), so x2 = x, sox2 2 (fxg [dom(b3)).4. x1; x2 2 dom(b2), we have of ourse Æ � �!b2 .Indution step Æ is of length n > 1.1. x1; x2 2 dom(b). 74

� If Æ only has nodes in dom(b), let (x3; x2; �) be its last edge. By indution hypothesisthere is a path Æ�01 from x3 to x2 with �0 � � in �!b, and a path Æ�002 from x1 to x3,so Æ�001 ; Æ�02 � �!b, with degree �0 � �.� Otherwise, let x5 be the last node of Æ in dom(b2). The next node is neessarily x.Let x3 be the last node of Æ in dom(b) before x5. Let x4 be the next node. (It is indom(b2).) We have Æ = Æ�11 ; (x3; x4; �4); Æ�22 ; (x5; x; �5); Æ�33 ;with Æ�22 � �!b2 . Let now o = (Output(b2); Y . = e) and onsider the stru-ture hX . x3; oi. Its onrete dependeny graph is �!hX.x3;oi and ontains a path(X; x4; �4); Æ�22 ; (x5; Y; �5).So by hypothesis 2, we have �05 = Degree(x3; let re b2 in e) � �5, so there is andedge x3 �05�!b x.Then, applying the indution hypothesis to Æ1 and Æ3 if not empty, we obtain twopaths Æ01�01 and Æ03�03 of �!b, and so Æ01�01 ; (x3; x; �05); Æ03�03 is a path of �!b, with adegree �05 � �5 if Æ3 is empty, and a degree �03 � �3 otherwise.2. x1 2 dom(b); x2 2 dom(b2). Let x3 be the last node of Æ in dom(b), and x4 the nextone. Æ is of the shape Æ�11 ; (x3; x4; �3); Æ�22 , with the nodes of Æ2 in dom(b2). Æ1 and Æ2ould be empty. As above, by lemma 5, we have �03 = Degree(x3; let re b2 in e) �Degree(x3; b2(x4)) = �3, so we have an edge x3 �03�!b x.� If Æ2 is empty, n > 1, so Æ1 is non-empty, and applying indution hypothesis to Æ1,we obtain Æ01�01 with same ends, and therefore obtain a path in �!b with same endsas Æ, and with degree �03 � �3 = �.� Otherwise, Æ2�2 � �!b2 . Let X 6= Y , � = X . x3, and o = Output(b2); Y . = e.We obtain a path (x3; x4; �3); Æ2�2 in �!h�;oi with same ends as Æ, and with degree�2 = �. So, if Æ1 is empty, we have in both ases a path from x3 to x in b, withdegree �02 � �. Otherwise, by indution hypothesis, we obtain Æ01�01 with �01 � �1,and reason exatly as above.3. x1 2 dom(b2); x2 2 dom(b). Assume � = /. The �rst node of Æ not in dom(b2) isneessarily x. Let x3 be the node just before it. Æ has the shape Æ�11 ; (x3; x; �3); Æ�22 .If Æ2 is empty, we have x2 = x whih is learly in fxg [dom(b3). Otherwise, applyindution hypothesis to obtain a path Æ02�02 with the same ends as Æ2 and �02 � �2. Buthere � = �2 = / so �02 = /. As Gb ` b, x2 must be de�ned after x in b, so it must bein dom(b3).4. x1; x2 2 dom(b2). If all the nodes are in dom(b2), then Æ � �!b2 diretly. Otherwise,the �rst node not in dom(b2) in Æ is neessarily x. Let x3 be the node just beforeit. Æ has to ontinue after x, beause it has to go bak to a node in dom(b2), byhypothesis. Let x4 be the node just after the �rst ourene of x. Æ has the shapeÆ�11 ; (x3; x; �3); (x; x4; �4); Æ�22 .� If Æ2 is empty, then as Degree(x; b2(x4)) = �4, by lemma 5 there exists an edgex �04�!b x, with �04 � �4. But here �4 = �, so we are in the seond ase andx �04�!+b x with �04 � �.� Otherwise, by indution hypothesis on (x; x4; �4); Æ�22 , we obtain a path Æ02�02 � �!b,from x to x and �02 � �2, whih means that x �02�!+b x, and that is enough.2Corollary 4 (Corret internal merge)If b = (b1; x = let re b2 in e; b3), ` b, ` b2, dom(b2) ? dom(b) [FV(b1; b3), and b0 = b1; b2; x =e; b3, then ` b0. 75

Proof We want to prove that if x1 /�!+b0 x2, then x1 >b0 x2 (x1 is de�ned before x2 in b0).� If x1; x2 2 dom(b), by lemma 6, there is a path x1 /�!+b x2, and as ` b, x1 >b x2, so x1 >b0 x2.� If x1 2 dom(b); x2 2 dom(b2), by lemma 6, there is a path x1 /�!+b x, so x1 >b x and thereforex1 >b0 x2.� If x1 2 dom(b2); x2 2 dom(b), by lemma 6, then x2 2 fxg [dom(b3), so x1 >b0 x2.� If x1; x2 2 dom(b2), by lemma 6, we are in one of the following two ases.{ There exists a path x1 /�!+b2 x2, and as ` b2, x1 >b2 x2, so x1 >b0 x2.{ There exists a path x /�!+b x, whih is impossible, sine ` b.2There is a similar property for merging two externally nested bindings { i.e. the seond one appearsright under the �rst one.Lemma 5 (Corret external merge)If dom(b2) ? (dom(b1) [FV(b1)), ` b and ` b2, then with b = b1; b2 ` b.Proof Let Æ/ be a path of �!b. We prove that it goes from left to right in b.� If it is a path of �!b1 , then by hypothesis, it goes from left to right.� If it is a path of �!b2 , then by hypothesis it goes from left to right.� If it goes from a node de�ned in b1 to a node de�ned in b2, ok, it goes from left to right.� It annot go from node de�ned in b2 to a node de�ned in b1, beause dom(b2) ? FV(b1).24.4 SoundnessWe �rst state the two traditional type well-formedness and weakening lemmas.Proposition 7 (Types well-formed) If the types in � are well-formed, and � ` e :M , then Mis well-formed.Proof By indution on the typing derivation.Strut. e = h�; oi and M = hI ;O;Gi. By syntati orretness, dom(�) ? Names(o), so dom(I) ?dom(O). Moreover, the targets of G, by onstrution of �!h�;oi, and �!2h�;oi, are in dom(O),and by typing ` Gh�;oi, so ` G. Eventually, ` I is given by the typing rule, and ` O isobtained by indution hypothesis.Sum. Assume e = e1 + e2, � ` e1 : hI1;O1;G1i, � ` e2 : hI2;O2;G2i, ` G1 [G2, andM = h(I1 [I2) n (O1 ℄ O2); (O1 ℄ O2);G1 [G2i. By indution hypothesis the types of e1and e2 are well-formed, so I1 [I2 and O1 ℄ O2 are as well. By onstrution, the inputs aredisjoint from the outputs, the graph is orret, and its targets are in dom(O1 ℄ O2).76

Freeze. e = e0 !X , � ` e0 : hI ;O;Gi, and M = hI ;O;G !Xi. The only diÆulty is to show thatthe targets of G ! X are in dom(O), but the ones of G are by indution hypothesis, so it isthe same for the ones of G!X . x, and therefore for the ones of G.Close. Simple by indution hypothesis.Projet and delete. Easy by indution hypothesis. For projetion for example, everything istrivial, exept maybe that Targets(GjN) � dom(Oj N), but by indution hypothesisTargets(G) � dom(O), and as Targets(GjN) = Targets(G) \ N , we have Targets(GjN) �dom(O) \ N = dom(Oj N).Show and hide. Assume � ` e : hI ;O;Gi, and by rule T-Show,� ` e:X1:::Xn : hI ;OjX1:::Xn ;G:X1:::Xni. By indution hypothesis, hI ;O;Gi is well-formed,so ` I , ` O, ` G, dom(I) ? dom(O), and Targets(G) � dom(O). We an dedue thathI ;OjX1:::Xn ;G:X1:::Xni is well-formed, sine Targets(G:X1 :::Xn) � fX1 : : : Xng and by typingfX1 : : :Xng � dom(O). The other onditions are easy, and hide is similar.Rename. e = e0[r℄, � ` e0 : hI ;O;Gi, (od(r) n dom(r)) ? dom(I) [dom(O) (1),and M = hIfrg;Ofrg;Gfrgi.By indution hypothesis, dom(I) ? dom(O), Targets(G) � dom(O), ` I , ` O and ` G.Furthermore, Ifrg and Ofrg are well-de�ned individually, but it is not trivial that they donot de�ne the same name twie.To show this, �rst remark that dom(Ifrg) = (dom(I) n dom(r)) ℄ r(dom(I)) anddom(Ofrg) = (dom(O) n dom(r)) ℄ r(dom(O)).But by indution hypothesis, we know that dom(I) ? dom(O), sodom(Ifrg) \ dom(Ofrg) � ((dom(I) n dom(r)) \ od(r))[((dom(O) n dom(r)) \ od(r))[(r(dom(I)) \ r(dom(O))):But by (1), both (dom(I) n dom(r)) \ od(r) and (dom(O) n dom(r)) \ od(r) are empty.Finally, as r is injetive and dom(I) ? dom(O), we have r(dom(I)) ? r(dom(O)).Moreover, by indution hypothesis, Targets(G) � dom(O), soTargets(Gfrg) � r(Targets(G))[(Targets(G)ndom(r)). But Targets(G)ndom(r) � (dom(O)ndom(r)), so Targets(Gfrg) � r(dom(O)) [(dom(O) n dom(r)) = dom(Ofrg):Split. Assume � ` e : hI ;O;Gi, and by rule T-Split,� ` eX�Y : hI ℄ fX : O(X)g;OfX 7! Y g;GX�Y i. By indution hypothesis, Targets(G) �dom(O). But Targets(GX�Y) = Targets(G) n fXg [fY g � dom(O)fX 7! Y g. The otheronditions are easy.Other ases. Easy.2Lemma 6 (Weakening) If � ` e :M and dom(�0) ? FV(e), then �h�0i ` e :M .Proof Simple indution on the typing derivation. Clashes of dom(�0) with bound variables of e0are not a problem beause in the rules, new bindings override previous ones. 2Now, typing is preserved by the omputational ontration rules.Lemma 7 (Subjet ontration) If e e0 and � ` e :M , then � ` e0 :M .Proof By ase analysis on the ontration step.77

� Sum. Assume e = h�1; o1i + h�2; o2i, and � ` e : M . By typing we have � ` h�1; o2i :hI1;O1;G1i, � ` h�2; o2i : hI2;O2;G2i, and M = hI ;O;Gi, with I = (I1 [I2) n (O1 [O2),O = O1 ℄O2, G = G1 [G2, and ` G. We have e0 = h�; oi, where � = (�1 [�2) n Input(o1; o2),o = o1 �� o2, with h�1; o1i m h�2; o2i.By lemma 1, ` �!e0 and G = b�!e0.Then we dedue easily that � ` e0 :M :{ dom(�) = dom(I) is trivial.{ We have seen that ` �!h�;oi.{ By typing there exist orret �1 and �2 suh that �hI1 Æ ��11 ℄ �1i ` o1 : �1 and�hI2 Æ ��12 ℄ �2i ` o2 : �2. So it would be enough to derive �0 ` o : (�1 ℄ �2), where�0 = �hI Æ ��1 ℄ �1 ℄ �2i.First Variables(o1) ? Variables(o2), so dom(�1) ? dom(�2).Then, I = I 01 ℄ I 02, with I 01 = I1 n O2 and I 02 = I2 n (I1 [O1) and we obtain I Æ ��1 =(I 01 Æ ��1) ℄ (I 02 Æ ��1) = (I 01 Æ ��11) ℄ (I 02 Æ ��12).Moreover, with P = od(�1)\Variables(o2), we have �2 = �2jP ℄�2nP , and by h�1; o1i mh�2; o2i, for all x 2 P , there is a name X 2 dom(�1) \ Names(o) suh that (X . x) 2�1 \ Input(o2), so id jP = Input(o2) Æ ��11 , and therefore�2jP = �2 Æ (id jP)= �2 Æ Input(o2) Æ ��11= (�2 Æ Input(o2)) Æ ��11= O2 Æ ��11= O2j dom(�1) Æ ��11= (O2 \ I1) Æ ��11 :So, we obtain �2 = (O2 \ I1) Æ ��11 ℄ �2nP and so�0 = �h�1 ℄ ((I1 nO2) Æ ��11) ℄ (I 02 Æ ��12) ℄ (I1 \ O2) Æ ��11 ℄ �2nP i= �h�1 ℄ I1 Æ ��11 ℄ (I 02 Æ ��12) ℄ �2nP i:By ompatibility, this weakening does not onern free variables of o1, so we obtain bylemma 6: �0 ` o1 : �1, and by symmetry �0 ` o2 : �2, so �0 ` o : �1 ℄ �2.� Lift.Let e = L [let re b in e1℄, and � ` e :M , dom(b) ? FV(L), and e0 = let re b in L [e1℄. Byase on L . For example L = 2+ e2, we have a derivation of the shape` �b ` b ...�h�bi ` b : �b ...�h�bi ` e1 :M1� ` let re b in e1 :M1 ...� ` e2 :M2 I1 ℄ O1 m I2 ℄ O2` G1 [G2� ` (let re b in e1) + e2 : Mwhere M1 = hI1;O1;G1i, M2 = hI2;O2;G2i,and M = h(I1 [I2) n (O1 [O2);O1 ℄ O2;G1 [G2i.By hypothesis, dom(�b) = dom(b) ? FV(e2), so by lemma 6, we have �h�bi ` e2 : M2, andwe an reonstrut the derivation as follows:` �b` b ...�h�bi ` b : �b I1 ℄ O1 m I2 ℄ O2` G1 [G2 ...�h�bi ` e1 :M1 ...�h�bi ` e2 :M2�h�bi ` e1 + e2 :M� ` let re b in e1 + e2 :M78

� Freeze. Assume e = h�; oi ! X and e0 = h�; o0i, with o = (o1; X [y�℄ . x = f; o2), ando0 = (o1; [y�℄ . x = f; o2; X . y = x), with a fresh y.By typing, we have a derivation of the shape` I ` �odom(�) = dom(I) ` �!h�;oi 8z 2 Variables(o);�hI Æ ��1 ℄ �oi ` o(z) : �o(z)�hI Æ ��1 ℄ �oi ` o : �o� ` h�; oi : hI ;O;Gi X 2 dom(O)� ` e : hI ;O; bG !Xiwith O = �o Æ Input(o) and G = b�!h�;oi.Let �o0 = �ohy 7! �o(x)i. By weakening, we an derive8z 2 Variables(o0) n fx; yg;�hI Æ ��1 ℄ �0oi ` o0(z) : �0o(z):For x and y, we easily derive too that�hI Æ ��1 ℄ �0oi ` f : �0o(x)�hI Æ ��1 ℄ �0oi ` x : �0o(y):So we have 8z 2 Variables(o0);�hI Æ ��1 ℄ �0oi ` o0(z) : �0o(z):Moreover, by lemma 1, we have ` �!e0 and b�!e0 = bG !X, so we an derive` I ` �0odom(�) = dom(I) ` �!e0 8z 2 Variables(o0);�hI Æ ��1 ℄ �0oi ` o0(z) : �0o(z)�hI Æ ��1 ℄ �0oi ` o0 : �0o� ` h�; o0i : hI ;O; bG !Xi� Delete. Let e = h�; oij�X1:::Xn , with N = fX1 : : : Xng, we havedom(�) = dom(I) ` I ` �o ` �!h�;oi �hI Æ ��1 ℄ �oi ` o : �o� ` h�; oi : hI ;O;Gi� ` e :Mwith M = hI 0;O0;G0i = hI ℄ Oj N ;OnN ;Gj�N i and G = b�!h�;oi. But neessarily, we havee0 = h�0; o0i = h�; Input(o)jN ; onN i.So, I Æ ��1℄�o = �(I ℄Oj N)Æ(�; Input(o)jN)�1�℄�0o, with �0o = �onN , and so �h�(I ℄Oj N)Æ(�; Input(o)jN)�1� ℄ �0oi ` onN : �0o.Moreover, we have by lemma 1, ` �!e0 and G0 = b�!e0, so we an derivedom(�0) = dom(I 0) ` I 0 ` �0o ` �!h�0;o0i �hI 0 Æ �0�1 ℄ �0oi ` o0 : �0o� ` e0 : hI 0;O0;G0i� Projet. Let e = h�; oijX1 :::Xn . Let N = fX1 : : :Xng, N 0 = Names(o) n N , and e00 =h�; oij�N 0 . We have in fat that e00 e0, beause of the duality of delete and projet.So if we show that � ` e00 : M , we an reprodue exatly the delete ase as above.By typing, we have � ` h�; oi : hI ;O;Gi, and M = hI 0;O0;G0i, with I 0 = I [OnN , O0 = OjN ,and G0 = GjN .But we an derive � ` e00 : hI 00;O00;G00i, with I 00 = I [OjN 0 = I [OnN = I 0, O00 = OnN 0 =Oj N = O0, and G00 = Gj�N 0 = GjN = G0, so we derive � ` e00 : M , and may apply the sameproess as above to dedue � ` e0 :M . 79

� Rename. Let e = h�; oi[r℄. We have e0 = h�frg; ofrgi, and by typing:` I ` �o` �!h�;oi dom(I) = dom(�) �hI Æ ��1 ℄ �oi ` o : �o� ` h�; oi : hI ;O;Gi(od(r) n dom(r)) ? (dom(I) [dom(O))� ` e :Mwith M = hI 0;O0;G0i = hIfrg;Ofrg;Gfrgi, G = b�!h�;oi,and O = �o Æ Input(o).We may write e0 as h�0; o0i = h�frg; ofrgi, and Input(o0) = Input(o) Æ r�1Names(o), so�o Æ Input(o0) = �o Æ Input(o) Æ r�1Names(o)= O Æ r�1Names(o)= O Æ r�1dom(O)= O0:For inputs, we have I 0 Æ �0�1 = Ifrg Æ (�frg)�1 = I Æ r�1dom(I) Æ rdom(�) Æ ��1 = I Æ ��1, so�hI 0 Æ �0�1 ℄ �oi ` o0 : �o.Moreover, it is easily seen that dom(I 0) = dom(�0), ` I 0, and by lemma 1, we have, with` �!h�0;o0i and G0 = b�!h�0;o0i, so we an derive` I 0 ` �o` �!h�0;o0i dom(�0) = dom(I 0) �hI 0 Æ �0�1 ℄ �oi ` o0 : �o� ` h�0; o0i : hI 0;O0;G0i� Close. Let e = loseh�; oi. We have e0 = let re Bind(o) in Reord(o), and ` Bind(o), andby typing ` �o �!h�;oi �h�oi ` o : �o� ` h�; oi : h;;O;Gi� ` e :Mwith M = fOg, G = b�!h�;oi, and O = �o Æ Input(o).Let o = d1 : : : dndi = Li[xi1 : : : xini ℄ . xi = eib = Bind(o) = (x1 = e1 : : : xn = en)s = Reord(o) = (X1 = x�(1) : : : Xm = x�(m))where � : f1 : : :mg ! f1 : : : ng injetiveand for all i,Xi = L�(i):We have e0 = let re b in fsg and let �o = fxi :Mi j i 2 f1 : : : ngg.We have{ �h�oi ` b : �o (easy with �h�oi ` o : �o),{ ` b, by lemma 4,{ �h�oi ` fsg : fOg, sine for all i 2 f1 : : :mg, �h�oi ` x�(i) : �o(x�(i)), and �o(x�(i)) =O(Xi),so it is ok. 80

� Show. Assume e = e0:X1:::Xn , with e0 = h�; oi. Then, e0 = h�; o0i,and o0 = Show(o;X1 : : :Xn). Let N = fX1 : : :Xng. The typing derivation is of the shape` I ` �o` �!h�;oi dom(I) = dom(�) �hI Æ ��1 ℄ �oi ` o : �o� ` e0 : hI ;O;Gi N � dom(O)� ` e : hI ;Oj N ;G0iwith G = b�!h�;oi, G0 = bG:N ,and O = �o Æ Input(o).By lemma 1, we have ` �!e0 and G0 = bGe0.The typing of o0 is exatly as the one for o, so we obtain that e0 has type hI ;O0;G0i, withO0 = �o Æ Input(o0). But Input(o0) = Input(o)jN , so O0 = OjN , whih is the expeted result.� Hide. As for delete and projet, we obtain the expeted result by reasoning dually to theShow ase.� Split. Let e0 = h�; oi and e = e0X�Y , with o = (o1; X [z�℄ . x = e1; o2). We have e0 =h�0; o0i = h�;X . x; o1; X [z�℄ . y = e1; o2i for a fesh y.The typing derivation is of the shape` I ` �o` �!h�;oi dom(I) = dom(�) �hI Æ ��1 ℄ �oi ` o : �o� ` e0 : hI ;O;Gi Y =2 dom(O) [dom(I)� ` eX�Y : hI ℄ fX : O(X)g;OfX 7! Y g;GX�Y iwith G = b�!h�;oi, and O = �o Æ Input(o).By lemma 1, we have ` �!h�0;o0i and b�!h�0;o0i = GX�Y .Moreover, the environment �o0 orresponding to o0 is �ofx 7! yg, and it is easy to reonstrutthe derivation for e0 (by a weakening).2It is now possible to prove that if a well-typed expression redues to another expression, then thisexpression has the same type, whih is known as the subjet redution property.First we prove that typing is ompositional at the level of lift ontexts.Lemma 8 (Lift ontext) If � ` L [e℄ :M , � ` e :M 0, and � ` e0 :M 0, then � ` L [e0℄ :M .Proof By ase on L .� L = fSg, with S = sv; X = 2; s. We have a derivation of the form...8(Y = f) 2 (sv; s);� ` f : O(Y) ...� ` e :M 0� ` fS[e℄g :Mwith M = fO [fX :M 0gg.By hypothesis we have � ` e0 :M 0, so we an reonstrut the derivation...8(Y = f) 2 (sv ; s);� ` f : O(Y) ...� ` e0 :M 0� ` fS[e℄g :M81

� L = op[2℄, for op 2 flose; [r℄; !X;j�X1:::Xn ; jX1:::Xng. We have a derivation of the shape� ` e :M 0 side onditions� ` e : op[M 0℄with M = op[M 0℄, and op dedued from the typing rules. The only side onditions appearingin the rules are X 2 dom(O) for freezing and od(r) ? dom(I)[dom(O) for renaming, whihdo not use the shape of e, so we an reonstrut the derivation in a ompositional way.� L = 2+ e1. The derivation is of the formI1 ℄ O1 m I2 ℄ O2 ` G1 [G2 � ` e : hI1;O1;G1i � ` e2 : hI2;O2;G2i� ` e+ e2 : h(I1 [I2) n (O1 [O2);O1 ℄O2;G1 [G2iSimilarly, we an reonstrut the derivation ompositionally with e0.� L = v +2. Similar.2This property is true for multiple lift ontexts as well.Lemma 9 (Multiple lift ontext) If � ` F [e℄ :M , � ` e :M 0, and � ` e0 : M 0, then � ` F [e0℄ :M .Proof By trivial indution on F . 2Corollary 5 (External substitution) If � ` v : �(x), and � ` F [x℄ :M , then � ` F [v℄ :M .Proof Trivial. 2For evaluation ontexts, typing is not exatly ompositional, sine in the let re ase, it dependson the shapes of the bindings. However, we have this slightly less general property.Lemma 10 (Evaluation ontext) Assume � ` E [e℄ : M , with a sub-derivation �h�0i ` e : M 0in plae of the hole. Assume also that �h�0i ` e0 : M 0, that e 2 Preditable and e0 2 Preditable,and that for all x 2 FV(e0), x 2 FV(e) and Degree(x; e) � Degree(x; e0).Then � ` E [e0℄ :M .Proof By indution on E .� E = F . By lemma 9.� E = let re bv in F . The derivation has shape` bv ...�h�bv i ` bv : �bv ...�h�bv i ` F [e℄ :M� ` let re bv in F [e℄ :MBy lemma 9, we have � ` F [e0℄ :M , so we an reonstrut the derivation ompositionally.82

� E = let re B [F [e℄℄ in f , with B = bv; x = 2; b. The derivation has the shape...8y 6= x 2 dom(B);�h�bi ` B (y) : �b(y) ...�h�bi ` F [e℄ : �b(x)�h�bi ` B [F [e℄℄ : �b ...�h�bi ` f :M ` b� ` E [e℄ :Mwhere b = B [F [e℄℄.By indution hypothesis, we derive �h�bi ` F [e0℄ : �b(x).Let b0 = B [F [e0℄℄. There only remains to prove that ` b0.As ` b, we have mb ` b0, sine they de�ne the same variables in the same order.Obviously, we have >b=>b0 .By hypothesis and hypothesis 1, we have F [e℄ 2 Preditable i� F [e0℄ 2 Preditable, so b andb0 are equivalent with respet to shapes.For dependenies, we know that the edges with a target di�erent from x in �!b stay the samein �!b0 . For the edges towards x, we know that FV(F [e0℄) � FV(F [e℄). Let y 2 FV(F [e0℄) \dom(B). By hypothesis and hypothesis 2, we have Degree(y; F [e℄) � Degree(y; F [e0℄), so thatif y /�!+b0 z, then y /�!+b z. Therefore, the onstraints imposed on the ordering are weakerthan in b, and by lemma 3, the order of de�nition stays aeptable.2Lemma 11 (Evaluation ontext) If e e0, and � ` E [e℄ :M , then � ` E [e0℄ :M .Proof By lemma 10. 2Now that we have proven that typing is preserved by the Context rule, the last diÆulty forproving subjet redution onerns the Subst rule. Indeed, replaing a variable with its valuemight hange the shape of a binding. We �rst prove that if the variable is de�ned above theurrent ontext, it does not hange the typing.Now, we hek that substituting a variable with its value, de�ned in the urrent binding does nothange typing either.Lemma 12 (Internal substitution preserves orret ordering) Let B = (bv ; y = 2; b1),b = B [F [N [x℄℄℄, b0 = B [F [N [v℄℄℄, bv(x) = v, and Capt2(F [N ℄) ? FV(v) [fxg. If ` b, then` b0.Proof Assume ` b. Then, b and b0 de�ne the same variables in the same order. So, mb ` b0.By hypothesis 1, if F [N [x℄℄ 2 Preditable, then F [N [v℄℄ 2 Preditable, so the shapes of b0 are lessrestritive than in b.For this, by lemma 3, it is enough to show that �!b < �!b0 .For this we remark that�!b0 � �!b [fz ��! y j z 2 FV(F [N [v℄℄); � = Degree(z; F [N [v℄℄)gBut by hypothesis 2, among the variables z 2 FV(F [N [v℄℄), we an distinguish two ases.� For variables z 2 FV(v) nCapt2(F [N ℄), we have � = /.83

� For variables z =2 FV(v) nCapt2(F [N ℄), we have � = Degree(z; F [N ℄).Therefore, we have�!b0 � �!b[fz /�! y j z 2 FV(v) nCapt2(F [N ℄)g[fz ��! y j z 2 FV(F [N [v℄℄) \ (FV(v) nCapt2(F [N ℄)); � = Degree(z; F [N ℄)gLet !00 be the right member of the above equation.For eah edge in fz /�! y j z 2 FV(v) nCapt2(F [N ℄)g, as z 2 FV(v), there is an edge z ��!b x. Butby hypothesis 2, Degree(x; E [N [x℄℄) = /, so there is a strit path from z to y in �!b.For eah edge in fz ��! y j z 2 FV(F [N [v℄℄) \ (FV(v) n Capt2(F [N ℄)); � = Degree(z; F [N ℄)g, wehave Degree(z; F [N [x℄℄) � �. (This an be dedued from hypothesis 2.)So, we have �!b <!00, and by transitivity of graph omparison, we get �!b < �!b0 .2We an eventually verify that redution through the Subst rule preserves types.Lemma 13 (Aess) If E [N ℄(x) = v and � ` E [N [x℄℄ :M , then � ` E [N [v℄℄ :M .Proof By indution on E .� E = F , impossible.� E = let re bv in F . By orollary 5.� E = let re B [F ℄ in e. Let b = B [F [N [x℄℄℄, b0 = B [F [N [v℄℄℄, and B = bv; y = 2; b1.The derivation has the shape` b ...8y 2 dom(bv; b1);�h�bi ` B (y) : �(y) ...�h�bi ` F [N [x℄℄ : �(x)� ` E [N [x℄℄ :MWe have bv(x) = v, and by lemma 12, ` b0.Eventually, we have �h�bi ` v : �(x), so by orollary 5, we an derive �h�bi ` F [N [v℄℄ : �(x),and therefore ` b0 ...8y 2 dom(b0);�h�bi ` b0 : �b(y)� ` E [N [v℄℄ :M2Type preservation along the IM rule is proven.Lemma 14 (Internal merge)If e = let re bv; x = (let re b1 in e1); b2 in f e0 = let re bv; b1; x = e1; b2 in f , and � ` e : M ,then � ` e0 :M . 84

ProofWe have a derivation of the shape
8y 6= x ...�h�bi ` b(y) : �b(y) ` �b1` b1 ...�h�bih�b1i ` b1 : �b1 ...�h�bih�b1i ` e1 : �b(x)�h�bi ` let re b1 in e1 : �b(x)�h�bi ` b : �b ...�h�bi ` f :M ` �b` b� ` let re bv; x = (let re b1 in e1); b2 in f :Mwhere b = bv; x = (let re b1 in e1); b2.Let b0 = bv; b1; x = e1; b2. By orollary 4, we have ` b0.Moreover, by weakening, we have 8y 6= x ...�h�bih�b1 i ` b(y) : �b(y)and with �b0 = �b ℄ �b1 , ...�h�b0i : f :Mand we have 8y 2 dom(b0) ...�h�b0i ` b0(y) : �b0(y) ...�h�b0i : f :M ` �b0` b0� ` let re b0 in f :M2Next, rule EM is examined.Lemma 15 (External merge)If dom(b) ? (dom(bv) [FV(bv));e0 = let re bv in let re b in e;e00 = let re bv; b in e; and� ` e0 :M; then � ` e00 :M .

Proof The typing derivation for e0 has the shape` bv ...�h�1i ` bv : �1 ` b ...�h�1ih�2i ` b : �2 ...�h�1ih�2i ` e : �2�h�1i ` let re b in e : �1� ` e0 :MBy lemma 5, we have ` bv; b.So by weakening we an reonstrut the derivation.2We an now state the subjet redution property.85

Lemma 16 (Subjet redution) If e�! e0 and � ` e :M , then � ` e0 :M .Proof By immediate indution, with lemmas 7, 11, 13, and 15. 2Eventually, we prove that if a term is well-typed and is not a result, then either it redues toanother term, or it is stuk on a free variable. This is known as the progress property.Lemma 17 (Progress) If � ` e : M and e is not a result, then either e = E [N [x℄℄ with x =2Capt2(E [N ℄), or there exists e0 suh that e�! e0.Proof By indution on e.1. If e is of the shape L [e0℄, and e0 is not a value. If e0 = let re b in f , then the Lift applies.Else, by indution hypothesis we are in one of the following ases.� e0 = E [N [x℄℄ with x =2 Capt2(E [N ℄), and e is stuk on x too, i.e. e = L [E [N [x℄℄℄.� Otherwise, if e0 �! e00, we reason by ase analysis on the applied redution rule.{ EM. Then the Lift rule applies for e.{ Subst or Context. Then e0 = E [f ℄ and e00 = E [f 0℄. By ase analysis again, onE :� If E = 2 or E = F , then e redues by the same rule, sine L [E ℄ is an evaluationontext.� If E = let re bv in F 0 or E = let re B [F ℄ in g, then the Lift rule appliesfor e.2. If e is of the shape N [x℄, there is nothing to show (x is neessarily free in N [x℄).3. e = let re b in f .(a) Else, if b is evaluated. b = bv. If f is a result, it has the shape let re bv 0 in v (or ewould be one), and rule EM applies.Otherwise, by indution hypothesis, we are in one of the two following ases.� f �! f 0. By ase analysis on the redution:{ EM. Then rule EM applies for e as well.{ Subst or Context.We have f = E [g℄ and f 0 = E [g0℄. If E = let re bv 0 in F 0 or E = let re B [F ℄ in g,then ruleEM applies, and otherwise, the same rule applies for e sine let re bv in Eis an evaluation ontext.� f = E [N [x℄℄, with x =2 Capt2(E [N ℄).If E = let re bv 0 in F or E = let re B [F ℄ in g, then rule EM applies, andotherwise, E is of the shape F and f = F [N [x℄℄, e = let re bv in F [N [x℄℄. If x 2dom(bv), then rule Subst applies, and otherwise e = E 0[N [x℄℄ with x =2 Capt2(E 0).(b) Otherwise, b is not evaluated, so b is of the shape bv; y = g; b1, where g is not a value.� If g is a result, then it is of the shape let re bv 0 in v, and by internal merge,e�! let re bv; bv 0; y = v; b1 in f .� Otherwise, by indution hypothesis:{ If g �! g0, by ase on the redution.� EM: then rule IM applies for e.� Context or Subst: then g = E [g0℄ and g0 = E [g00℄. If E is of the shapelet re bv 0 in F or let re B [F ℄ in g00, then rule IM applies for e, and other-wise, the global ontext is an evaluation ontext and the same rule Contextor Subst applies for e. 86

{ If g = E [N [x℄℄ with x =2 Capt2(E [N ℄). By ase on E . First notie that we knowthat x =2 dom(y = g; b1), sine by typing ` b and therefore if x /�!+b y, then x isde�ned before y in b, and g = E [N [x℄℄ implies the existene of an edge x /�!b yby hypothesis 2.� If E = let re bv 0 in F or let re B [F ℄ in g00, then rule IM applies.� Else, if x 2 dom(bv), then rule Subst applies, sine the global ontext is anevaluation ontext.� Else, if x =2 dom(bv; y = g; b1), then e is of the shape E 0[N [x℄℄ with x =2Capt2(E 0).4. e = e1 + e2.We treated the ase where either e1 or e2 is not a value above. So we may assume that bothare values. The typing derivation must be of the shape` �!h�1;o1i` I1 ` �1dom(�1) = dom(I1) ...�hI1 Æ ��11 ℄ �1i ` o1 : �1� ` e1 : hI1;O1;G1i ` �!h�2;o2i` I2 ` �2dom(�2) = dom(I2) ...�hI2 Æ ��12 ℄ �2i ` o2 : �2� ` e2 : hI2;O2;G2i� ` e :Mwith ` G1 [G2 and I1 ℄ O1 m I2 ℄ O2 as side-onditions andG1 = �!h�1;o1iG2 = �!h�2;o2iO1 = �1 Æ Input(o1)O2 = �2 Æ Input(o2) and M = hI ;O;GiI = (I1 [I2) n (O1 [O2)O = O1 ℄O2G = G1 [G2:But values with mixin types may only be of two kinds: either variables or strutures. Ifeither one of the two is a variable, we have treated the ase as well in the beginning (ande = E [N [x℄℄ with x =2 Capt2(E)).So we may assume that e1 = h�1; o1i, e2 = h�2; o2i, and that bound variables of the twostrutures meet only on the ommon names, i.e. e1 m e2. This an be reahed via �-onversion.Moreover, typing imposes that Names(O1) ? Names(O2), so Names(o1) ? Names(o2), andrule Sum applies.5. Close. e = lose e0, and e0 is a value, not a variable (these ases have been treated above).By typing, e0 = h�; oi and we have` �o ` �!h�;oi ...�h�oi ` o : �o� ` e0 : h;;O;Gi� ` e : fOgSo we have e�! let re Bind(o) in Reord(o), providedo is de�ned and Bind(o) is syntatially orret.By lemma 2, o is de�ned and ` Bind(o).For any forward referene from x to y in Bind(o), there is an edge from y to x in �!o, and if itpoints to a omponent of unpreditable shape, then either its degree is / or we have y �o x,so y is de�ned before x in o and therefore, in both ases, x is de�ned before y in Bind(o).6. Other operators trivial. 87

2Eventually, we an prove a standard soundness theorem.Theorem 2 (Soundness) The evaluation of a well-typed expression may either not terminate,or reah a result, or get stuk on a free variable.As free variables annot appear during redution, we have the following more standard orollary.Corollary 6 (Soundness) The evaluation of a losed well-typed expression may either not ter-minate or reah a result.

88

Chapter 5Re�ned stati semantis: typeomponentsIn this hapter, we extend the MM language with type de�nitions and abstrat types. Our formal-ization is strongly inspired by Leroy's module systems [51, 52, 53, 54℄, but the theoretial designalso bases on type theory for reursive modules [27, 29℄, and the work of Duggan and Sourelis [31℄and Flatt and Felleisen [36, 35℄. It does not solve any of the issues related to these systems, suh asundeidability, lak of prinipal signatures, or even problems for syntatially represent signatures[56, 65℄. It should rather be seen as an experiment on the expressive power of mixin modules withtype omponents.5.1 The MML languageOur language of mixin modules with type omponents is presented in �gure 5.1. Names S 2 Namesare distinguished from variables s 2 Vars. Expression variables x 2 MVars � Vars are distinguishedfrom type names t 2 TVars � Vars. Expression names X 2 MNames � Names are distinguishedfrom type names T 2 TNames � Names. Variables are used as binders, as usual. Names areused for aessing to de�nitions in mixin modules, as an external interfae to other parts of theexpression. A label L an be either a name or the anonymous label .The syntax omprises two main syntati lasses, expressions, whih represent omputational in-strutions, and types, whih ontain stati information, roughly.De�nitions Expressions build on de�nitions d, and outputs o = (d1 : : : dn), whih are lists ofde�nitions. A de�nition d an have two shapes. If d = (T .t =M), it binds a type expressionM toboth a type name T and a type variable t. It is then alled a type de�nition. If d = (L.x[y�℄ = e),then it binds an expression e (the body of the de�nition) and a �nite set of variables y� to a labelL and an expression variable. It is then alled a value de�nition. The name X or T is used byother parts of the program to refer to the bound objet. Conversely, the variable x or t is usedby other de�nitions under the sope of the de�nition to refer to the bound objet. If the label isthe anonymous label, the bound objet remains unaessible to other parts of the program. Theattahed set of variables represents fake dependenies that help the programmer speify the orderof evaluation, exatly as for MM in hapter 3: when a mixin module is instantiated to a module,by the lose operator, de�nitions are reordered, taking atual and fake dependenies into aount.Module expressions Intuitively, expressions are divided into three parts. A basi module fovgis a list ov of pairs S . s of a name and a variable. For homogeneity, we onsider these pairs as89

Lexial onventions: Expression Type BothVariable x t sName X T SLabels L 2 Names℄f gPath: p ::= x j p:XExpression: e ::= p Pathj fovg Modulej let re o in e let rej hI ; oi Struturej e1 + e2 j lose e Composition, losurej (e :M) Type onstrainto ::= d1 : : : dn Outputd ::= L . x[y�℄ = e j T . t =M De�nitionType: M ::= ? New typej t j p:T Type pathj fOg Module typej hI ;O;!;_i Mixin module typeI; O ::= D1 : : :Dn SignatureD ::= L . s :M Delaration! �Fin fX ��! Y j X;Y 2 Names; � 2 Degreesg Dynami graph_ �Fin Names�Names Stati graphDegrees = f,;/g Figure 5.1: Syntax of MMde�nitions, suh that the body of eah value de�nition is a variable, not bound by the urrentmodule. This way, basi module expressions are always values. Modules are required not to bindthe same name or the same variable twie. Moreover, beause there is no reordering on modulede�nitions, fake dependenies do not make any sense so we do not write them. Module seletion isperformed by the seletion operator, but it is restrited to paths p = x:X1: : : : :Xn. The rationalefor restriting seletion to paths has to do with phase distintion [41℄. Roughly, by avoidingomputational expressions in types, we avoid fully dependent types, and the assoiated diÆulties,suh as the undeidability of type equivalene.Mixin module expressions Basi mixin modules, alled strutures, are pairs hI ; oi of an inputI (also alled a signature) and an output o. An input is a �nite set I = (D1 : : : Dn) of delarations.A delaration D is the spei�ation of a de�nition, that the mixin module expets as an input. Itan either be of the shape X . x :M , and give the type of a value de�nition, or give the type of atype de�nition. The point is that a type de�nition T . t =M an be a onrete (or manifest) oneT .t :M , but an also be abstrated over. The type t provided as an input to the mixin module anthen be any type. The orresponding delaration is T .t : ?. We all it an abstrat delaration. Thesope of binding variables in I is the whole struture, whereas the sope of the binding variablesin o is restrited to o. The input is required not to bind the same name or the same variable twie,as well as the output. Moreover, although the input and the output are allowed to de�ne somenames in ommon, they must not de�ne variables in ommon. Fake dependenies in de�nitionsare requested to refer to variables de�ned in the same struture. Mixin module expressions omewith a minimal set of operators: omposition + and instantiation lose. Other usual mixin moduleoperators are left for the moment, sine they would ompliate the presentation. They are used inexamples in setion 5.4. 90

Types Type expressions in MML inlude the unknown type ?, type variables t, aess to typede�nitions in modules p:T , module types fOg, and mixin module types hI ;O;!;_i. Both I and Orange over �nite sets of delarations. They are alled the input and output signatures, respetively.In module or mixin module types, signatures should not de�ne the same name twie, and not de�nethe same variable twie either. In mixin module types, I and O should not de�ne any variable inommon, but are allowed to de�ne some names in ommon. In module types, abstrat delarationsmake the implementation of the delared type hidden to outer parts of the program. In mixinmodule types, an abstrat input delaration does not have the same meaning: it spei�es that noonstraint is put on the input type ; any type is aepted. The graph ! is a �nite graph overexpression names, labeled by degrees � 2 f,;/g. It represents the dynami dependenies of theonsidered mixin module, and is therefore alled a dynami graph. It is used to detet ill-foundedreursive value de�nitions. The graph_ is an unlabeled graph over names. It represents the statidependenies of the onsidered mixin modules, and is therefore alled a stati graph. It is used todetet yli type de�nitions.Reursive de�nitions and type onstraints As usual, let re binds variables to their values.It is required not to bind the same variable twie. For homogeneity, we onsider these bindingsas de�nitions. Moreover, names and fake dependenies are irrelevant in let re so we do not writethem. Any expression is allowed as a let re de�nition, exept that forward referenes must pointto expressions of preditable shape, exatly as for MM in hapter 3. Expressions of preditableshape are de�ned by e# 2 Preditable ::= fog j hI ; oi j let re b in e#:The language allows to onstrain the type of an expression e by writing (e : M). Notie that thisoperator is stati, and is therefore only able to make some type delarations abstrat, not to forgetomponents.Operations on sequenes Lists and �nite sets of de�nitions or delarations an be seen as �nitemaps from pairs of a label and a variable to di�erent kinds of odomains. For instane, signaturesare maps to types, outputs are maps to pairs of a set of fake dependenies and an expression. Foreah suh map f , we denote by DN(f) the set of names de�ned by f , fS j 9s; (S; s) 2 dom(f)g,and DV(f) the set of variables de�ned by f , fs j 9s; (S; s) 2 dom(f)g.Strutural equivalene We onsider the expressions equivalent up to alpha-onversion of bind-ing variables in strutures, signatures and let re expressions. In the following, we assume that noundue variable apture ours.Dynami semantis The dynami semantis is de�ned exatly as the semantis of MM inhapter 3, after removing all type indiations.5.2 Type systemThe type system onsists in four mutually dependent groups of relations: type well-formedness,mathing and equivalene, and typing. Eah of this group has a omponent for types, signatures,et. . . They rely on the notion of environment �, referring to �nite maps from variables to types.Environment bindings are de�ned as �nite maps from pairs of a label and a variable to types. Thisway, a signature an be extrated from an environment, by removing all the anonymous bindings.Environment extension + denotes the union of �nite maps, without overriding. Therefore, � + �0implies DV(�) ? DV(�0). A signature an be seen as an environment by forgetting labels. Thiswill be done impliitely in the following. 91

5.2.1 Well-formednessThe de�nition of well-formedness uses a new notion, the one of stati dependeny graph, whih weintrodue now.Stati dependeny graph The stati dependeny graph_(O;!) of a set of delarations O withdynami dependeny graph! is de�ned in �gure 5.2. The arrow! denotes any onrete dynamigraph: it is a graph over nodes , whih are elements of Vars[Names, labeled by degrees. Further, Ois any set of delarations, not neessarily de�ning distint names or variables. The de�nition of _uses the funtion Nodes, whih assoiates to a pair (L; s) of a label and a variable either s, if L = ,or L if L is a name. (By abuse of notation, we overload this funtion to at on delarations aswell.) Roughly, this graph onnets manifest type de�nitions referring to other type de�nitions inthe same signature. It onnets them by name when possible, and by variable otherwise. Formally,a delaration D2 statially depends on another delaration D1 if the type of D2 ontains a typedelaration S . t :M , suh that the variable s de�ned by D1 is free in M .Stati graphs will often be required to be ayli, whih is written `_(O;!). This ondition avoidsthe diÆulty of type-heking and type equivalene in the presene of equi-reursive, higher-ordertype onstrutors [29, 38℄. Notie that the stati graph is losed under dynami dependeny. Thisis neessary to rule out reursive types, as shown by the following example.Consider e =def loseh;T . t = y:U;X . x = h;;U . u = ti; Y . y = losexi. The edges Y _ Tand T _ X in the struture are obvious, but without the rules for prolongation with dynamidependenies, there would not be any edge T _ Y . The expression redues tolet re T . t = y:U;X . x = h;;U . u = ti;Y . y = let reU . u = tin fU . u0 = ugin fT . t0 = t;X . x0 = x; Y . y0 = yg and then let re T . t = y:U;X . x = h;;U . u = ti;U . u = t;Y . y = fU . u0 = ugin fT . t0 = t;X . x0 = x; Y . y0 = ygwhih would have the reursive type fT . t : y:U;X . x : h: : :i; Y . y : fU . u : tgg.Well-formedness prediate Well-formedness of types, signatures, and delarations is de�nedas the least relation respeting the rules in �gure 5.4, using �gures 5.2 and 5.3. Notie that itdepends on the typing relation.A type variable t is a well-formed type, provided it is de�ned by the environment (ruleWf-Var). Ifthe path p has a module type exporting the type T , then p:T is a well-formed type (ruleWf-Path).A module type is well-formed, provided the set of its delarations is well-formed in the environ-ment extended with themselves (ruleWf-Module), and provided that dependenies between typede�nitions (inluding the nested ones) are not yli. Formally, its stati dependeny graph _(O;;)is required to be ayli. By rule Wf-Mixin, a mixin module type hI ;O;!;_i is well-formed,provided the set I is well-formed in the environment � + I , and the set of its output delarationsis well-formed in the environment � + I + O. Moreover, it is required that the union of the statigraphs of I and O is ayli, and that the dynami graph ! is orret. A dynami graph is saidorret if its transitive losure is a partial ordering. The transitive losure of a dynami graph! isde�ned in �gure 5.3, as the set of paths of!, labeled with the last edge of the path. This notion ofgraph orretness has been proven in hapter 4 to be a orret riterium for heking dependeniesin mixin modules.A well-formed signature is a signature ontaining only orret delarations. A delaration S .s : Mis orret, providedM is (ruleWf-Manifest), but the abstrat type ? is not a well-formed type byitself. RuleWf-Abstr allows a delaration to use the abstrat type, but only for type delarations.Notie that the abstrat type ? is not the type of any value de�nition. In fat, the abstrat typean be seen as a syntati artefat to inlude abstrat and manifest type delarations into a singlesyntati lass. The notion of well-formed environments is derived from the one for signatures.92

Stati free variablesSFV(?) = ;SFV(t) = ;SFV(x:p:T) = ;SFV(fOg) = [D2O SFV(D) nDV(O)SFV(hI ;O;!;_i) = [D2I SFV(D) nDV(I) [[D2O SFV(D) nDV(I; O)
SFV(T . t : M) = FV(M)SFV(X . x :M) = SFV(M)

Stati dependeny graphNode(Di1)_(fD1;D2:::Dng;!) Node(Di2) Node(Di2)! Node(Di3)Node(Di1)_(fD1;D2:::Dng;!) Node(Di3)Node(Di1)! Node(Di2) Node(Di2)_(fD1;D2:::Dng;!) Node(Di3)Node(Di1)_(fD1;D2:::Dng;!) Node(Di3)s 2 SFV(Di2) s = DV(Di1)Node(Di1)_(fD1;D2:::Dng;!) Node(Di2)Figure 5.2: Stati dependenies in a signature

X �1�!+ Z Z �2�! YX �2�!+ Y X ��! YX ��!+ YFigure 5.3: Transitive losure of !
93

Types t 2 DV(�)� ` t (Wf-Var) � ` p : fOg T 2 DN(O)� ` p:T (Wf-Path)� +O ` O `_(O;;)� ` fOg (Wf-Module)� + I ` I � + I +O ` O DV(I) ? DV(O) `_(I[O;;) `!� ` hI ;O;!;_i (Wf-Mixin)Delarations and signatures� ` T . t : ? (Wf-Abstr) � `M� ` S . s :M (Wf-Manifest)8D 2 O;� ` D8D;D0 2 O(DN(D) = DN(D0) _ DV(D) = DV(D0)) =) D = D0� ` O (Wf-Sig)Figure 5.4: Well-formednessfD1 : : :Dng=p = fD1=p : : :Dn=pgM=p = M (otherwise)(T . t : ?)=p = T . t : p:T(T . t :M)=p = T . t :M (otherwise)(X . x :M)=p = X . x : (M=p:X)Figure 5.5: Type strengthening5.2.2 TypingThe typing rules are in �gure 5.9, and they use �gures 5.5 to 5.8 .Rule TT-Var gives a variable the typeM proposed by the environment, strengthened as explainedin �gure 5.5. Type strengthening [51℄, sometimes also alled sel��ation [40℄, onsists, when using amodule type bound to a variable x in the environment, in keeping trak of where its abstrat typesome from. The way it is done is by replaing abstrat types with manifest types indiating thatthey ome from x. For instane, if x is bound in the environment to the module type fT . t : ?g,then x has type fT . t : x:Tg. Beause of nested modules, the operation more generally onsists inpre�xing the abstrat type names with x, followed by the aess path inside the module.Rule TT-Aess explains how a omputational omponent is aessed in a module. Assume xhas type fT . u : M;Y . y : ug. The type of x:Y annot simply be u, beause the type variable uwould esape its sope. The system has to �nd a type equivalent to u. It is done by aessing thepath to u, i.e. giving x:Y the type x:T . Formally, this is done by an operation alled extration,and de�ned as the substitutiondO 7! p:Oe = fs 7! p:S j (S; s) 2 dom(O)g:94

Dynami free variablesDFV(x) = fxgDFV(x:p:X) = fxgDFV(fovg) = [d2ov DFV(d) nDV(ov)DFV(let re o in e) = �[d2oDFV(d) [DFV(e)� nDV(o)DFV(hI ; oi) = �[d2oDFV(d)� nDV(o) nDV(I)DFV(e1 + e2) = DFV(e1) [DFV(e2)DFV(lose e) = DFV(e)DFV((e :M)) = DFV(e)Dynami dependeny graph� = Degree(x0; e) (L0; x0) 2 dom(I) [dom(o) (L[z�℄ . x = e) 2 oNode(L0; x0) ��!hI;oi Node(L; x)(Li; xi) 2 dom(I) [dom(o) (L[x1 : : : xn℄ . x = e) 2 oNode(Li; xi) /�!hI;oi Node(L; x)Figure 5.6: Dynami dependenies in a strutureRule TT-Strut allows to type strutures hI ; oi. A type has to be guessed for eah de�nition,and these types are grouped together in an environment �o, where the names have been kept fromo. This environment is heked well-formed. The type of the struture is obtained by forgettingthe anonymous delarations in �o, yielding a signature Oo. But Oo still might depend on theanonymous de�nitions. The type system thus has to �nd a super signature O of Oo, that preventsvariables from esaping their sopes. Intuitively, eliminating a referene to a loal type de�nitionis done as follows. For a referene to a type abbreviation, it onsists in expanding it reursively(ayliity guarantees termination). For a referene to an abstrat type, if an exported abbreviationto it has already been made, then refer to this abbreviation, and otherwise return the abstrat type.The involved signatures and environment are heked well-formed; the stati dependeny graph_(I[�o;�!hI;oi) is heked ayli; and the onrete dependeny graph of hI ; oi, denoted by �!hI;oi,is heked orret, and lifted, as explained below.The onrete dependeny graph of a struture is de�ned in �gure 5.6. It is a graph over nodes ,whih are elements of Vars[Names. Edges may be de�ned in two ways. First, a de�nitiond = (L . x[x1 : : : xn℄ = e) spei�es a fake dependeny on eah xi, so for eah i, if (Li; xi) 2dom(o) [dom(I), then there is an edge Node(Li; xi) /�! Node(L; x). Seond, if the body e of ade�nition d = (L . x[z1 : : : zn℄ = e) dynamially depends on a variable x0, suh that (L0; x0) 2dom(I) [dom(o), then there is an edge from Node(L0; x0) to Node(L; x). The notion of dynamidependene is de�ned in �gure 5.6, and roughly orresponds to forgetting type onstraints. Thedegree of the edge is Degree(x0; e), where the Degree funtion is de�ned for x 2 DFV(e) byDegree(x; hI ; oi) = ,Degree(x; fovg) = ,Degree(x; e) = / otherwise.When this onrete dependeny graph has been heked orret, in the sense that its transitivelosure restrited to strit edges is a partial ordering, it an be lifted to an abstrat dependenygraph. This operation onsists in prolonging edges to loal de�nitions until they reah an exportedone, and then forgetting the edges involving loal de�nitions. It is desribed in �gure 5.7.95

LiftTransitive losure through loal omponentsN1 �1�! x x �2�!2 N2N1 �1^�2����!2 N2 N1 ��! N2N1 ��!2 N2Lift b! = !2jNames�NamesFigure 5.7: Lifting onrete dependeny graphs(I1; O1) m (I2; O2) means � I1 <O2 I2 andI2 <O1 I1:I1 <O I2 means that for all (L; s) 2 dom(I1),x 2 FV(I2; O) [DV(I2; O)) (L; s) 2 dom(I2) and L 2 Names :Figure 5.8: CompatibilityRule TT-Module types basi modules fovg, as if it were a mixin with no input delaration, exeptthat given the restrited form of de�nitions allowed, it is simpler.The rule TT-Letre is as the TT-Strut for mixin modules without input delarations, for thebinding part at least. The �nal expression is then typed in the ontext extended with the mostpreise signature available for the bindings, and the obtained type must not allow variables toesape their sopes.Rule TT-Composition types the omposition of two mixin modules of type hIi;Oi;!i;_ii, fori = 1; 2. The two mixin module types are �rst heked ompatible, as de�ned in �gure 5.8. Roughly,it ensures that variables are not aptured during omposition. Then, the unions of the two statiand dynami dependeny graphs must be orret. They will be the dependeny graphs of the �naltype. Its output signature is the disjoint union of the two output signatures O1 and O2, in thesense that they must not de�ne the same name twie. The input signature of the �nal type is anew signature I , whih must be a sub signature of both I1 and I2. This way, the requirementsmade on inputs in the omposition are stronger than in eah argument, thus preserving type safety.The signature I ould introdue edges in the stati dependeny graph, so the �nal graph is hekedayli.Rule TT-Constraint de�nes type onstraints. For typing (e :M), assuming e has type M 0, it isheked that M 0 is a subtype of M , and if so, the type of (e :M) is M .Finally, theTT-Close rule types mixin module instantiation. A mixin module of type hI ;O;!;_iis instantiated as follows. Semantially, the variables de�ned by O must replae the input variablesof I . This is done by the substitution �, and we obtain two signatures I 0 and O0. It is then hekedthat in the environment extended by O0, the signature O0 mathes the signature I 0.5.2.3 SubtypingIt is easy to see that forgetting some output �elds in mixin modules would be dangerous: the well-known problems with width subtyping of extensible reords (see e.g. [42℄) an be enoded withmixin modules. The �rst of these problems happens with omposition +, putting two omponentswith the same name in onit. For example, the expression h;;X . x = fgi + (h;;X . x = fgi :h;; ;; ;; ;i) is stuk. The seond problem arises with the overriding operator of setion [?℄, whenone �eld is overridden with a �eld with the same name, but a di�erent type, as in96

�(x) =M� ` x :M=x (TT-Var) � ` p : fOg� ` p:X : O(X)dO 7! p:Oe (TT-Aess)� + I ` I � + I +O ` O ` �!hI;oi `_(I[�o;�!hI;oi)� + I + �o ` �o � + I + �o ` o : �o � + I + �o ` �ojNames � O� ` hI ; oi : hI ;O; b�!hI;oi; (_(I[�o;�!hI;oi))+jNamesi (TT-Strut)� ` ov : �o � +O ` �ojNames � O � +O ` O `_(O;;)� ` fovg : fOg (TT-Module)� + �o ` �o � `M � + �o ` o : �o` �!h;;oi `_(�o;�!h;;oi) � + �o ` e :M 0 � + �o `M 0 �M� ` let re o in e : M (TT-Letre)� ` e1 : hI1;O2;!1;_1i � ` e2 : hI2;O2;!2;_2i(I1; O1) m (I2; O2) ` (!1 [!2) � + I ` I� + I ` I � I1 � + I ` I � I2 ` (_1 [_2 [_(I;(!1[!2)))� ` e1 + e2 : hI ;O1 +O2;!1 [!2;_1 [_2 [_(I;(!1[!2))i (TT-Composition)� ` e :M 0 � `M � `M 0 �M� ` (e :M) :M (TT-Constraint)� ` e : hI ;O;!;_i � = fs 7! s0 j (S; s) 2 dom(I); (S; s0) 2 dom(O)gI 0 = If�g O0 = Of�g � +O0 ` fO0g � fI 0g� ` lose e : fO0g (TT-Close)81 � i � n;� ` di : Di� ` (d1 : : : dn) : (D1 : : : Dn) (TT-Output) � ` e :M� ` (X . x[y�℄ = e) : (X . x :M) (TT-Expr)� `M� ` (T . t :M) : (T . t :M) (TT-Type)Figure 5.9: Typing rules
97

Types � `M1 �=M2� `M1 �M2 (ST-Equiv) � +O1 +O01 ` O1 � O2� ` fO1 +O01g � fO2g (ST-Module)� + I2 + I 02 ` I2 � I1� + I2 + I 02 +O1 ` O1 � O2 !1�!2 _1 �_2� ` hI1;O1;!1;_1i � hI2 + I 02;O2;!2;_2i (ST-Mixin)Signatures 81 � i � n;� ` Di � D0i� ` D1 : : :Dn � D01 : : :D0n (ST-Sig)Delarations� `M1 �M2� ` (X . x :M1) � (X . x : M2) (ST-Val) � ` (T . t :M) � (T . t : ?) (ST-Con-Abs)� ` t �=M� ` (T . t : ?) � (T . t : M) (ST-Abs-Con) � ` (T . t : ?) � (T . t : ?) (ST-Abs-Abs)� `M1 �=M2� ` (T . t :M1) � (T . t :M2) (ST-Con-Con)Figure 5.10: Subtyping and signature mathing(h;; X . x = fY . y = x0g;. z = x:Y i : h;; ;; ;; ;i) � h;;X . x = fgiwhih redues to the ill-typed h;;X . x = fg; . z = x:Y iSubtyping is the least transitive relation respeting the rules in �gure 5.10. For output omponentsof mixin modules, this relation orresponds to depth subtyping: it allows some type delarationsto be made abstrat, and some value delarations to be made less preise, but no delaration anbe forgotten. In input signatures, it is possibly to add some deferred omponents. This appearsespeially in rule ST-Sig, where delarations must be in a one-to-one orrespondene. For modules,however, it is allowed to forget some output omponents.Subtyping is reexive modulo type equivalene by rule ST-Equiv. Rule ST-Module allowed tohange its signature for a less preise one. By rule ST-Mixin, a mixin module is more preise if itsinput signature is less preise, i.e. it puts less requirements on inputs, and its output signature ismore preise, i.e. it provides more apabilities. Also, by de�nition, the notion of graph subtypingallows to add edges in the graph, and to hange , labels into / ones.Signature omparison, is made delaration by delaration. A value delaration may be replaedwith a value delaration of less preise type (rule ST-Val). Any type delaration an be madeabstrat (rules ST-Con-Abs and ST-Abs-Abs) A manifest type delaration an be replaed withan equivalent manifest type delaration. An abstrat type delaration T .t : ? an be replaed witha manifest type delaration T . t : M , provided the type t is provably equivalent to M . This anhappen for example, when omparing two equivalent but di�erently ordered module types, suh asfT . t : ?; U . u : tg and fU . u : ?; T . t : ug. This leads to omparing the delarations T . t : ? andT . t : u in the environment T . t : ?; U . u : t, where u is provably equal to t.98

Types M 6= ? � `M� `M �=M (TE-Refl) �(t) 6= ?� ` t �= �(t) (TE-Var)� ` p : fOg O(T) 6= ?� ` p:T �= O(T)dO 7! p:Oe (TE-A) � +O1 ` O1 �= O2� ` fO1g �= fO2g (TE-Module)� + I2 ` I2 �= I1 � + I2 ` O1 �= O2 !1=!2 _1 =_2� ` hI1;O1;!1;_1i �= hI2;O2;!2;_2i (TE-Mixin)Signatures 81 � i � n;� ` Di �= D0i� ` fD1 : : : Dng �= fD01 : : :D0ng (TE-Sig)Delarations � `M1 �=M2� ` (S . s :M1) �= (S . s :M2) (TE-Comp)Figure 5.11: Type equivalene5.2.4 Type equivaleneType equivalene is the least symmetri and transitive relation respeting the rules in �gure 5.11. Itis not reexive, beause the abstrat type is not equal to itself (fortunately for type soundness), butalling determinate types the types di�erent from it, type equivalene is reexive on determinatetypes.A type variable is equivalent to the type it has been assigned by the environment (rule TE-Var).If a path p has a module type exporting a type delaration T . t : M , then by the typing ruleTT-Var, this module type has been strengthened, so M is determinate, and p:T is equivalent tothe extration of M .Then, module and mixin module types are de�ned straightforwardly through the notion of signatureequivalene, whih heks the equivalene of the types assoiated to delarations, in a one-to-oneorrespondene.5.2.5 Diretions for a proof of soundnessThe problem In MML, as in any type system with type abstration, type soundness is hard toprove beause type abstration invalidates type preservation. The problem is easy to see. Assumea module A has been de�ned, in an OCaml-like syntax, bymodule A = (struttype t = intlet x = 1end : sigtype tval x : tend) 99

(Here, the onstrution (module : module-type) denotes the oerion of a module to a moduletype.)The module A is bound in the typing environment with the typesigtype tval x : tendNow, if further in the program we use A.x, then its type is simply A.t, not int. Indeed, in thetype of A, no de�nition is provided for t. Until now, no diÆulty arose, but if we try to evaluateour program, then A.x evaluates to 1, whih is of type int, but not of type A.t: type preservationdoes not hold.Lillibridge's solution Lillibridge [56℄ de�nes a kernel module system alled the transluent sumsformalism, apparently lose to the manifest types formalism, but whih enjoys the type preservationproperty. We illustrate the subtle di�erenes leading to this result, and their onsequenes.Let m =def struttype t = intlet x = 1end and S =def sigtype tval x : tendThe ounter-example program showing that type preservation does not hold in the manifest typesapproah is module A = (m : S), let res = A.x. Reall that in the manifest types approah,this expression is well-typed, and res has type A.t. The problem is that during evaluation its typehanges. In the transluent sums approah, there is no primitive let binding, so one has to enodethe program as a funtor appliation, taking advantage of the fat that the prinipal type of (m: S) is known to be S: (funtor (A : S) = strut let res = A.x end) m.In Lillibridge's system, this expression is well-typed. Indeed, m has type sig type t = int val x: int end. Moreover, the funtor has type funtor (A : sig type t val x : t end) -> sigval res : A.t end as a prinipal type. This type is a subtype of funtor (A : sig type t= int val x : int end) -> sig val res : int end. Therefore, by subsumption, the funtoran be given this type. As it is a non-dependent funtor type, the whole program has type int.Therefore, when seletion is performed, this type is preserved.However, one ould objet that we heated a bit here, by forgetting that m was initially oeredto S. And indeed, if we replae m with m : S in our enoding, we obtain an ill-typed expression.Indeed, the prinipal type of the argument to the funtor, m : S, is S, whih is not transparent.The onsequene is that the funtor annot be speialized, as above, to a non-dependent type, andtherefore the program is ill-typed.Related approahes In [31℄, Duggan and Sourelis prove the soundness of their alulus of mixinmodules by showing the soundness of the alulus without type abstration by expliit oerion,and remarking that eah well-typed term in the presene of abstration is well-typed without typeabstration. The restrited alulus strongly resembles Lillibridge's kernel system. The only typeabstration lies in funtor abstration. Lillibridge's system retains expliit oerion, but its use islimited by the type system. Courant [23, 24℄ adds type equalities to the type theory of its modulealulus in order to retain type preservation. 100

Syntati type abstration A drawbak of these approahes is that while retaining the im-portant property of type preservation, it is diÆult to prove that abstration is preserved duringevaluation. For instane, one the argument module is passed to a funtor, the type system forgetsthat it possibly had some abstrat types. Suh abstration properties as representation indepen-dene have been proven by Mithell [59℄, from a denotational semantis standpoint, but they arereported by Grossman et al. [39℄ to extend with diÆulty to new language features. Instead,Grossman et al. propose a new, syntati tehnique for proving abstration properties of systems,whih sales well to new language features. It is based on embeddings for exporting abstrat val-ues outside of the sope of abstration. The authors notie as an interesting future work that thistehnique might apply to module systems.5.2.6 Undeidability, prinipal types, syntati typesConjeture of undeidability We onjeture that the typing MML is undeidable, based onLillibridge's result that typing the OCaml module system is [56℄.Conjeture 1 (Undeidability) Signature mathing is undeidable in MML.The following example in OCaml syntax gives an idea why the intuitive algorithm fails for modules.It is easy to enode this example with funtors. We refer to Lillibridge's thesis for more details.module type I = sigmodule type Amodule F : funtor(X : sigmodule type A = Amodule F : funtor(X : A) -> sig endend) -> sig endend ;;module type J = sigmodule type A = Imodule F : funtor(X : I) -> sig endend ;;module Loop(X : J) = (X : I) ;;The intuitive algorithm fails, beause for mathing J against I, it puts the omponents of J inthe environment, thus making the module type omponent A in I equal to I itself. Thus, whenontravariantly mathing the arguments of the funtor omponents F of eah module type, it infat mathes J against I, one again.Prinipal types A type system has prinipal types if given an environment and an expression,there exists a minimal type suh that the expression has this type in the given environment. Wedo not know whether MML has prinipal types.Syntati types For separate ompilation, it is desirable for the programmer to be able toexpress any signature of the language, syntatially. Indeed, it allows to put as muh informationas needed in interfaes. Several known module systems do not have syntati signatures, e.g. theones of Russo [65℄, Dreyer et al. [28℄, or the one of OCaml. For example, in OCaml, externalnames are not distinguished from internal variables. It is thus impossible to express the typef typeT . t : ?;valX . x : f typeT . t0 = tg g101

without hanging the names of some omponents.A onrete system implementingMML would probably make the same hoie of identifying externalnames and internal variables, and would thus lak syntati types.5.3 Polymorphism and datatypesThe formalism already enodes expliit polymorphism [37℄ and is easily extended with datatypesin the style of ML [58℄.5.3.1 PolymorphismAs in [40℄, polymorphism is enoded by our formalism, although it is only expliit polymorphism.We use the following syntati sugar onventions, where ARG;RES 2 MNames, arg ; res 2 MVars,TARG 2 TNames, and targ 2 TVars. The variables arg , targ and res are not allowed to our freeanywhere, and the names ARG , TARG and RES are reserved.Notation DenotationFuntion �x : M:e hARG . x : M ;RES . res = eiAppliation e1e2 let re res = lose(e1 + h;;ARG . arg = e2i)in res :RESFuntion type M1 !M2 h ARG . arg :M1;RES . res :M2; fARG /�! RESg;fARG_ RESg iType funtion �t:e hTARG . t : ?;RES . res = eiType appliation e[M ℄ let re res = lose(e1 + h;;TARG . targ =Mi)in res :RESType funtion type 8t:M hTARG . t : ?;RES . res :M ; ;; fTARG_ RESgi5.3.2 DatatypesIt is not too diÆult to add ML-like datatypes to MML. ML datatypes are user-de�ned abstrattypes, aompanied with a �nite list of onstrutors , whih allow to build values of that type.Bakground In [26℄, Crary et al. study the interpretation of Standard ML datatypes in typetheory. They propose two possible interpretations, the opaque and the transparent interpretations.Inuitively, the opaque interpretation is the one of Standard ML: a datatype is interpreted as a newtype, and values of that type an only be reated by appliation of the assoiated onstrutors.For example, the OCaml signatureS1 =def sigtype u = A of u * u | B of inttype t = u * uendis interpreted asSopaque1 =def sigtype utype t = u * uval u in : (u * u + int) -> uval u out : u -> (u * u + int)end 102

This interpretation is used in [43℄, whih gives a formal interpretation of Standard ML into typetheory. Nevertheless, Crary et al. rejet it beause eah datatype onstrution or pattern-mathingorresponds to the run-time ost a funtion all. Instead, they propose to use the transparentinterpretation, in whih a datatype is rather interpreted as a reursive sum type. The signatureS1 is interpreted asStransparent1 =def sigtype u = � u . (u * u) + inttype t = u * uendNotie that there is no need for introduing speial onstrutors, as u in and u out in the opaqueinterpretation, sine one an rely on the sum type injetions to produe values of type u. Fur-thermore, the reursive type onstrutor � is diÆult to deal with. In their papers on reursivemodules [27, 29℄, Harper et al. study two possible type theoreti onstrutions implementing �,distinguishing equi-reursive types from iso-reursive types.In the equi-reursive approah, the type � = � u . (u * u) + int above is equivalent to itsunrolling (� * �) + int. To onstrut a value of type � , onstrut a value of type int or int* � , and just injet it into the sum type, thanks to the left and right injetions injl and injr,respetively. For example, e =def injr 1 has type � . Suh expressions are deomposed by theprojetion operations of sum types, projl and projr, so one an reover the integer from e by projr e.In the iso-reursive approah, � is only isomorphi to its unrolling (� * �) + int. Conretely,it means that given some term e0 of type (� * �) + int, there is a rolling operation roll thatoeres e0 to � : roll e0 is of type � . Conversely, to use a value of type � , one has to apply the unrolloperation �rst, whih oeres it to (� � �) + int). For instane, to onstrut a value of type � , onewrites e =def roll(injr 1), and its �rst element is aessed through (unroll(projr e)).The tension lies between the expressivity of the equi-reursive approah and the fat that it makestype equivalene possibly undeidable. Conversely, the iso-reursive approah is a bit less exible,but retains deidability. In [26℄, Crary et al. hoose the iso-reursive approah. However, thetransparent, iso-reursive interpretation of datatypes is not ompatible with Standard ML, asshown by the following example. In Standard ML, the signature S1 is a subsignature of S2, de�nedas follows:S2 =def sigtype ttype u = A of t | B of intendIn the transparent, iso-reursive interpretation, it is not the ase. Indeed, in order to prove it,one has to prove that, assuming u = � and t = u * u, the type � is equivalent to t + int. It ispossible, by replaing u with its value, to prove that t is equivalent to � u . (� * �) + int, butthis type is not equivalent to � . In order to solve the problem, Crary et al. enrih the type systemwith Shao's equation: ��:� = ��:(�f� 7! (��:�)g) (Shao)This allows to reover Standard ML datatypes.We hoose yet another approah, loser to indutive types than to reursive types [77℄. A datatypede�nition is initially not onsidered equal to any type. It is rather de�ned by a list of onstrutors ,as the smallest type suh that the only way to onstrut values of this type is to apply one of theonstrutors. This method in fat losely orresponds to ML datatypes, and was added by Werner[77℄ to the alulus of onstrutions [22℄ for making the extration of programs from proofs moreeÆient. Thus, it an be onsidered as a perfetly type theoretial onstrution.103

Formalization Figure 5.12 extendsMML with datatypes (with an approah inspired by [31, 66℄).Assume given an in�nite, denumerable set of onstrutor names C 2 ConNames. The notions itde�nes are mutually reursive with the ones of �gure 5.14. Type paths pt are either type variablesor type names pre�xed by a module path. Expressions are extended with onstrutor appliationsC pt [e1 : : : en℄, onsisting in a onstrutor name, applied to a list of expressions, and annotated bythe type path the onstrutor omes from. The list of arguments must math the arity of theonstrutor exatly, as will be enfored by the type system. Suh an appliation is valid onlywhen the onstrutor has been previously introdued by a new form of de�nition, alled datatypede�nition, whih has the shape T .t = �. Expressions are also extended with a family of operatorsfor pattern-mathing. The family is denoted by mathpt� . It is indexed by a type path pt , and adatatype �. Indexing the pattern-mathing operators with datatypes allows to easily de�ne theirdynami semantis. Indexing them over type paths is useful during typing, for heking that thedatatype has been delared as indiated by �. A datatype � = �1 : : : �n is a list of onstrutorde�nitions, syntatially required not to bind the same onstrutor name twie, and a onstrutorde�nition � = C[M1 : : :Mn℄ is a pair of the name of the new onstrutor, plus the list of itsargument types. When the onstrutor is applied, its arguments are required by the type systemto have these types. Notie that both the order of the onstrutors in a datatype de�nition andthe order of the types in a onstrutor de�nition matter. At the level of types, delarations areenrihed to take datatype de�nitions into aount. A datatype de�nition T . t = � orrespondsto two delarations: one de�nes the new abstrat type T . t = ?, while the other spei�es itsonstrutors t � �.The set of expressions of syntatially preditable shape is extended with onstrutor appliationsC pt [e1 : : : en℄, as shown in �gure 5.12. A onstrutor delaration has no stati free variables, sineit does not de�ne any type. It is well formed, provided the types it mentions are and it doesnot de�ne the same onstrutor twie. The well-formedness ondition on signatures now heksthat only one unfolding (t � �) is de�ned for eah t. Moreover, suh t must be de�ned in thesame signature, either as abstrat types, or as types that unfold (see below) to an equivalent (seebelow) datatype. This exibility is neessary, sine by type strengthening abstrat types are soonreplaed with type paths. Type strengthening has no e�et on an unfolding spei�ation, ratheron the assoiated type de�nition. Finally, the degree of a variable in a onstrutor appliation anbe ,, if it is , in all arguments.Dynami semantis Extending the dynami semantis to handle onstrutors and pattern-mathing is desribed by �gure 5.13. First, values are extended with onstruted values , that is, aonstrutor applied to values, and with partial mathings . The mathing operator mathpt� expetsthe argument to the mathing, plus j � j funtions for dealing with eah of the onstrutors de�nedby �. When the �nal argument has not been provided, and the �rst arguments are evaluated,the expression is alled a partial mathing, and onsidered a value. As soon as the �nal argumentis given, rule Math performs the mathing. If the mathing operator is mathpt� , and the �rstargument to the mathing is Ci pt 0 [v01 : : : v0ni ℄, aording to the index of Ci in �, the rule appliesone of the mathing funtions v1 : : : vn to the arguments v01 : : : v0ni .Stati semantis As shown by �gure 5.14, the stati semantis of MML is extended to aountfor datatypes. A new judgment, type unfolding �, is introdued, for retrieving the datatypeorresponding to a type path. If it is simply a type variable t, then an unfolding delaration(t � �) must be in the environment. Otherwise, it is a type path p:T , then the datatype has to beextrated from the type of p.Typing onstrutor appliation C pt [e1 : : : en℄ (rule TT-ConApp) onsists in unfolding the typepath annotation pt , to retreive the orresponding datatype �, and hek that the argumentsmath the types expeted by �. Typing a mathing operator mathpt�0 is a bit more ompliated.There are two main heks to do: �rst, the pt annotation must unfold to a datatype �, and seondthe �0 annotation must be equivalent to that �. Then, the type of mathpt�0 is a polymorphitype 8t:M , where M is a funtion expeting the �rst argument of type pt , plus the j � j mathing104

SyntaxType path: pt ::= t j p:TExpression: e ::= : : : j C pt [e1 : : : en℄ j mathpt�De�nition: d ::= : : : j T . t = �Delaration: D ::= : : : j t � �Datatype de�nition: � ::= �1 : : : �n� ::= C[M1 : : :Mn℄Expressions of preditable shapee# ::= : : : j C pt [e1 : : : en℄Stati free variablesSFV(T � �) = ;Well-formedness8i 2 f1 : : : ng;8j 2 f1 : : : nig;� `M ij 8i; j 2 f1 : : : ng;� ` Ci 6= Cj� ` (C1[M11 : : :M1n1 ℄ : : : Cn[Mn1 : : :Mnnn ℄) (Wf-Datatype)� ` t � ` �� ` (t � �) (Wf-Unfold)8D 2 O;� ` D 8(t � �); (t � �0) 2 O;� = �08(t � �); (T . t :M) 2 O; (M � ?) _ ((� `M � �0) ^ (� ` � �= �0))8D;D0 2 O(DN(D) = DN(D0) _DV(D) = DV(D0)) =) D = D0� ` O (Wf-Sig')Type strengthening(t � �)=p = (t � �)Degree (for x 2 FV(C pt [e1 : : : en℄))Degree(x;C pt [e1 : : : en℄) = ^1�i�n;x2FV(ei)Degree(x; ei)Figure 5.12: Extension to datatypesValue: v ::= : : : j C pt [v1 : : : vn℄ Construted valuej (mathpt� v1 : : : vn) Partial mathing (for n �j � j)� = (C1[M11 : : :M1n1 ℄ : : : Cn[Mn1 : : :Mnnn ℄)mathpt� (Ci pt0 [v01 : : : v0ni ℄)v1 : : : vn �! (viv01 : : : v0ni) (Math)Figure 5.13: Extending the dynami semantis105

funtions, and returning a value of type t. The mathing funtion orresponding to the onstrutorC[M1 : : :Mn℄ expets n arguments of types M1 : : :Mn, and returns a value of type t. It appearshere that the purpose of the pt annotation on the mathing operator is to represent the type of the�rst argument to the mathing. As syntatially, datatypes are not types, it ould not be easilyguessed otherwise.The typing judgment for de�nitions has to be extended, beause a single datatype de�nition or-responds to two delarations, an abstrat type delaration and an unfolding. Thus, instead ofa single delaration, the type of a de�nition is a �nite set of delarations. To type a struture,suessively type its de�nitions and take the (disjoint) union of the obtained signatures (rule TT-Output'). Eah datatype de�nition T . t = � is heked orret, and its type is T . t : ?; t � �(rule TT-Datatype).By rule ST-Sig', signature mathing now allows to forget some datatype delarations, only re-taining an abstrat type. Nevertheless, if the datatype is kept, rule ST-Datatype fores thetwo delarations to be equivalent. Two datatypes are equivalent if they de�ne the same list ofonstrutors, with equivalent types (rules DE-Datatype and DE-Con).5.4 ExamplesIn this setion, we give some example programs illustrating the use of mixin modules in some anon-ial situations. The alulus makes a syntati di�erene between type and value names. Here, wedo not syntatially distinguish between type and value identi�ers, and prefer to pre�x de�nitionsand delarations with keywords type and val to disambiguate them. We syntatially distinguishnames from variables, with the onvention that variables begin with a lowerase letter, while namesbegin with an upperase letter. Moreover, we assume that the language is extended with polymor-phi omparison funtions =; <;>, some operations for booleans, suh as pre�x negation not andin�x and operators, and a onditional onstrution if then else .5.4.1 ListsWe program a simple module implementing lists in MML. If we stik to monomorphi lists, that is,the type of elements is �xed to int for example, then it is straighforward. Let � = Nil ;Cons [int ; t ℄.We de�ne the module list byolist =def typeT . t = �valHead . head = �x:matht�[int ℄x error�hd�tl :hdvalTail . tail = �x:matht�[t℄x error�hd�tl :tlvalMap .map = �f�x:matht�[t ℄x Nil t[℄�hd�tl :Const[(f hd); (map f tl)℄and list = lose h;; olist i.Notie the use of error: we did not inlude exeptions in our formalism, but for sure they remaina useful onstrution in programming, and should be inluded in any pratial appliation. Theobtained module is of type fOg, whereO =def typeT . t : ?t � Nil ;Cons [int ; t ℄valHead . head : t! intvalTail . tail : t! tvalMap .map : (int ! int)! t! t106

Type path unfolding � ` pt � �(t � �) 2 �� ` t � � (TU-Var) � ` p : fOg (T . t :M); (t � �) 2 O� ` p:T � �dO 7! p:Oe (TU-Path)� ` pt �=M � `M � �� ` pt � � (TU-Eq)Expressions� ` pt � � (C[M1 : : :Mn℄) 2 � 8i 2 f1 : : : ng;� ` ei :Mi� ` C pt [e1 : : : en℄ : pt (TT-ConApp)� ` pt � � � ` � �= �0� ` mathpt�0 : Math(pt ;�) (TT-Math)De�nitions 8i 2 f1 : : : ng;� ` di : Oi� ` (d1 : : : dn) : (O1 + : : :+On) (TT-Output')� ` �� ` (T . t = �) : (T . t : ?; t � �) (TT-Datatype)Delaration mathing � ` � �= �0� ` (t � �) � (t � �0) (ST-Datatype)Signature mathing 81 � i � n;� ` Di � D0i� ` D1 : : :Dn; (t � �)� � D01 : : : D0n (ST-Sig')Datatype equivalene 8i 2 f1 : : : ng;� `Mi �=M 0i� ` C[M1 : : :Mn℄ �= C[M 01 : : :M 0n℄ (DE-Con)8i 2 f1 : : : ng;� ` �i �= �0i� ` (�1 : : : �n) �= (�01 : : : �0n) (DE-Datatype)Type of mathpt�Math(pt ; �1 : : : �n) = 8t:pt ! Constr(t; �1)! : : :! Constr(t; �n)! tConstr(t; C[M1 : : :Mn℄) = (M1 ! : : :!Mn ! t)Figure 5.14: Extension of the typing judments107

Moreover, by type strengthening, at eah plae of use, the type delaration typeT . t : ? of listbeomes typeT . t : list :T .Parametri datatypes This module is usable as an ML module on lists of integers. Notie how-ever that the language does not feature parameterized datatypes, so it is not possible to implementdiretly a module dealing with lists of any type. We an try to enode parameterized datatypesthough. A �rst attempt onsists in adding a deferred, abstrat type elt for the elements of the list.The orresponding mixin module openList has the input signature I =def typeElt . elt : ? and theoutput is olist , exept that in the de�nition of T , int is replaed with elt in the datatype. Thismixin module indeed an produe a module for lists of any type, but it will generate di�erent typesat eah instantiation, sine our datatypes are generative. Moreover, the Map funtion annot bede�ned polymorphially.This is not a problem if one wants to link with the open mixin module, but as argued by Szyperskiin [74℄, and disussed in setion 2.3.3, it is sometimes more onvenient to rely on a losed librarymodule. To solve this issue, an extension of MML similar to Leroy's [53℄ or Russo's [65℄ appliativefuntors, or Shao's extended modules [71℄ seems possible although we have not formalized it. InLeroy's vein, it ould onsist in giving type paths the grammarpt ::= t j p:Tj [p1 + : : :+ pn℄:Twhere the prodution [p1+ : : : p2℄:T would denote the type omponent T in any module omputedby losing the sum p1+ : : :+pn. Then, a type M an be enapsulated in a mixin module eltMix =h�;Elt .elt =Mi, and the type of lists with elements of typeM is denoted by [openList+eltMix ℄:T .The set of operations over lists an be extended polymorphially, as shown for instane by thefollowing de�nition of the traditional funtions fold left , applying a funtion suessively to all theelements of a list, and asso, looking for the element assoiated to a value in an assoiation list.We denote by �List the datatype Nil ;Cons [[openList + eltMix ℄:Elt ;[openList + eltMix ℄:T ℄ and by pt the type path[openList + eltMix ℄:T .We de�ne let re fold left = �t:�eltMix :�f:�init :�l:mathpt�List [t℄linit�hd :�tl :(fold left [t℄ eltMix f (f init hd) tl)and let re asso = �eltMix h;; typeFst . fst : ?typeSnd . snd : ?typeElt . elt : fst � snd ; ;; ;i:�v :�l:mathpt�List [[eltMix ℄:Snd ℄ lerror�hd :�tl : if fst hd = vthen snd hdelse asso eltMix v tlNevertheless, it is still not possible to easily de�ne the polymorphi funtions inside the mixinmodule for lists. Maybe, another solution is to de�ne the parametri datatype as a mixin modulevalList.list = htypeElt.elt : ?; typeT.t = Nil ;Cons [elt ; t ℄i and the type list(M) is [list+mixElt ℄:T ,for mixElt a named mixin exporting the type M . It is not obvious that this works in pratie,beause the argument mixElt has to be named. In theory, all types ould be wrapped in in mixinmodules as their unique omponent Elt , and referred to by the name of these mixin modules. Forexample, the module for lists and the Map funtion would look like :108

list = loseh;; valList . list = h Elt . elt : ?;T . t = Nil ;Cons [elt ; t℄ivalMap .map =�mixElt : h;;Elt . elt : ?; ;; ;i:�t0:�f : [mixElt ℄:Elt ! t0:�l : [mixElt + list ℄:T :math[mixElt+list ℄:TNil;Cons[[mixElt+list ℄:Elt;[mixElt+list ℄:T ℄[t0℄Nil [mixElt+list ℄:T [℄�hd :�tl :Cons [mixElt+list ℄:T [(f hd); (map mixElt [t0℄ f tl)℄ iThis example fails to type-hek, at least if f is given the type [mixElt ℄:Elt ! t0, sine its argumenthas type [mixElt+ list ℄:Elt . We made this mistake on purpose to show how subtle typing errors anappear with suh enodings. One ould envisage to introdue new type equations in the system,suh as [p+ : : :℄:T = [p℄:T if [p℄:T is well-formed.Conlusion On the whole, we arrive to the onlusion that this is both umbersome and adho, and typing these examples is not easy at all. Thus, the addition of primitive parameterizedtypes would be bene�ial. This ould ause some diÆulties, as shown by Harper et al. in [28℄:[?℄ understand why. It is basially uni�ation in the presene of higher-order, non-reursive typeonstrutors with singleton kinds, whih has been proved deidable by Chris Stone [72℄.Notie though that the need for appliative mixin modules ould be requested in pratie, asappliative modules have proved useful.In the remaining examples, for simpliity of the presentation, we assume that parameterizeddatatypes are primitive in the language, and that a module list has been de�ned, using them,with the following type:list : f typeT . t : �elt :list :T (elt)t[elt ℄ � Nil ;Cons [elt ; t [elt ℄℄valHead . head : 8elt :t[elt ℄! eltvalTail . tail : 8elt :t[elt ℄! t[elt ℄valFold left . fold left : 8elt :8t0:(t0 ! elt ! t0)! t0 ! t[elt ℄! t0valMem .mem : 8elt :elt ! t[elt ℄! boolvalMax .max : 8elt :(elt ! elt ! int)! t[elt ℄! eltvalAsso . asso : 8fst :8snd :fst ! t[fst � snd ℄! snd g5.4.2 Simple interpreterAs shown by Duggan and Sourelis [31℄, mixin modules failitate the modular development ofompilers and, similarly, of interpreters. We illustrate it with a simple interpreter for a alulator [?℄with variable bindings. It takes as arguments expressions onsisting of operations on numbers, andpossibly bindings of expressions, and returns the result if possible. We divide the implementationinto three mixin modules.Evaluation mixin module The �rst mixin openEval is in harge of the basi operations. Itimports the type env of environments, the type binding of bindings, the type variable for expressionvariables, the funtion �nd in env , whih retrieves the value of a variable in an environment, andthe funtion bind , whih binds an expression to a variable in the environment.109

IopenEval =def typeEnv . env : ?typeBinding . binding : ?typeResult . result : inttypeVariable . variable : ?valFind in env . �nd in env : variable ! env ! resultvalBind . bind : bindings ! env ! envThe mixin openEval must the de�ne the datatype expr of expressions, the type result for resultsof evaluation (integers), and the funtion eval whih evaluates an expression in an environment.The datatype of expressions is de�ned as�Expr =def Var [variable ℄; (* Variable *)Plus [expr ; expr ℄; (* Addition *)Const [int ℄; (* Integer onstant *)Let [binding ; expr ℄ (* Let binding *)The output of the mixin module is as follows:oopenEval =def typeExpr . expr = �ExprtypeResult . result 0 : intvalEval . eval = �an env :�an expr :mathexpr�Expr [result ℄ an expr�v :�nd in env v an env�an expr1:�an expr2:(eval an env an expr1) + (eval an env an expr2)�n:n�binding :�an expr :eval (bind binding an env) an exprand we an de�ne openEval by openEval = hIopenEval ; oopenEval i.It has type hIopenEval ;OopenEval ;!openEval ;_openEvali, whereOopenEval =def typeExpr . expr : ?expr � �ExprtypeResult . result 0 : intvalEval . eval : env ! expr ! result!openEval =def f Eval ,�! EvalFind in env ,�! EvalBind ,�! Eval g_openEval =def ;By rule ST-Sig', the implementation �idExpr an be hidden, by type onstraint.Binding mixin module The seond mixin module deals with bindings. It imports the typesof environments, variables, expressions and results, and the funtions Eval and Add to env , whihadds a variable and its value to the environment. Its import signature is thusIopenBind =def typeEnv . env : ?typeVariable . variable : ?typeExpr . expr : ?typeResult . result : ?valAdd to env . add to env : variable ! result ! env ! envvalEval . eval : env ! expr ! result110

Given this, it an de�ne the type Binding of bindings, as assoiation lists of variables and expres-sions, and the funtion bind whih takes a binding and an environment as arguments, evaluatesthe expressions, and binds the variables to the orresponding results in the environment.oopenBind =def typeBinding . binding = list :T [variable � expr ℄valBind . bind = �bindings :�an env :(list :Fold left [variable � expr ℄ [env ℄bind onean envbindings)val . bind one = �an env :�pair :(add to env (fst pair)(eval an env (snd pair))an env)We an de�ne the mixin module openBind = hIopenBind ; oopenBind i. The type Binding an be madeabstrat by type onstraint, whih gives openBind the typeopenBind : hIopenBind ;OopenBind ;!openBind ;_openBind i;with OopenBind =def typeBinding . binding = ?valBind . bind : bindings ! env ! env!openBind =def f Add to env ,�! BindEval ,�! Bindg_openBind =def Variable _ BindingExpr _ BindingEnvironment mixin module The last mixin module we de�ne handles environments. It hasto de�ne the type Env of environments, and the funtions Find in env and Add to env for �ndingand adding a variable binding in environments. It an be implemented by lists, as follows:openEnv = h typeVariable . variable : ?typeResult . result : ?typeEnv . env : list :T [variable � result ℄; Find in env . �nd in env = list :Asso [variable ℄ [result ℄Add to env . add to env = �v:�res :�an env :Consenv [(v; res); an env ℄ iOne again, the implementation of the type Env an be hidden to the outside world by typeonstraint. Finally, the interpreter module is obtained by lose(openEval + openBind + openEnv).Comparisons We think [?℄ that the example ompiler skethed by Duggan and Sourelis in [31℄ isimplementable in MML quite straighforwardly. However, Duggan and Sourelis [32℄ have proposedan extension of their initial language DS with extensible datatypes and extensible onstrutors,whih allows them to re�ne their interpreters inrementally. This is not possible in MML beausedatatypes are not extensible.In [27, 29℄, Crary, Dreyer, Harper, and Puri investigate an extension of ML modules with reursivemodules. They fous both on the possible type-theoreti de�nitions for suh an extension, and onsome example programs that should be enoded smoothly by reursive modules. As reursion wasa primary onern in the design of mixin modules, MML enodes most of their examples quitesmoothly, and our approah to datatypes allows to ompletely avoid the use of reursive types.Moreover, the problems reursive modules ause for separate ompilation do not appear with mixinmodules. 111

5.4.3 Bootstrapped data struturesAnother lass of examples Dreyer et al. use to demonstrate the expressive power of reursivemodules in [29℄ are bootstrapped data strutures, introdued by Okasaki [61℄. The example theyhoose is the one of sets of sets, whih is easily programmed in MML.Sets of sets with mixin modules Sets of sets are built out of a mixin module openSet , imple-menting general sets. It imports the struture of the elements of the set: a type elt and a funtionelt mp : elt ! elt ! int , whih ompares two elements, returning 0 if they are equal, a positiveinteger if the �rst one is greater, and a negative integer otherwise. Given these, it de�nes the typeof sets with elements of type elt (as lists), and some standard funtionalities over sets. The mixinmodule ould be onstrained to hide the implementation of type set .openSet = h typeElt . elt : ?valElt mp . elt mp : elt ! elt ! bool; typeSet . set = list :T [elt ℄valEmpty . empty = Nil set [℄valSingleton . singleton = �x:Consset [x;Nil set [℄℄valCmp . mp = �l1:�l2:mathsetNil;Cons[elt;set℄ [int ℄ l1(mathsetNil ;Cons[elt;set℄ [int ℄ l20�hd :�tl :� 1)(�hd1 :�tl1 :mathsetNil;Cons[elt;set℄ [int ℄ l21�hd2 :�tl2 : (elt mp(list :Max l1)(list :Max l2))): : : iAfter that, the mixin module for sets of sets wraps the one for sets. It de�nes the type of sets ofsets relying on the imported type of sets, and fores the type elt to be itself.openSos = h typeElt . elt : ?typeSet . set : ?typeSos . sos : ?sos � Int [int ℄;Set [set ℄valEmpty . empty : setvalSingleton . singleton : elt ! setvalSet mp . set mp : set ! set ! int; typeSos . sos 0 : ?sos 0 � Int [int ℄;Set [set ℄typeElt . elt 0 = sosvalCmp . mp = �sos1 :�sos2 :[snipped ode℄ iFinally, the two mixin modules an be merged together, redireting the omparison funtions totheir expeted names in eah mixin module. The Cmp funtion of the openSet mixin module mustbe onneted to the Set mp input of the openSos mixin module. Conversely, the Cmp funtion ofthe openSos mixin module must be onneted to the Elt mp input of the openSet mixin module.The de�nitive omparison exported by the module Sos implementing sets of sets should be the onefrom openSos , so we rename Elt mp to Cmp in the obtained mixin module before to instantiate112

it. Thus, Sos is obtained bySos = lose((openSet [Cmp 7! Set mp℄ +openSos [Cmp 7! Elt mp℄)[Elt mp 7! Cmp℄)Sets of sets with reursive modules In omparison, Dreyer et al. [29℄ implement reursivemodules by a ompliated elaboration proess, transforming the original program into an expressionof the underlying type theory. This theory features singleton kinds and phase-splitting rules [41℄,that separate modules into their stati part and their dynami part.The soure program for sets of sets resembles the following.module type KEY = sigtype keyval ompare : key -> key -> orderendmodule type SET = sigtype elttype set...endfuntor MkSet(Key : KEY) = struttype elt = Key.keytype set = M...endsignature SOS = sig re Sos intype sos = Int of int | Set of Sos.SosSet.setmodule SosSet : SET with type elt = sosendmodule Sos = strut re Sos : SOS intype sos = Int of int | Set of Sos.SosSet.setmodule SosKey = struttype key = soslet ompare sos1 sos2 = ...endmodule SosSet = MkSet(SosKey)endThe �rst module type KEY de�nes the signature of an ordered type: a type and a omparisonfuntion. The seond module type SET de�nes the signature of a module implementing sets: thetype elt of elements of the set, the type set of sets, and some funtions over these types. Thefuntor MkSet takes an ordered type as an argument, and returns a module, whih we assumeto implement sets. Formally, the funtor MkSet is assumed to have the signature funtor (Key: KEY) -> SET with type elt = Key.key, although it is not its prinipal signature, sine theimplementation of the type of sets ould be made manifest. The reursive module type SOS thende�nes the signature of a module implementing sets of sets: the type sos of sets of sets, and asub-module implementing sets whose elements are of type sos. SOS is a reursively dependentsignature (rds). The reursive module Sos implements the module type SOS in a straightforwardway. 113

This program is written in a surfae language, whih is not the alulus Dreyer et al. studied. Theprogram is therefore elaborated to this alulus, as we explain informally. SOS is elaborated intoan opaque rds, roughly a rds that prohibits the use of reursive types. By phase-splitting, opaquerds's redue to non-reursive signatures ; here SOS is roughly equivalent tomodule type SOS0 = sigtype sostype elt = sostype set = M f Key.key 7! elt gval Int : int -> sosval Set : set -> sosval expose : sos -> (int + set)endwhih is not reursive. (Notie that Dreyer et al. use the opaque interpretation of datatypes.)The elaboration of the module Sos is more omplex, and is done in two steps. First, the statipart of the module is extrated, as a set of type de�nitions, possibly nested inside sub-modules. Itis elaborated to an opaque �xed-point , whih allows datatype de�nitions (see [29℄ for details). Weobtain something likemodule StatiSos = opaque strut re Sos : SOS intype sos = Int of int | Set of Sos.SosSet.setmodule SosKey = struttype key = sosendmodule SosSet = struttype set = M f Key.key 7! SosKey.key g...endendThe dynami part of the module is then elaborated to a transparent �xed-point , whih does notallow datatype de�nitions, sine these are opaque, but is more exible than the opaque �xed-point otherwise. A transparent �xed-point requires the signature of the reursive module variable(here Sos) to be fully transparent, so datatype de�nitions are elaborated by referring to their �rstelaboration in the StatiSos. We obtainmodule Sos = transparent strut re Sos : (SOS = StatiSos) intype sos = StatiSos.sosmodule SosKey = struttype key = StatiSos.sosendmodule SosSet = MkSet(SosKey)endProblem: in the soure program, the type set in the result of the MkSet funtor ould be onstrainedto be abstrat. In the proposed elaboration, it would then be impossible to extrat the stati partof it and put it in Stati. To prevent suh an issue, Dreyer et al. require the soure reursivemodule not to export abstrat types. This limitation omes from the hoie they make to elaboratethe dynami part of the reursive module as a transparent �xed-point. This hoie seems to bemainly guided by two fats. 114

� The �rst fat is that opaque �xed-points more or less enourage all referenes to other om-ponents of the module to be done through the reursive variable. For instane, onsider thefollowing reursive module.module List =opaque strut reList : sig re List intype t = Nil | Cons of int * List.tval nthtail : List.t -> int -> List.tendintype t = Nil | Cons of int * List.tlet nthtail (l : List.t) n =if n = 0 then lelse math l with| Nil -> failwith ``list too short. ''| Cons((hd : int), (tl : List.t)) -> nthtail tl (n - 1)endThe omponents of this module ontains a lot of referenes to other omponents throughthe reursive variable List, alled module-reursive referenes by Dreyer et al. Here, oneould implement the type of list without any module-reursive referene. However, in thease of datatype de�nitions split aross di�erent sub-modules, module-reursive referenesare needed. Thus, it is simpler to onsider a single datatype and to assume that the module-reursive referene in that type is needed. Then, in the body of nthtail, none of the module-reursive referenes ould be turned into a loal one (by eliminating the pre�x List.): thiswould break the type-heking of the module. Indeed, in the pattern-mathing, the seondargument to Cons must be of type List.t, not t, so tl must have this type. Further, tl isgiven as an argument to nthtail in the reursive all, so the type of l has to be List.t too.Essentially, the problem is that it is impossible to unify t and List.t during type-heking.� The seond fat is that opaque �xed-points do not prevent the presene of equi-reursive typeonstrutors. This is a problem beause type-heking is not known to be deidable in thepresene of higher-order equi-reursive type onstrutors.These remarks lead Dreyer et al. to prefer transparent �xed-points. Nevertheless, opaque �xed-points do not fore all the type delarations to be transparent, whih is sometimes onvenient, aswe have seen with the above example. Moreover, we think there are ways to work around thetwo problems of opaque �xed-points. For instane, elaborating all internal referenes into module-reursive referenes diretly avoids the burden to write all module-reursive referenes by hand.Further, it is possible to modify the typing rule for opaque �xed-points in order to forbid equi-reursiveness and also to type-hek the dynami part of the module with all the information aboutthe stati part available. For referene, this leads to the following typing rule, with the notationsof [29℄: � ` S � [� : �:�1℄ sig �[s " S℄ `M � [; e℄ � ` # ��[s " [� : s():�1℄℄ ` e # �2 �[� : s()℄ ` �1 � �2[�=(Fst s)℄ type� ` �xS(s : S)M : S(We write �xS for \semi-transparent" �xed-point.) The rule forbids module-reursive referenesin the stati part of the module, thus relying on rds's for stati reursion. The dynami part ofthe module is type-heked knowing the implementation of the stati part. The obtained type forthe dynami part is heked equivalent to the expeted type, knowing the implementation of thestati part. This ahieves the exibility of transparent �xed-points, without foring the user to115

write a fully transparent signature. It is unlear whether it suÆes for making the example of setsof sets work if MkSet returns an abstrat type, beause the underlying alulus used in [29℄ doesnot feature generativity. It would be useful to try and transpose the disussion to the more reentformalism of [28℄.In MML, modules omponents are mutually reursive by default, as well as signature omponents.Thus, the problems due to deoupling module-reursive and loal referenes do not appear. Ourway to work around reursive types is a bit umbersome, as is the one for traking ill-foundedreursion: we keep stati dependenies in the types of mixin modules. Dreyer et al. do not needsuh a mahinery. Instead, one ould argue that our way of dealing with reursive types is moreorthogonal to design problems than theirs. As a result, the design of MML seems more naturalthan the one of [29℄. In partiular, bundles of reursive modules are dealt with in a very ad howay in [29℄, while they are enoded smoothly in MML.5.4.4 Mathematial data struturesPresentation In [15, 14℄, in the ontext of the Fo projet 1, Boulm�e et al. explore the imple-mentation of a library of mathematial data strutures dediated to omputer algebra, in OCaml.Let us �rst explain how they present omputer algebra. Mathematial objets suh as 1, or thepolynomial X2 + X + 1 are alled entities . In mathematis, entities are grouped in olletions ,whih express a link between these entities, possibly materialized by operations alled methods .For example, the entities 0; 1; 2; : : : form the olletion of natural numbers. Slighlty more omplex:the entities 0; 1; 2; : : :, together with the distinguished element 0, the binary internal ompositionlaw +, and the unary internal omposition law �, form the group of natural numbers. Colletionshave a arrier , or representation type. For natural numbers, it is int. Mathematial olletionsare in turn grouped by ertain sets of properties, alled speies . A speies is a set of types andmethods, whih an be only delared, or de�ned, when ommon to all its olletions. For example,the speies of polynomials of one variable ontains a default algorithm for multipliating polyno-mials, even if the arrier or the type of the oeÆients are abstrated over. Speies have interfaes ,speifying the set of methods they de�ne. For more details, see [15, 14, 62℄.The aim of the Fo projet is to develop a erti�ed library by extration of OCaml programs fromCoq spei�ations. [?℄ (referenes) They have a preise list of riteria to be met by their implemen-tation, insisting on inremental development, type abstration, and ode sharing. Essentially, forimplementing suh a library, objets do not o�er enough abstration mehanisms, whereas modulesare not exible enough with respet to inremental programming. As a result, they use a smartombination of objets and modules. A speies is implemented by an abstrat lass, i.e. a lasswhere some methods an be unde�ned. Interfaes are represented by lass types. Colletions arepairs of a type t, the arrier, and an objet meth, ontaining the methods operating on t. Whenall methods of a speies s are de�ned, it an be instantiated into a olletion. For this, a moduleis reated, whih ontains the orresponding arrier and the speies s. For example, if the lass simplements polynomials in one variable over real oeÆients with lists of pairs of an integer anda oating point number (sparse representation), then the orresponding olletion poly an bereated bymodule Poly = (struttype t = (int * float) listlass meth = new send : sigtype tlass meth : stend)1http://www-spi.lip6.fr/~fo 116

where st is the type of s, abstrated over the arrier. This ahieves abstration over the represen-tation of the arrier. Extensibility and re�nement are allowed by operating on the lass s.MML allows a similar enoding of mathematial strutures. Speies an be enoded by mixinmodules, abstrat methods being represented by deferred omponents, and onrete methods withde�ned omponents. The arrier is represented by a type omponent. An interfae is a moduletype. A olletion is reated by losing a mixin module, and immediately hiding the representationof the arrier.Simple examples We show the idea by implementing the very beginning of the Fo library. Forthis we assume that MML has been extended with the overriding operator � desribed in setion[?℄, and with a maro expansion mehanism for abbreviating signatures. A module type an beinluded in a signature I by a delaration of the form inludeM : ifM denotes the module type fOg,the signature I; inludeM denotes the greatest lower bound I 0 of fIg and fOg, as module types.This means that forgetting some omponents is allowed. Moreover, we assume that an external andinternal renaming and pre�xing faility is given for signatures. The signature I [(X .x) 7! (Y . y)℄denotes I , with X replaed by Y and x replaed by y, if it does not generate any onit. Thesignature I [(P .p) � (X .x)℄ denotes I , with all the de�ned external and internal names pre�xed byP and p, respetively. We skip the details of this extension, although it is ertainly non-trivial.2The minimal interfae of speies is de�ned as any printable arrier:type basi objet sig = f typeT . t : ?;valPrint . print : t! unit gThe basi speies, at the top the semanti inheritane hierarhy of the strutures we will de�ne, is:val basi objet = h inlude basi objet sig; � iThe interfae of a set is de�ned by the following module type:type set sig = f inlude basi objet sigvalEq . eq : t! t! boolvalNeq . neq : t! t! boolgThe speies of sets is the �rst to have a onrete method, Neq , whih an be de�ned in terms ofEq : val set = basi objet + h inlude set sig; valNeq . neq = �x:�y:not(eq x y) iWe de�ne the interfae of partial orders as:type partial order sig = f inlude set sigvalLeq . leq : t! t! boolvalLt . lt : t! t! boolvalGeq . geq : t! t! boolvalGt . gt : t! t! bool g2Lillibridge showed that it makes signature mathing undeidable in OCaml [56℄117

Similarly to sets, only one of the four funtions of partial order sig is needed to imlement the threeother ones. Thus, the speies of partial orders an be de�ned as:val partial order = set + h inlude partial order sig; valLt . lt = �x:�y:(leq x y) and(not(eq x y))valGeq . geq = �x:�y:(leq y x)valGt . gt = �x:�y:(lt y x) iLatties must math the same interfae as partial orders, with two additional funtions, the greatestlower bound and the least upper bound funtions:type lattie sig = f inlude partial order sigvalGlb . glb : t! t! tvalLub . lub : t! t! t gThe speies of latties does not have anything to de�ne by default, and is therefore implementedas: val lattie = partial order + h inlude lattie sig; � iThen, the interfaes for mix- and max-latties add the distinguished elements Min and Max ,respetively: typemin lattie sig = f inlude lattie sigvalMin .min : tval Is min . is min : t! bool gtypemax lattie sig = f inlude lattie sigvalMax .max : tval Is max . is max : t! bool gThe orresponding speies an de�ne the methods Is min and Is max , respetively, in terms ofMix and Max :valmin lattie = lattie + h inludemin lattie sig; val Is min . is min = �x:(eq xmin) ivalmax lattie = lattie + h inludemax lattie sig; val Is max . is max = �x:(eq xmax) iComplete latties an be implemented by inheriting both from min- and max-latties.type omplete lattie sig = f inludemax lattie siginludemin lattie sig gval omplete lattie = max lattie � min lattieThe speies of omplete latties has the mixin module type118

h typeT . t : ?valPrint . print : t! unitvalEq . eq : t! t! boolvalNeq . neq : t! t! boolvalLeq . leq : t! t! boolvalLt . lt : t! t! boolvalGeq . geq : t! t! boolvalGt . gt : t! t! boolvalGlb . glb : t! t! tvalLub . lub : t! t! tvalMin .min : tval Is min . is min : t! boolvalMax .max : tval Is max . is max : t! bool

; valNeq . neq : t! t! boolvalLt . lt : t! t! boolvalGeq . geq : t! t! boolvalGt . gt : t! t! boolval Is min . is min : t! boolval Is max . is max : t! bool ;!; ;i

(We do not detail the dynami dependenies, whih are not interesting.)It is then really easy to instantiate an example olletion, with integers for examples. Let theomplete lattie of natural numbers between 0 and 10 be implemented by the olletion:val open int lattie = omplete lattie + h ;; typeT . t = intvalPrint . print = printintvalEq . eq = �x:�y:(x = y)valLeq . leq = �x:�y:(x � y)valGlb . glb = �x:�y:if x � y then x else yvalLub . lub = �x:�y:if x � y then x else yvalMin .min = 0valMax .max = 10 ival int lattie = lose open int lattieWe an then deide that the algorithm for Lt is too ineÆient, and inrementally implement anoptimized olletion optimized int lattie , with the omparison funtion from the library, as follows.val open optimized int lattie = open int lattie � h inlude partial order sig; valLt . lt = �x:�y:(x < y) ival optimized int lattie = lose open optimized int lattieHard example (part VII): reursive polynomials, a �rst attempt A very subtle exam-ple of a representation of mathematial strutures is given in [14℄ by reursive polynomials. Itonsists in representing polynomials in any number of variables, starting from a representation ofpolynomials in one variable, with natural degrees, parameterized over the type of their oeÆients.Polynomials introdue a slight ompliation in regard to the previous examples: they enapsulatea sub-struture of oeÆients. A �rst natural attempt to represent suh sub-strutures is to wrapthem as sub-modules. In this paragraph, we show how this strategy fails.De�ne a module type for rings: 119

type ring sig = f typeT . tvalEq . eq : t! t! boolvalZero . zero : tvalEq zero . eq zero : t! boolvalUn . un : tvalAdd . add : t! t! tvalMinus .minus : t! t! tvalUminus . uminus : t! tvalMult .mult : t! t! t gThe natural module type for polynomials has the ring of its oeÆients as a virtual omponent,and some more funtionalities related to polynomials:type poly sig = f valCoef . oef : ring siginlude ring sigvalLift . lift : oef :T ! tvalMult extern .mult extern : oef :T ! t! tvalL . l : t! oef :Tval Is oef . is oef : t! bool gThe lift funtion lifts a oeÆient to a polynomial of degree zero. The mult extern funtionmultiplies a polynomial by a oeÆient. The l funtion returns the highest non-zero oeÆient ofa polynomial. The is oef funtion heks if a polynomial is of stritly positive degree.Some of these funtions an be implemented in a generi way, in the following poly mixin module:val poly = h inlude poly sig; valMult extern .mult extern = �:�p:(mult (lift) p)valEq zero . eq zero = �p:(oef :Eq zero (l p))val Is oef . is oef = �p:(eq p (lift (l p))) iWe an now de�ne the mixin module of reursive polynomials. It relies on a representation ofpolynomials Poly . my poly (the internal variable is for avoiding the onit with poly). Thissub-module de�nes polynomials in one variable, but this variable is unnamed. The idea is touse my poly as a representation for polynomials in variable \X", but also as a representation forpolynomials in \Y ", and so on. Following this idea, a polynomial in \X" is a pair (\X"; e), wheree is of type my poly :T . There remains a question though: what is the type of the oeÆients?Semantially, one an see polynomials in variables \X1" : : : \Xn", as polynomials in \X1", whoseoeÆients are polynomials in \X2" : : : \Xn", and so on. This is exatly how we proeed here.The oeÆients of e are reursive polynomials. We maintain the invariant that the oeÆientsof a polynomial in a variable \X" are polynomials in variables inferior to \X", aording to thepolymorphi omparison operators. Basi oeÆients are imported as a Base . base module. Weobtain the (partially snipped) ode, of �gure 5.15, with � = Base [base:T ℄;Comp[string ;my poly :T ℄.The mixin module de�nes an intermediate type support as desribed above, and a sub-moduleRe poly . re poly , de�ning the oeÆients of the import module my poly , i.e. the reursivepolynomials. This is spei�ed by the type sharing equation with typeCoef :T = support in theexpeted type of my poly . (Type sharing equations are not present in the language initially, butthey are easily implemented using signature inlusion.) The sub-module re poly uses the generimodule for polynomials poly , where (Coef . oef) has been renamed to (Base .my base), in orderboth to math the fat that it re-exports the imported module Base . base, and to avoid onitwith its internal variable base. It speializes the type T of poly to support . The intersting funtionsare Compose and Add . 120

val poly re = h valBase . base : ring sigvalPoly .my poly : poly sig with typeCoef :T = supporttypeSupport . support : ?support � �; typeSupport . support 0 = ?support 0 � �valRe poly . re poly = lose(poly [(Coef . oef) 7! (Base .my base)℄ �h inlude poly sig [(Coef . oef) 7! (Base .my base)℄with type T = supportand type Base :T = base :TvalCompose . ompose : string ! my poly :T ! t; valBase .my base 0 = basetypeT . t 0 = supportvalEq . eq 0 = �x:�y:(x = y)valZero . zero0 = Base t [base :Zero℄valUn . un 0 = Base t [base :Un℄valCompose . ompose 0 = �v:�l:if my poly :Is oef l then my poly :L lelse Comp t [v; l℄valLift . lift 0 = �a:Base t [a℄valL . l0 = �x:matht� [base :T ℄x�a:a�v:�l:(l (my poly :L l))valAdd . add 0 = �x1:�x2:matht� [t℄x1�a1: matht� [t℄x2�a2:Basebase:T [base:Add a1 a2℄�v2:�l2:(ompose v2 (my poly :Add (my poly :Lift x1) l2))�v1:�l1:matht� [t℄x2�a2:(ompose v1 (my poly :Add (my poly :Lift x2) l1))�v2:�l2: if v1 = v2 then (ompose v1 (my poly :Add l1 l2))else if v1 > v2then (ompose v1 (my poly :Add (my poly :Lift x2) l1))else (ompose v2 (my poly :Add (my poly :Lift x1) l2))[. . . snipped . . . ℄ i) iFigure 5.15: Reursive polynomials (�rst attempt)
121

Compose takes a variable v and a polynomial l (of type my poly :T), and returns the same poly-nomial, seen as a polynomial in v, in anonial form (of type support). The variable v is assumedsuperior to the variables used in the oeÆients of l. If l is of degree zero, then the funtion returnsthe orresponding oeÆient, whih is indeed of type support . If l is of stritly positive degree,then the funtion returns Compt [v; l℄.Add takes two reursive polynomials x1 and x2 of type t, and returns their sum.� If both arguments are base oeÆients, then the sum is the sum of these oeÆients.� It both arguments are omposed polynomials, i.e. onstruted with the Comp onstrutor,then the variables are examined.{ If both x1 and x2 are reursive polynomials in the same variable v, then the underlyingpolynomials are summed, and the result l is injeted into reursive polynomials in v bythe ompose funtion.{ Otherwise, the argument with the greatest variable, say x1 for example, is deomposedinto the variable v and the underlying polynomial l. The oeÆients of l are reursivepolynomials in variables inferior to v, so x2 is semantially of the same lass them.Therefore, it is lifted by my poly :Lift to a polynomial of degree zero, and added to l.The result is then injeted bak into reursive polynomials in v by the ompose funtion.� If one argument, say x1 is a base oeÆient, and the other is a reursive polynomial v; l, thenx1 is semantially in the same lass as oeÆients of l sine all its variables are inferior totheirs. So, it an be lifted by my poly :Lift to a polynomial of degree zero, and added to l.The result is then injeted bak into polynomials in v by the ompose funtion.Until now, no problem arose. But assume now that we have implemented the ring of integersint ring and a mixin module for sparse polynomials sparse poly . If we try to onstrut reursivepolynomials by omposing these two mixin modules with poly re, we writeval try = poly re +h valRe poly . re poly : poly sig; valPoly .my poly = lose(sparse poly +h;; valCoef . oef = re polyi)valBase . base = int ring iUnfortunately, this expression is ill-typed, sine there is a dependeny yle between re poly andmy poly , and both are expressions of the shape lose : : :, whih are onsidered of unpreditableshape. In fat, it would be very diÆult to let the system aept this. A solution ould be to relyon types to guess the shape of both modules. But then, one has to hek that one does not try toinspet the value of the other before it has been de�ned. And in this partiular ase, it is far fromobvious. Indeed, the omponents of eah module an be onsidered safe from their de�nitions,but what about the omponents of sparse poly? They perfetly ould require some omponents ofre poly . Thus, the dependeny analysis must be re�ned if we want to allow this example to bewell-typed.Hard example (part VII): reursive polynomials, a solution There is a di�erent so-lution to implement reursive polynomials, using roughly the same idea, but attening all thesub-modules. The problems of name onits are solved by pre�xing the names, reproduing in aat way the namespae separations indued by module boundaries in the �rst attempt.The ring sig , poly sig module types, and the poly and mixin module are de�ned as above, exeptthat the sub-module representing oeÆients is now inlined in poly sig (and onsequently also inpoly). The modi�ed module type is 122

type poly sig = f inlude ring sig [(Coef . oef) � (X . x)℄inlude ring sigvalLift . lift : oef ! tvalMult Extern .mult extern : oef ! t! tvalL . l : t! oefval Is Coef . is oef : t! bool gCoeÆients are represented by the inluded signature ring sig [(Coef . oef) � (X . x)℄, whihbrings the type Coef T of oeÆients, and ring operations on it, suh as Coef Mult and Coef Add .Polynomials are represented by the seond inluded ring signature (without pre�xing). The newmixin module for reursive polynomials is presented in �gure 5.16.As in the �rst attempt, the mixin module bases on the generi mixin module for polynomials, buthere, the renaming of Coef to Base must be done omponent-wise. Indeed, it would otherwisemodify all the names. For readability, as a shorthand, we write only the names in the renaming, notthe variables. They are renamed aordingly. The base oeÆients of our reursive polynomials areimported as a ring sig signature, pre�xed with Base , to mimik the imported Base sub-module ofthe �rst attempt. Similarly, the sub-module Poly of the �rst attempt is imported here as a poly sigsignature. The type sharing equation Coef :T = support is onverted into a renaming removing thepre�x of all the omponents beginning with Poly Coef : this makes them math the omonentsorresponding to reursive polynomials. The main datatype is then de�ned, but must be modi�edaording to the new naming onventions: �0 = Base [base t ℄;Comp [string ; poly t ℄. The rest of themixin module is de�ned similarly, only replaing some aesses to sub-modules with diret aessesto pre�xed omponents of the main mixin module.This seond attempt is suessful, sine a module of reursive polynomials an be built on thering of integers int ring and a mixin module for sparse polynomials sparse poly (whih has beenattened to math the signature poly sig). The ode is as follows:val int reursive polynomials = (int ring [(Base . base) � (X . x)℄+ (sparse poly [(Poly . poly) � (X . x)℄[type Poly Coef T 7! Tval Poly Coef Eq 7! Eq Poly Coef Zero 7! ZeroPoly Coef Eq zero 7! Eq zero Poly Coef Un 7! UnPoly Coef Add 7! Add Poly Coef Minus 7! MinusPoly Coef Uminus 7! Uminus Poly Coef Mult 7! Mult ℄)+ re poly at); ;

123

val re poly at =poly [type Coef T 7! Base Tval Coef Eq 7! Base Eq Coef Zero 7! Base ZeroCoef Eq zero 7! Base Eq zero Coef Un 7! Base UnCoef Add 7! Base Add Coef Minus 7! Base MinusCoef Uminus 7! Base Uminus Coef Mult 7! Base Mult ℄�h inlude ring sig [(Base . base) � (X . x)℄inlude(poly sig with typeCoef T = support[(Poly . poly) � (X . x)℄[type Poly Coef T 7! Tval Poly Coef Eq 7! Eq Poly Coef Zero 7! ZeroPoly Coef Eq zero 7! Eq zero Poly Coef Un 7! UnPoly Coef Add 7! Add Poly Coef Minus 7! MinusPoly Coef Uminus 7! Uminus Poly Coef Mult 7! Mult ℄)valLift . lift : base t ! tvalMult Extern .mult extern : base t ! t! tvalL . l : t! base tval Is Coef . is oef : t! boolvalCompose . ompose : string ! poly t ! ttypeSupport . support : ?support � �0; typeSupport . support 0 : ?support 0 � �0 typeT . t 0 = supportvalEq . eq 0 = �x:�y:(x = y)valZero . zero0 = Base t [base zero℄valUn . un 0 = Base t [base un℄valCompose . ompose 0 = �v:�l:if poly is oef l then poly l lelse Comp t [v; l℄valLift . lift 0 = �a:Base t [a℄valL . l0 = �x:matht� [base t ℄x�a:a�v:�l:(l (poly l l))valAdd . add 0 = �x1:�x2:matht� [t℄x1�a1: matht� [t℄x2�a2:Basebase t [base add a1 a2℄�v2:�l2:(ompose v2 (poly add (poly lift x1) l2))�v1:�l1:matht� [t℄x2�a2:(ompose v1 (poly add (poly lift x2) l1))�v2:�l2: if v1 = v2 then (ompose v1 (poly add l1 l2))else if v1 > v2then (ompose v1 (poly add (poly lift x2) l1))else (ompose v2 (poly add (poly lift x1) l2))[. . . snipped . . . ℄ i iFigure 5.16: Flattened reursive polynomials
124

Part IIICompilation of mixin modules

125

Chapter 6Typed ompilation without loalde�nitions
6.1 IntuitionsIn this hapter, we present an eÆient ompilation sheme for a subset of MM. Let us �rst giveintuitions on it. A mixin struture is translated into a reord, with one �eld per output omponentof the struture. Eah �eld orresponds to the expression de�ning the output omponent, but�-abstrats all input omponents on whih it depends, that is, all its diret predeessors in thedependeny graph. These extra parameters aount for the late binding semantis of virtualomponents. Consider again the M1 and M2 example at the end of setion ??. These two struturesare translated to:m1 = f f = �g.�x. ...g...; u = �f. f 0 gm2 = f g = �f.�x. ...f...; v = �g. g 1 gThe sum M = M1 + M2 is then translated into a reord that takes the union of the two reords m1and m2:m = f f = m1.f; u = m1.u; g = m2.g; v = m2.v gLater, we lose M. This requires onneting the formal parameters representing input omponentswith the reord �elds orresponding to the output omponents. To do this, we examine thedependeny graph of M, identifying the strongly onneted omponents and performing a topologialsort. We thus see that we must �rst take a �xpoint over the f and g omponents, then ompute uand v sequentially. Thus, we obtain the following ode for lose(M):let re f = m.f g and g = m.g f inlet u = m.u f inlet v = m.v g inf f = f; g = g; u = u; v = v gNotie that the let re de�nition we generate is unusual: it involves funtion appliations in theright-hand sides, whih is usually not supported in all-by-value �-aluli.In fat, the let re of MM is almost powerful enough to model suh �xpoints. We hoose as thetarget language of our ompilation sheme the �Æ-alulus, featuring a let re onstrut that slightlyextends that of MM. It allows to group all the omponents within a single binding:127

x 2 Vars VariableX 2 Names NameExpression: e ::= x Variablej fX1 = e1 : : : Xn = eng Reordj e:X Reord seletionj let re x1 = e1 : : : xn = en in e let rej hX1 . x1 : : :Xn . xn; d1 : : : dmi Struturej e1 + e2 j lose e Composition, losurej ejX1:::Xn j ej�X1:::Xn Projetion, deletionj e[X1 7! Y1 : : :Xn 7! Yn℄ Renamingj eX�Y SplittingDe�nition: d ::= X [x1 : : : xn℄ . x = e Named de�nitionFigure 6.1: Syntax of MMelet re f = m.f gg = m.g fu = m.u fv = m.v gin f f = f; g = g; u = u; v = v gWe have not proven any enoding property of our ompilation sheme. We would at least like tohave a (weaker) soundness result for it, and a simple idea to show it is to set up a sound typesystem for �Æ, and show that the expressions generated by our ompilation sheme are well-typed.However, the type system of MM would not aept them, so we have to �nd a �ner type system.Fortunately, Boudol [13℄ has already developed a non-standard type system for a all-by-valuealulus that supports suh single reursive de�nitions. Later, we have extended it to mutuallyreursive de�nitions in [46℄. Here, we adapt the ideas of [46℄ to �Æ, and our result is that theompiled terms are well-typed.6.2 De�nition of the ompilation sheme6.2.1 Restriting the soure language: MMeThe syntax of MMe terms and types is de�ned in �gure 6.1. The meaning of meta-variables iskept from the presentation of MM (setion 3.1). The language is the same, exept that anonymousde�nitions have dissapeared, and the freezing, hiding, and showing operations, that were usingthem. The operations on the struture of expressions are de�ned by restrition of the ones of MM.The notion of syntati orretness is maintained idential as forMM, and expressions are similarlyidenti�ed modulo orret variable renaming.The operational semantis are de�ned exatly as for MM, without the ontration rules Freeze,Hide, Show, and letting the meta-variable op range over the restrited set of operators (see �gure3.2), and denote by op [e℄ the appliation of op to the expression e. The syntax for ontexts ismodi�ed aordingly. Also, the notions of preditable shape and of degree remain the same. Inpartiular, the Degree funtion returns / on all kinds of expressions, exept on mixin modules andreords, where it returns ,.The de�nition of the type system slightly di�ers from that of MM. Indeed, the output setionsof mixin module types are now lists of types, indexed by names, as indiated in �gure 6.2. They128

M 2 Types ::= fOg j hI ;O;GiI 2 Names Fin��! TypesO ::= � j X 7!M;OG �Fin fX ��! Y j X;Y 2 Names; � 2 Degreesg� 2 Vars Fin��! TypesFigure 6.2: Types for MMe� = Degree(x0; e) (X 0; x0) 2 dom(h�; oi) (X [z�℄ . x = e) 2 oX 0 ��!h�;oi X(Xi; xi) 2 dom(h�; oi) (X [x1 : : : xn℄ . x = e) 2 oXi /�!h�;oi XFigure 6.3: Dependenies in a MMe strutureare still supposed to be �nite maps. Thus, in the following, the meta-variable I still denotes a�nite map from names to types, but the meta-variable O now denotes a list of types indexed bydistint names. The typing rules are modi�ed aordingly: for a mixin module h�; oi, the outputsetion of the result type preserves the order in whih the omponents appeared in o. This doesnot hange the typing rule T-Strut however. The meaning of the rule T-Sum slightly hangesthough, beause we have to de�ne the disjoint union operation ℄ on indexed lists. It is de�ned, ifthe two lists de�ne disjoint sets of names, as their onatenation, and unde�ned otherwise. Thus,there is an impliit side-ondition in rule T-Sum from the point of view of this setion, requiringthat the output setions of the two summed mixin modules de�ne disjoint sets of names.The notion of graph and the orresponding operations are greatly simpli�ed by the absene ofloal de�nitions: all the onsidered graphs are abstrat (i.e. graphs on names only). The way toompute the dependeny graph �!h�;oi of a struture h�; oi is also simpler, as desribed in �gure6.3: nodes are simply names, and no lift operation is neessary.Our goal is to translate well-typed terms of MMe into a simple alulus with let re, relying onthe dependeny graphs. To do this in a sound way, it is ruial to only have to deal with safedependeny graphs. Fortunately, proposition 7 remains true.Proposition 8 (Types well-formed) If the types in � are well-formed, and � ` e :M , then Mis well-formed.6.2.2 The target language �ÆThe target language for our translation is the �Æ alulus, a variant of the �-alulus with reordsand reursive de�nitions introdued by Boudol [13℄.SyntaxThe syntax of �Æ is de�ned in �gure 6.4. Intuitively, it is a subset of MMe, where mixin moduleonstruts have been replaed by funtions and appliations, and the let re has been extended(see below) The meta-variables X and x range over names and variables, respetively. Vari-ables are used as binders, as usual. Names are used for aessing reord �elds, as an external129

x 2 Vars VariableX 2 Names Name� := =[n℄ j=[?℄ (n a natural)Expression:e 2 expr ::= x j �x:e j e1e2j fX1 = e1 : : : Xn = engj e:Xj let rex1is1e1 : : : xn �n enin eFigure 6.4: Syntax of �Æ

� More meta-variables:s ::= X1 = e1 : : : Xn = en Reordb ::= x1 �1 e1 : : : xn �n en Binding� Notations:For a �nite map f , and a set of variables P ,dom(f) is its domain,od(f) is its odomainfjP is its restrition to P ,and fnP is its restrition to dom(f) n P .� Expressions of preditable shape:e# 2 Preditable ::= fog j �x:e j let re b in e#Figure 6.5: Meta-variables and notations
130

interfae to other parts of the expression. Figure 6.5 reapitulates the meta-variables and no-tations we introdue in the remainder of this setion. The syntax inludes the �-alulus on-struts; variables x, abstration �x:e, and appliation e1e2. The language also inludes reordsfX1 = e1 : : :Xn = eng, reord seletion e:X and a let re onstrut. A mutually reursive de�nitionhas the shape let re x1 �1 e1 : : : xn �n en in e, where arbitrary expressions are syntatially allowedas the right-hand side of a de�nition.Syntati orretness Reords s = (X1 = e1 : : : Xn = en) and bindings b = (x1�1e1 : : : xn�nen)are required to be �nite maps: a reord is a �nite map from names to expressions, and a bindingis a �nite map from variables to expressions. Requiring them to be �nite maps means that theyshould not bind the same variable or name twie.In a let re binding b = (x1 = e1 : : : xn = en), we say that there is a forward referene fromxi to xj if 1 � i � j � n and xj 2 FV(ei). A forward referene from xi to xj is synta-tially forbidden, exept when ej is of preditable shape. An expression of preditable shapeis a reord, a funtion, or a binding followed by an expression of preditable shape. Formallye# 2 Preditable ::= fsg j �x:e j let re b in e#.Sequenes Reords and bindings are often onsidered as �nite maps in the sequel. We refer tothem olletively as sequenes, and use the usual notions on �nite maps, suh as the domain dom,the odomain od, the restrition �jP to a set P , or the o-restrition �nP outside of a set P .Strutural equivalene We onsider the expressions equivalent up to alpha-onversion of bind-ing variables in strutures and let re expressions. The set of terms of �Æ is de�ned as the set ofstrutural equivalene lasses.SemantisThe semantis of �Æ is quite similar to that of MMe, exept for what onerns let re bindings.A �rst di�erene is that a binding de�ning only values is onsidered fully evaluated only if thesevalues math the orresponding size indiations: if a value of size n is expeted (annotation=[n℄),then the de�ned value must have this size; if a value of unknown size is expeted (annotation=[?℄),then any value will do. From now on, the meta-variable bv for bindings of �Æ denotes suh fullyevaluated bindings. This impliitely appears in the de�nition of results and evaluation ontexts.As shown in �gure 6.6, values inlude funtions �x:e and reords of values fsvg, where sv denotesan evaluated reord X1 = v1 : : :Xn = vn.The semantis of reord seletion and of funtion appliation are de�ned in �gure 6.7, by om-putational ontration rules, de�ning the loal omputational ontration relation . Reordprojetion selets the appropriate �eld in the reord; and the appliation of a funtion �x:e to avalue v redues to the body of the funtion, where the argument has been bound to x by let re.In �Æ, for mostly tehnial reasons, we distinguish the topmost binding syntatially : the globalomputational redution relation 9 9 K is a binary relation on on�gurations , whih are pairs of abinding, the topmost binding, and an expression, written b ` e (see �gure 6.6). Here, the topmostbinding is lose to the usual notion of runtime environment, with the additional feature that boundvalues an be mutually reursive.The rules for handling let re and the notion of evaluation ontexts are adapted to this notion ofon�guration. The omputational ontration rule Lift remains the same. The omputational131

Con�guration: ::= b ` eValue:v 2 values ::= x j �x:e j fsvgAnswer:a 2 answers ::= bv ` vMore meta-variables:sv ::= X1 = v1 : : : Xn = vn Value reordbv ::= x1 = v1 : : : xn = vn Value bindingFigure 6.6: Con�gurations and answers in �Æ
� Computational ontration rulesfX1 = v1 : : : Xn = vng:Xi vi (Projet) x =2 FV(v)(�x:e)v let re x = v in e (Beta)dom(b) ? FV(L)L [let re b in e℄ let re b in L [e℄ (Lift)� Computational redution rulese e0E [e℄ 9 9 K E [e0℄ (Context)dom(b1) ? fxg [dom(bv ; b2) [FV(bv; b2) [FV(f)(bv; x = (let re b1 in e); b2 ` f) 9 9 K (bv; b1; x = e; b2 ` f) (IM)dom(b) ? (dom(bv) [FV(bv))(bv ` let re b in e) 9 9 K bv; b ` e (EM) E [N ℄(x) = vE [N [x℄℄ 9 9 K E [N [v℄℄ (Subst)� Evaluation ontextsLift ontext:L ::= 2e j v2 j 2:X j fSgNested lift ontext:F ::= 2 j L [F ℄Evaluation ontext:E ::= (bv ` F) j (B [F ℄ ` e)

Reord ontexts:S ::= sv; X = 2; sBinding ontexts:B ::= bv; x = 2; bStrit ontexts:N ::= 2v j 2:X� Aess in evaluation ontexts(bv ` F)(x) = bv(x) (EA) (bv ; y = F ; b ` e)(x) = bv(x) (IA)Figure 6.7: Redution semantis for �Æ132

redution relation extends the omputational ontration relation to any evaluation ontext E ,as de�ned in �gure 6.7. An evaluation ontext E is a nested lift ontext, either inside a partiallyevaluated binding, or under a fully evaluated binding. The redution rules are modi�ed aordingly.The target languageThe omputational redution relation on expressions is ompatible with strutural equivalene.Hene we an de�ne omputational redution over equivalene lasses of expressions, obtaining theredution relation �!.De�nition 18 The �Æ language is the set of terms, equipped with the relation �!.�Æ features a let re that is slightly extended over the ones of ML or OCaml. We will now showhow to ompile it. Our target language for this ompilation is presented in the next setion and isa �-alulus without a let re at all, but with notions of heap, and loations.6.2.3 Compilation shemeWe now present a ompilation sheme translatingMMe terms into all-by-value �-alulus extendedwith reords and a let re binding. This ompilation sheme is ompositional, and type-direted,thus supporting separate ompilation.The translation sheme for our language is de�ned in �gure 6.8. The translation is type-diretedand operates on terms annotated by their types. For the ore language onstruts (variables,onstants, abstrations, appliations), the translation is a simple morphism; the orrespondingases are omitted from �gure 6.8.Aess to a struture omponent E:X is translated into an aess to �eld X of the reord ob-tained by translating E. Conversely, a struture h�; oi is translated into a reord onstrution.The resulting reord has one �eld for eah exported name X 2 dom(o), and this �eld is assoi-ated to o(X) where all input parameters on whih X depends are �-abstrated. Some notationis required here. We write D�1(X) for the list of immediate predeessors of node X in the de-pendeny graph D, ordered lexiographially. (The ordering is needed to ensure that values forthese predeessors are provided in the orret order later; any �xed total ordering will do.) If(X1; : : : ; Xn) = D�1(X) is suh a list, we write ��1(D�1(X)) for the list (x1; : : : ; xn) of variablesassoiated to the names (X1; : : : ; Xn) by the input mapping �. Finally, we write ~�(x1; : : : ; xn):Mas shorthand for �x1 : : : �xn:M . With all this notation, the �eld X in the reord translating h�; oiis bound to ~���1(D�1(X)):Jo(X) : O(X)K.The sum of two mixins E1+E2 is translated by building a reord ontaining the union of the �eldsof the translations of E1 and E2. For the delete operator E nX , we return a opy of the reordrepresenting E in whih the �eld X is omitted. Renaming E[X Y ℄ is harder: not only do weneed to rename the �eld X of the reord representing E into Y , but the renaming of X to Y inthe input parameters an ause the order of the impliit arguments of the reord �elds to hange.Thus, we need to abstrat again over these parameters in the orret order after the renaming, thenapply the orresponding �eld of JEK to these parameters in the orret order before the renaming.Again, some notation is in order: to eah name X we assoiate a fresh variable written X, andsimilarly for lists of names, whih beome lists of variables. Moreover, we write M (x1; : : : ; xn) asshorthand for M x1 : : : xn.The freeze operation E ! X is perhaps the hardest to ompile. Output omponents Z that donot depend on X are simply re-exported from JEK. For the other output omponents, onsider aomponent Y of E that depends on Y1; : : : ; Yn, and assume that one of these dependenies is X ,whih itself depends on X1; : : : ; Xp. In E !X , the Y omponent depends on (fYig [fXjg) n fXg.133

J(e :M 0):X :MK = Je :M 0K:XJh�; oi : fI ;O;DgK =fX = ~���1(D�1(X)):Jo(X) : O(X)K j X 2 dom(O)gJ(E1 : fI1;O1;D1g) + (E2 : fI2;O2;D2g) : fI ;O;DgK =let e1 = JE1 : fI1;O1;D1gK in let e2 = JE2 : fI2;O2;D2gK inhX = e1:X j X 2 dom(O1);Y = e2:Y j Y 2 dom(O2)iJ(E : fI 0;O0;D0g) nX : fI ;O;DgK =let e = JE : fI 0;O0;D0gK in hY = e:Y j Y 2 dom(O)iJ(E : fI 0;O0;D0g)[X Y ℄ : fI ;O;DgK =let e = JE : fI 0;O0;D0gK inhZfXgY = ~�D�1(ZfXgY):(e:Z D0�1(Z))fXgY j Z 2 dom(O0)iJ(E : fI 0;O0;D0g) !X : fI ;O;DgK =let e = JE : fI 0;O0;D0gK inhZ = e:Z j Z 2 dom(O); X =2 D0�1(Z);Y = ~�D�1(Y):let re X = e:X D0�1(X) in e:Y D0�1(Y) j X 2 D0�1(Y)iJloseE : fI 0;O0;D0g : f;;O; ;gK =let e = JE : fI 0;O0;D0gK inlet re X11 = e:X11 D0�1(X11) and : : : and X1n1 = e:X1n1 D0�1(X1n1) in: : :let re Xp1 = e:Xp1 D0�1(Xp1) and : : : and Xpnp = e:Xpnp D0�1(Xpnp) inhX = X j X 2 dom(O)iwhere (fX11 : : : X1n1g; : : : ; fXp1 : : : Xpnpg) is a serialization of dom(O0) against D0Figure 6.8: The translation sheme
Thus, we �-abstrat on the orresponding variables, then ompute X by applying JEK:X to theparameters Xj . Sine X an depend on itself, this appliation must be done in a let re bindingover X . Then, we apply JEK:Y to the parameters that it expets, namely Yi, whih inlude X.
The only operator that remains to be explained is loseE. Here, we take advantage of the fatthat lose removes all input dependenies to generate ode that is more eÆient than a sequeneof freeze operations. We �rst serialize the set of names exported by E against its dependenygraph D. That is, we identify strongly onneted omponents of D, then sort them in topologialorder. The result is an enumeration (fX11 : : :X1n1g; : : : ; fXp1 : : :Xpnpg) of the exported names whereeah luster fX i1 : : : X inig represents mutually reursive de�nitions, and the lusters are listed inan order suh that eah luster depends only on the preeding ones. We then generate a sequeneof let re bindings, one for eah luster, in the order above. In the end, all output omponents arebound to values with no dependenies, and an be grouped together in a reord.134

(x) = 0� ` x : �(x) = (Var) � ` : TC() = (Const)� + fx : � 0g `M : � = (� 1)[x 7! d℄� ` �x:M : � 0 d�! � = (Abstr)� `M1 : � 0 d�! � = 1 � `M2 : � 0 = 2� `M1 M2 : � = (1 � 1) ^ d� 2 (App)� `M : � 0 d�! � = �(x) = � 0� `M x : � = (� 1) ^ (x 7! d) (Appvar)� `M : � 0 = 0 � + fx : � 0g ` N : � = [x 7! d℄� ` let x =M in N : � = ^ d� 0 (Let)� + f: : : xj : �j : : :g `M : � = [: : : xj 7! dj : : :℄8i : � + f: : : xj : �j : : :g `Mi : �i = i[: : : xj 7! dij : : :℄8i; j : dij � 1 8i; j; k : dik � dij � djk� ` let re : : : xi =Mi : : : in M : � = ^ � î di � i� ^ � î;j di � dij � j� (Re)8i : � `Mi : �i = � ` h: : : Xi =Mi : : :i : h: : : Xi : �i : : :i = (Reord)� `M : h: : : Xj : �j : : :i = 1 � i � n� `M:Xi : �i = (Sel)Figure 6.9: Typing rules for �Æ6.3 Type soundness of the translation6.3.1 A type system for the target languageThe translation sheme de�ned above an generate reursive de�nitions of the form let re x =M x in : : :. In �Æ, these de�nitions an either evaluate to a �xpoint (i.e. M = �x:�y:y), or getstuk (i.e. M = �x:x+1). In preparation for showing that no term generated by the translation anget stuk, we now equip �Æ with a sound type system that guarantees that all reursive de�nitionsare orret. Boudol [13℄ gave suh a type system, however it does not type-hek urried funtionappliations with suÆient preision for our purposes. Hene we now de�ne a re�nement of Boudol'stype system.The type system for �Æ is de�ned in �gure 6.9. Types, written � , have the following syntax:�Æ types: � ::= int j bool base typesj �1 d�! �2 annotated funtion typesj h: : : Xi : �i : : :i reord typesArrow types are annotated with degrees d, indiating how a funtion uses its argument. Forinstane, a funtion suh as �x:x + 1 has type int 0�! int, beause the value of x is immediately135

needed after appliation, whereas �xyz:x + 1 has type int 2�! : : :, beause the value of x is notneeded unless at least 2 more funtion appliations are performed. Formally, a degree an be eithera natural number or 1, meaning that the variable is not used. Similarly, the typing judgment isof the form � `M : � = , where is a (total) mapping from variables to degrees, indiating howM uses eah variable: (x) =1 means that x is not free in M ; (x) = 0 means that the value ofx is needed to evaluate M ; and (x) = n+ 1 means that the value of x is needed only after n+ 1funtion appliations, e.g. x ours in M under at least n+ 1 funtion abstrations.Rule (var) expresses that the variable x is immediately used via the side ondition (x) = 0.Funtion abstration (rule (abstr)) inrements by 1 the degree of all variables appearing in itsbody, exept for its formal parameter x, whose degree is retained in the type of the funtion. Wewrite � 1 for the funtion y 7! (y)� 1, with the onvention that 0� 1 = 0 and 1� 1 =1. Wewrite (� 1)[x 7! d℄ for the funtion that maps x to d, and otherwise behaves like (� 1).Rule (app) deals with general funtion appliation. In the funtion part M1, all variable degreesare deremented by 1, sine the appliation removes one level of abstration. The degrees of theargument partM2 are ombined with the d annotation on the arrow type ofM1 via the � operation,de�ned as follows: d� 0 = 0 d�1 =1 d� (n+ 1) = dBeause of all-by-value, immediate dependenies in M2 (2(x) = 0) are still immediate in theappliation. Variables not free in M2 (2(x) = 1) do not ontribute any dependeny to theappliation. The interesting ase is that of a variable x with degree n+1 inM2, i.e. not immediatelyneeded. We do not know how many times the funtion M1 is going to apply its argument insideits body. However, we know that it will not do so before d more appliations of M1 M2. Hene, wean take d for the degree of x in M1 M2. Finally, the ontributions from the funtion part (1� 1)and the argument part (d� 2) are ombined with the ^ operator, whih is point-wise minimum.When the argument of an appliation is a variable, as in M x, a more preise type-heking ispossible (rule (appvar)). Namely, the variable x is not needed immediately, but only when thefuntion M needs its argument. Hene, the degree of x in the appliation is ((x) � 1) ^ d, whileall other variables y have degree (y)� 1.The most omplex rule is (re) for mutual reursive de�nitions. Intuitively, the right-hand sidesM1 : : :Mn must not depend immediately on any of the reursively de�ned variables x1 : : : xn. Inother terms, the dependeny dij of Mi on xj must satisfy dij � 1. However, we must also take intoaount indiret dependenies: for instane, M1 may depend on x2, whose de�nition M2 in turndepends on x3, making M1 depend on x3 as well. We aount for these indiret dependenies viathe triangular inequality dik � dij�djk. Finally, the dependenies of the whole let re are obtainedby ombining those of its body M with those arising from the uses of the xi in M , either diret(di�i) or one-step indiret (di�dij�j). Longer indiret dependenies suh as di�dij�djk�kneed not be taken into aount beause of the triangular inequality.Finally, the (let) rule is a ombination of the (abstr) and (app) rules, and the rules for reordoperations (reord) and (sel) are straightforward.6.3.2 Soundness of the target languageTo simplify the proofs, we prove the soundness on a subset �Æ of �Æ that exludes onstants, reordonstrution and aess, and the let binding. It is entirely straightforward to extend the proofs tothe omitted onstruts.Properties of degreesWe start the proof with a number of algebrai lemmas on degrees and degree operations. Figure 6.10re-states the de�nitions of the operations on degrees. The following lemmas should be read as136

Degreesd ::= n j 1 Minimumd ^ 1 = d1 ^ d = dm ^ n = min(m;n) Compositiond � 1 = 1d � 0 = 0d � n+ 1 = dPlus1 + n = 1m + n = m+N n Minus1 � n = 1m � n = m�N n if m � nm � n = 0 if m < nFigure 6.10: Summary of degree operationsuniversally quanti�ed over the degrees d; d0; d1; d2; d3. We adopt the onvention that � hashighest preedene, followed by ^, and then + and �.Lemma 181. (d1 + 1) � d2 � d1 � d2 + 1.2. (d1 ^ d2) � d3 = d1 � d3 ^ d2 � d3.3. d1 � (d2 ^ d3) = d1 � d2 ^ d1 � d3.4. (d1 � d2) � d3 = d1 � (d2 � d3).5. (d� n) � d0 = d� d0 � n.6. If d+ 1 = d0, then d0 � 1 and d = d0 � 1.7. If d 6= 0, then d� 1 + 1 = d.8. 0 � d � d.9. If d � d0 then d+ 1 � d0 + 1.10. If d+ 1 � d0 � 1 then d+ 2 � d0.11. If d2 � 1, then d1 � d3 � d1 � d2 � d3.Proof1. If d2 = 0, we obtain 0 � 1 whih is true. If d2 =1 we obtain 1 �1. Otherwise, the laimredues to d1 + 1 � d1 + 1.2. If d3 = 0, we obtain 0 on both sides of the equality. If d3 = 1, both sides are equal to 1.Otherwise we get d1 ^ d2 on both sides.3. If d2 = 0, both sides are equal to 0. If d2 =1, then d2 ^ d3 = d3 and d1 � d2 =1, so bothsides are equal to d1� d3. Otherwise, we argue by ase on d3. If d3 = 0, then we obtain 0 onboth sides, and if d3 =1, we obtain d1 � d2 for both sides. Otherwise, d2 ^ d3 = n 6= 0, sod1 � (d2 ^ d3) = d1 = d1 ^ d1 = d1 � d2 ^ d1 � d3.4. If d3 = 0, both sides are equal to 0. If d3 =1, we obtain 1 on both sides. Otherwise, bothsides are equal to d1 � d2.5. Both sides redue to 1 if d0 =1, to 0 if d0 = 0, and to d� 1 otherwise.6. By de�nition of +. 137

7. By de�nition of + and �.8. By de�nition of �.9. By de�nition of +.10. Sine d+ 1 is stritly positive, d0 annot be 0. Thus, d0 = d0 � 1 + 1 by property 7, and theresult follows by applying property 9 to d+ 1 � d0 � 1.11. If d3 =1 or d3 = 0, both sides redue to d3. Otherwise, write d3 = n+1. Then, d1�d3 = d1and d1� d2� d3 = d1� d2, hene it simply remains to prove that d1 � d1� d2. Sine d2 � 1,we have only two ases: either d2 =1, in whih ase d1� d2 =1 whih annot be less thand1; or d2 = m+ 1, in whih ase d1 � d2 = d1, and the result holds.2Lemma 19 If � (1 � 1) ^ d � 2, then there exists 01 and 02 suh that = (01 � 1) ^ d � 02and 01 � 1 and 02 � 2.Proof We de�ne 01 and 02 pointwise. Consider a variable x. Let d0 = (x); d1 = 1(x); d2 =2(x). We onstrut d01 and d02 suh that d0 = (d01 � 1) ^ d� d02 and d01 � d1 and d02 � d2.� If d0 = 0, then we an take d01 = d02 = 0.� If d0 =1, then we an take d01 = d1 and d02 = d2, beause only 1 is greater than d0.� If d0 = n + 1, let d01 = n + 2 and d02 = d2. By hypothesis we know that d0 � d � d2. Sined01 � 1 = n + 1 = d0, we have (d01 � 1) ^ d � d02 = d01 � 1 = d0. Moreover, sine d0 � d1 � 1,we have that n+ 1 � d1 � 1, and therefore (d01 = n+ 2 � d1 by lemma 18. Finally, d02 � d2trivially holds.2Lemma 20 If � (1�1)^(x 7!d), then there exists 01 suh that 01 � 1 and = (01�1)^(x 7!d).Proof We proeed as in the previous proof. Consider a variable y and let d0 = (y) and d1 = 1(y).We onstrut d01 suh that d01 � d1 and d0 = (d01 � 1) ^ ((x 7! d)(y)).� If d1 = 0, then d01 = 0 works.� Otherwise, we take d01 = d0 + 1. This d01 is suitable beause:{ Sine d0 � d1 � 1, we have d0 +1 � d1 � 1+ 1 and d1 6= 0. By lemma 18, it follows thatd1 � 1 + 1 = d1, hene d01 � d1.{ From d0 � (d0 +1� 1) � (d01 � 1) and d0 � (d1 � 1)^ (x 7! d)(y) � (x 7! d)(y) it followsthat d0 � (d01 � 1) ^ ((x 7! d)(y)).{ Sine d01 � 1 = d0, we have that (d01 � 1) ^ ((x 7! d)(y)) � d0.2Lemma 21 Let n 2 N. If0 � 0 ^ ^i;j2f1:::ng di � dij � j ^ ^i2f1:::ng di � ithen there exist 00; 01; : : : ; 0n suh that 0i � i, for i = 0; : : : ; n and0 = 00 ^ ^i;j2f1:::ng di � dij � 0j ^ ^i2f1:::ng di � 0i138

Proof Simply take 00 = 0 and 0i = i for i = 1; : : : ; n. By transitivity we have 00 � 0 andtrivially 0i � i. It is easy to hek that00 ^ ^i;j2f1:::ng di � dij � 0j ^ ^i2f1:::ng di � 0i � 0by de�nition of 0. Moreover, by hypothesis, we know that^i;j2f1:::ng di � dij � 0j � 0 and ^i2f1:::ng di � 0i � 0hene 0 � 00 ^ ^i;j2f1:::ng di � dij � 0j ^ ^i2f1:::ng di � 0iand the expeted equality follows. 2Lemma 22 If [x 7!d℄ = (1�1)^d0�2 then there exist 01; 02; d1; d2 suh that 1 = 01[x 7!d1℄,2 = 02[x 7! d2℄, and = (01 � 1) ^ d0 � 02.Proof Let d1 = 1(x) and d2 = 2(x). Let 01 be the funtion assoiating 1(y) to every variabley 6= x and suh that 01(x) = (x)+ 1, whih we an write 1[x 7! (x) +1℄. Let 02 be the funtionassoiating 2(y) to every variable y 6= x and suh that 02(x) =1, whih we an write 2[x 7!1℄.We have trivially 1 = 01[x 7! d1℄ and 2 = 02[x 7! d2℄. We now hek the third property. On x,(x) = ((x) + 1� 1) ^ d0 �1 = (01(x)� 1) ^ d0 � 02(x)On y 6= x, (y) = (1(y)� 1) ^ d0 � 2(y) = (01(y)� 1) ^ d0 � 02(y)2Lemma 23 If [x 7!d℄ = 0^� ^i;j2f1:::ng di � dij � j�^� î di � i� then there exist 00 and a 0i foreah i, suh that 00[x 7!d0℄ = 0, 0i[x 7!d0i℄ = i, and = 00^� ^i;j2f1:::ng di � dij � 0j�^� î di � 0i�,with d0 = 0(x) and d0i = i(x) for all i.Proof Take 00 = 0[x 7! (x)℄ and 0i = i[x 7!1℄ for all i. We hek that the expeted propertieshold as in the previous proof. 2Weakening lemmasWe now prove two \weakening" lemmas showing that the typing judgement still holds if the degreeenvironment is replaed by another environment 0 � , or if the degree (x) of an unusedvariable x is hanged.Lemma 24 (degree restrition) If 0 � and � `M : � = , then � `M : � = 0.Proof We reason by indution on the typing derivation of M , and by ase on the last typing ruleused.Rule (var), M = x. We know that �(x) = � and (x) = 0 � 0(x), so 0(x) = 0 and we an applythe axiom (var) again. 139

Rule(abstr), M = �xM1. Given the typing rules, we have a derivation of � + fx 7! �1g ` M1 :�2 = (� 1)[x 7! d℄ with � = �1 d�! �2. But it is easy to notie that (0� 1)[x 7! d℄ � (� 1)[x 7! d℄,so by indution hypothesis, we have a derivation of � + fx 7! �1g `M1 : �2 = (0 � 1)[x 7! d℄. Theexpeted result follows by another appliation of the rule (abstr).Rule (app), M = M1 M2. By typing hypothesis, we have derivations for � ` M1 : � 0 d�! � = 1and � `M2 : � 0 = 2, with = (1 � 1) ^ d� 2. By lemma 19, we onstrut 01 and 02, suh that01 � 1, 02 � 2 and 0 = (01 � 1) ^ d� 02. Applying the indution hypothesis twie, we obtainderivations for � `M1 : � 0 d�! � = 01 and � ` M2 : � 0 = 02, and we an apply the rule (app) againto obtain the expeted result.Rule (appvar), M = M1 x. We have a derivation for � ` M1 : � 0 d�! � = 1 with �(x) = � 0 and = (1 � 1) ^ d. Hene, 0 � (1 � 1) ^ (x 7! d). Applying lemma 20, we obtain 01 suh that01 � 1 and 0 = (01 � 1) ^ (x 7! d). We an apply rule (appvar) again to derive the expetedjudgment.Rule (re), M = let re : : : xi =Mi : : : in N . By typing hypothesis, we have� + f: : : xj : �j : : :g ` N : � = 0[: : : xj 7! dj : : :℄� + f: : : xj : �j : : :g `Mi : �i = i[: : : xj 7! dij : : :℄for all i; j, dij � 1for all i; j; k, dik � dij � djk = 0 ^ � î di � i� ^ � î;j di � dij � j�Using lemma 21, we take 0N = 0 and for all i, 0i = i, knowing that 0N � 0 and 0 =0N^� î di � 0i�^� î;j di � dij � 0j�. By indution hypothesis, we know how to derive �+f: : : xj :�j : : :g ` N : � = 0N [: : : xj 7! dj : : :℄. Hene we an derive � `M : � = 0. 2Lemma 25 (degree weakening) If � `M : � = [x 7! d℄ and x =2 FV(M), then � `M : � = .Proof The proof is by indution on the typing derivation of M and by ase on the last rule used.Rule (var), M = y. Sine x =2 FV(M), x 6= y. By typing hypotheses, (y) = 0 and �(y) = � . Itfollows that � `M : � = .Rule (abstr), M = �yM1, where y is fresh. The premise of the typing rule holds: �+fy 7! �1g `M1 : �2 = ([x 7!d℄�1)[y 7!d0℄ and � = �1 d0�! �2. But, obviously ([x 7!d℄�1)[y 7!d0℄ = (�1)[y 7!d0℄[x 7! d� 1℄. Hene, by indution hypothesis we obtain �+ fy 7! �1g `M1 : �2 = (� 1)[y 7! d0℄and the expeted result follows by rule (abstr).Rule (app), M = M1 M2. We have � ` M1 : � 0 d0�! � = 1 and � ` M2 : � 0 = 2 with[x 7! d℄ = (1 � 1) ^ d0 � 2. Applying lemma 22, we obtain d1, d2, 01 and 02 suh that = (01� 1)^ d0� 02, 01[x 7! d1℄ = 1 and 02[x 7!d2℄ = 2. By indution hypothesis we an derive� `M1 : � 0 d0�! � = 01 and � `M2 : � 0 = 02. The expeted result follows by rule (app).Rule (appvar), M = M1y, with y 6= x by hypothesis x =2 FV(M). We have a derivation of� ` M1 : �1 d0�! �2 = 1 with [x 7! d℄ = (1 � 1) ^ (y 7! d0). Take 01 = 1[x 7! (x) + 1℄.140

We have 01[x 7! 1(x)℄ = 1 and = (01 � 1) ^ (y 7! d0). The �rst equality is straightforward,and the seond equality follows from the fats that (x) = (x) + 1 � 1, and for any z 6= x,((1 � 1) ^ (y 7! d0))(z) = ((01 � 1) ^ (y 7! d0))(z). We then onlude by indution hypothesis asabove.Rule (re), M = let re : : : xi =Mi : : : in N . We have� + f: : : xj : �j : : :g ` N : � = N [: : : xj 7! dj : : :℄and for all i � + f: : : xj : �j : : :g `Mi : �i = i[: : : xj 7! dij : : :℄with for all i; j; k, dik � dij � djk and for all i; j, dij � 1 and [x 7! d℄ = N ^ � î di � i� ^� î;j di � dij � j�. Lemma 23 shows the existene of 0N and 0i for all i suh that 0N [x 7!dN ℄ = N ,and for all i 0i[x 7! d0i℄ = i, and = 0N ^ � î di � 0i� ^ � î;j di � dij � 0j�, with dN = N (x) andfor all i, d0i = 0i(x). Applying the indution hypothesis, we derive� + f: : : xj : �j : : :g ` N : � = 0N [: : : xj 7! dj : : :℄and for all i � + f: : : xj : �j : : :g `Mi : �i = 0i[: : : xj 7! dij : : :℄The result follows by rule (re). 2Lemma 26 (type weakening) If �+fx 7! � 0g `M : � = and x =2 FV(M), then � `M : � = .Proof Straightforward by indution on the typing derivation. 2Substitution lemmasWe now establish the traditional substitution lemma: a variable an be substituted by a term of thesame type without a�eting the type of the program. This lemma provides a semanti justi�ationfor our de�nition of � in relation with what really happens during the redution of an appliation.Lemma 29 (substitution) If � + fx 7! � 0g ` M1 : � = 1[x 7! d℄, and � ` M2 : � 0 = 2, withx =2 FV(M2) [dom(2), then � `M1fxgM2 : � = 1 ^ d� 2.Proof We proeed by indution on the typing derivation ofM1 and ase analysis on the last typingrule used. We write M =M1fxgM2, �0 = � + fx 7! � 0g, and 0 = 1 ^ d� 2.Rule (var), M1 = y. We have �0(y) = � and 1[x 7! d℄(y) = 0.If y = x, then M = M2, d = 0, � = � 0 and by hypothesis � ` M : � = 2. So by lemma 24, it isenough that 0 � 2 or 1 ^ 0 � 2 � 2, whih is true by lemma 18.If y 6= x, then x =2 FV(M) and � + fx 7! � 0g ` M : � = 1[x 7! d℄, so by lemmas 25 and 26,� `M : � = 1, and it suÆes that 0 � 1, whih is trivially true.Rule (abstr), M1 = �yM3, with y fresh. By typing hypothesis, we have�0 + fy 7! �1g `M3 : �2 = 3[y 7! d0℄141

with � = �1 d0�! �2 and 3[y 7!d0℄ = (1[x 7!d℄�1)[y 7!d0℄ = (1 � 1)[x 7!(d�1); y 7!d0℄. TakeM 03 =M3fxgM2. By indution hypothesis, we have �+fy 7! �1g `M 03 : �2 = (1�1)[y 7!d0℄^(d�1)�2.Sine y is fresh, it does not our in 2, hene(1 � 1)[y 7! d0℄ ^ (d� 1) � 2= ((1 � 1) ^ (d� 1) � 2)[y 7! d0℄= ((1 � 1) ^ (d� 2 � 1))[y 7! d0℄ by lemma 18= ((1 ^ d� 2)� 1)[y 7! d0℄ = (0 � 1)[y 7! d0℄Hene, rule (abstr) onludes � ` �yM 03 : �1 d0�! �2 = 0, whih is the expeted result.Rule (app), M1 = M3 M4. We have �0 ` M3 : � 00 d0�! � = 3 and �0 ` M4 : � 00 = 4 and1[x 7! d℄ = (3 � 1) ^ d0 � 4. By lemma 22, if d3 = 3(x) and d4 = 4(x), there exists 03and 04 suh that 03[x 7! d3℄ = 3, 04[x 7! d4℄ = 4, and 1 = (03 � 1) ^ d0 � 04. By indutionhypothesis, if M 03 = M3fxgM2 and M 04 = M4fxgM2, then � ` M 03 : � 00 d0�! � = 03 ^ d3 � 2 and� `M 04 : � 00 = 04 ^ d4 � 2, so by rule (app)� `M : � = ((03 ^ d3 � 2)� 1) ^ d0 � (04 ^ d4 � 2)Moreover, by lemma 18, the degree environment is equal to(03 � 1) ^ (d3 � 2 � 1) ^ (d0 � 04) ^ (d0 � d4 � 2)= 1 ^ (d3 � 2 � 1) ^ (d0 � d4 � 2)= 1 ^ ((d3 � 1^d0 � d4) � 2= 1 ^ d� 2= 0Rule (appvar), M1 = M3 y. As in the (var) ase, we argue by ase, aording to whether y isequal to x or not.Case y = x. Then, M = M 03 M2, where M 03 = M3fxgM2. The typing hypothesis implies�0 `M3 : � 00 d0�! � = 3 (*) and �0(y) = �0(x) = � 0 = � 00 and 1[x 7! d℄ = (3 � 1)^ (y 7! d0). Take03 = 3[x 7! 1(x) + 1℄. We have 1 = (03 � 1) and 03[x 7! 3(x)℄ = 3. Thus we an write thepremise (*) as follows �0 `M3 : � 00 d0�! � = 03[x 7! 3(x)℄n Hene, by indution hypothesis we have� `M 03 : � 00 d0�! � = 03 ^ d3 � 2with d3 = 3(x). Then by rule (app), we obtain� `M : � = ((03 ^ d3 � 2)� 1) ^ d0 � 2But 0 = (03 � 1) ^ d� 2. Sine d = (d3 � 1) ^ d0, it follows that0 = (03 � 1) ^ (d3 � 2 � 1) ^ d0 � 2Hene, we have derived the desired judgment.Case y 6= x. Then, M = M 03 y, where M 03 = M3fxgM2. By typing hypothesis, we have �0 `M3 : � 00 d0�! � = 3 (*) and �0(y) = �(y) = � 00 and 1[x 7! d℄ = (3 � 1) ^ (y 7! d0). Take142

03 = 3[x 7! 1(x)+1℄. We have 1 = (03� 1)^ (y 7! d0), and 03[x 7! 3(x)℄ = 3. Thus we rewritethe premise (*) as follows: �0 `M3 : � 00 d0�! � = 03[x 7! 3(x)℄By indution hypothesis, it follows that� `M 03 : � 00 d0�! � = 03 ^ d3 � 2with d3 = 3(x). Then by rule (appvar), we get� `M : � = ((03 ^ d3 � 2)� 1) ^ (y 7! d0)whih yields by lemma 18� `M : � = (03 � 1) ^ (d3 � 2 � 1) ^ (y 7! d0)Moreover, 0 = 1 ^ d� 2= (03 � 1) ^ (y 7! d0) ^ d� 2= (03 � 1) ^ (y 7! d0) ^ (d3 � 1) � 2(beause 1[x 7! d℄ = (3 � 1) ^ (y 7! d0))= (03 � 1) ^ (y 7! d0) ^ (d3 � 2 � 1) (by lemma 18)Thus, the expeted result holds.Rule (re), M = let re x1 = N1 and : : : and xn = Nn in N , where the xi are fresh. By typinghypothesis, �0 + f: : : xj : �j : : :g ` N : � = N [: : : xj 7! dj : : :℄for all i, �0 + f: : : xj : �j : : :g ` Ni : �i = Æi[: : : xj 7! dij : : :℄for all i, j, dij � 1for all i, j, k, dik � dij � djkWe write N 0 = NfxgM2 and for all i, N 0i = NifxgM2. We have 1[x 7! d℄ = N ^ � î di � Æi� ^� î;j di � dij � Æj�. Lemma 23 shows that we an onstrut 0N and a Æ0i for all i suh that 0N [x 7!dN ℄ = N , and Æ0i[x 7! d0i ℄ = Æi for all i and 1 = 0N ^ � î di � Æ0i� ^ � î;j di � dij � Æ0j�, withdN = N (x) and d0i = Æi(x) for eah i. Thus, the two premises an be rewritten as follows:�0 + f: : : xj : �j : : :g ` N : � = 0N [: : : xj 7! dj : : :℄[x 7! dN ℄for all i, �0 + f: : : xj : �j : : :g ` Ni : �i = Æ0i[: : : xj 7! dij : : :℄[x 7! d0i ℄By indution hypothesis, it follows that� + f: : : xj : �j : : :g ` N 0 : � = 0N [: : : xj 7! dj : : :℄ ^ dN � 2for all i, � + f: : : xj : �j : : :g ` N 0i : �i = Æ0i[: : : xj 7! dij : : :℄ ^ d0i � 2Sine the xis are fresh we have 0N [: : : xj 7!dj : : :℄^dN �2 = (0N ^dN �2)[: : : xj 7!dj : : :℄ andfor all i, Æ0i[: : : xj 7! dij : : :℄ ^ d0i � 2 = (Æ0i ^ d0i � 2)[: : : xj 7! dij : : :℄. We an therefore applyrule (re) to obtain� `M : � = 0N ^ dN � 2 ^ î;j di � dij � (Æ0j ^ d0j � 2) ^ î di � (Æ0i ^ d0i � 2)143

Aording to lemma 18, the degree environment above is equal to0N ^ (dN � 2)^ (î;j di � dij � Æ0j)^ (î;j di � dij � d0j � 2)^ (î di � Æ0i)^ (î di � d0i � 2)To obtain the expeted result, it suÆes to prove that this degree environment is equal to 0. Sine1[x 7! d℄ = N ^ � î di � Æi� ^ � î;j di � dij � Æj�we know that d = N (x) ^ � î di � Æi(x)� ^ � î;j di � dij � Æj(x)�Therefore, d = dN ^ � î di � d0i � ^ � î;j di � dij � d0j�. It follows that0 = 1 ^ d� 2= 0N ^ � î di � Æ0i� ^ � î;j di � dij � Æ0j�^�dN ^ � î di � d0i � ^ � î;j di � dij � d0j��� 2= 0N ^ � î di � Æ0i� ^ � î;j di � dij � Æ0j�^(dN � 2) ^ � î di � d0i � 2� ^ � î;j di � dij � d0j � 2�This ompletes the proof. 2We now extend the previous lemma to the ase of parallel substitution, exploiting the fat thatMf: : : xi 7!Mi : : :g is equal to Mfx1gy1 : : : fxngynfy1gM1 : : : fyngMn, where the yi are fresh.To support this redution, we �rst show the stability of the typing judgement under substitutionof one variable by a fresh variable.Lemma 27 If � + fx : �g ` M : � = [x 7! d℄ and y =2 FV(M), then � + fy : �g ` Mfxgy : � =[y 7! d℄.Proof Easy indution on the typing derivation of M . 2Lemma 31 (parallel substitution) Assume �+f: : : xi : �i : : :g `M : � = M [: : : xi 7!di : : :℄,and for all j 2 f1 : : : ng, � ` Mj : �j = j with for all i; j, xi =2 FV(Mj) [dom(j). Then,� `Mf: : : xi 7!Mi : : :g : � = M ^ î di � i.Proof Write Mf: : : xi 7!Mi : : :g as Mfx1gy1 : : : fxngynfy1gM1 : : : fyngMn where the yi arefresh. We �rst apply lemma 27 n times to obtain � + f: : : yi : �i : : :g ` Mfx1gy1 : : : fxngyn :� = M [: : : yi 7! di : : :℄. We then apply lemma 29 n times again, suessively using the n typinghypotheses for the Mi. This leads to the desired judgment. 2144

Substitution by a variableWe now state and prove a stronger variant of lemma 29 for the ase where we substitute a variableby another variable. This alternate substitution lemma is distint from lemma 27: here, y is notsupposed to be fresh, and this is why former ourenes of y must be taken into aount, whih isdone through the ^ operation.Lemma 30 (substitution by a variable) If � + fx 7! � 0g ` M : � = [x 7! d℄ and �(y) = � 0,then � `Mfxgy : � = ^ (y 7! d).Proof We write �0 = � + fx 7! � 0g and M 0 = Mfxgy and proeed by indution on the typingderivation of M and ase analysis on the last typing rule used.Rule (var) We distinguish the three sub-ases M = x, M = y, and M = z with z 6= x and z 6= y.All three ases are straightforward.Rule (abstr), M = �zM1 where z is fresh. By typing hypothesis, we have�0 + fz 7! �1g `M1 : �2 = ([x 7! d℄� 1)[z 7! d0℄with � = �1 d0�! �2. This is equivalent to�0 + fz 7! �1g `M1 : �2 = (� 1)[z 7! d0℄[x 7! d� 1℄Applying the indution hypothesis, we then have� + fz 7! �1g `M1fxgy : �2 = (� 1)[z 7! d0℄ ^ (y 7! d� 1)whih yields � + fz 7! �1g `M1fxgy : �2 = ((^ (y 7! d))� 1)[z 7! d0℄We onlude � `Mfxgy : � = ^ (y 7! d) by rule (abstr).Rule (app), M = M1 M2. The typing hypothesis entails �0 ` M1 : � 0 d0�! � = 1 and �0 ` M2 :� 0 = 2 with [x 7! d℄ = (1 � 1)^ d0 � 2. Take 01 = 1[x 7! (x) + 1℄ and 02 = 2[x 7!1℄. Thesedegree environments enjoy the following properties:1 = 01[x 7! 1(x)℄ 2 = 02[x 7! 2(x)℄ = (01 � 1) ^ d0 � 02By indution hypothesis, we an derive � `M1fxgy : � 00 d0�! � = 01 ^ (y 7! 1(x)) � `M2fxgy : � 00 = 02 ^ (y 7! 2(x))� `M 0 : � = (01 � 1) ^ (y 7! (1(x)� 1)) ^ d0 � (02 ^ (y 7! 2(x)))The degree environment in the onlusion is equal to(01 � 1) ^ d0 � 02 ^ (y 7! ((1(x)� 1) ^ d0 � 2(x))) = ^ (y 7! d)The desired result follows.Rule (appvar), M = M1 z We have �0 ` M1 : � 00 d0�! � = 1 and �0(z) = � 00 and [x 7! d℄ =(1 � 1) ^ (z 7! d0). We onsider the two ases z = x and z 6= x separately.Case z = x. In this ase, � 0 = � 00. Consider 01 = 1[x 7! (x) + 1℄. We have 01 � 1 = and01[x 7! 1(x)℄ = 1. By indution hypothesis, we obtain� `M1fxgy : � 0 d0�! � = 01 ^ (y 7! 1(x))145

Sine �(y) = � 0, rule (appvar) onludes� `M 0 : � = (01 � 1) ^ (y 7! (1(x)� 1)) ^ (y 7! d0)But the degree environment in this onlusion is equal to (01 � 1) ^ (y 7! ((1(x)� 1) ^ d0)), thatis, ^ (y 7! d). This is the expeted result.Case z 6= x. De�ne 01 = 1[x 7!(x)+1℄. We have = (01�1)^ (z 7!d0) and 01[x 7!1(x)℄ = 1.By indution hypothesis, we obtain� `M1fxgy : � 00 d0�! � = 01 ^ (y 7! 1(x))Sine �(z) = � 00, we derive by rule (appvar)� `M 0 : � = (01 � 1) ^ (y 7! (1(x)� 1)) ^ (z 7! d0)The latter degree environment is equal to ^ (y 7! (1(x) � 1)), that is, ^ (y 7! d), as requiredto establish the result.Rule (re), M = let re : : : xi =Mi : : : in N where the xi are fresh. The premises of rule (re)hold: �0 + f: : : xi : �i : : :g `Mj : �j = j [: : : xj 7! dji : : :℄ for all j�0 + f: : : xi : �i : : :g ` N : � = N [: : : xi 7! di : : :℄for all i; j, dij � 1for all i; j; k, dik � dij � djkMoreover, [x 7! d℄ = N ^ � î di � i� ^ � î;j di � dij � j�. By lemma 23, we an onstrut 0Nand 0i for eah i satisfying the following onditions: = 0N ^ � î di � 0i� ^ � î;j di � dij � 0j�,N = 0N [x 7!dN ℄, and for all i, i = 0i[x 7!d0i℄, with dN = N (x) and for all i, d0i = i(x). Applyingthe indution hypothesis, we obtain derivations for the following judgments:� + f: : : xi : �i : : :g `Mjfxgy : �j = 0j [: : : xi 7! dji : : :℄ ^ (y 7! d0j) for all j� + f: : : xi : �i : : :g ` Nfxgy : � = 0N [: : : xi 7! di : : :℄ ^ (y 7! dN)From these premises, rule (re) derives � `M 0 : � = 0, where0 = 0N ^ (y 7! dN)^� î;j di � dij � (0j ^ (y 7! d0j))�^� î di � (0i ^ (y 7! d0i))�= ^ (y 7! (dN ^ � î;j di � dij � d0j� ^ � î di � d0i�))= ^ (y 7! d)This onludes the proof. 2SoundnessThe soundness of �Æ's type system (theorem 3) is, as usual, a orollary of two properties: subjetredution (lemma 32) and progress (lemma 33). We start with a tehnial lemma on reursivede�nitions arising from the redution of a let re term.146

Lemma 28 Assume � + f: : : xi : �i : : :g ` Mj : �j = j [: : : xi 7! dji : : :℄ for all j 2 f1 : : : ng.Further assume that for all i; j, dij � 1 and for all i; j; k, dik � dij � djk. Then, for any i0 2f1 : : : ng, � ` let re : : : xi =Mi : : : in Mi0 : �i0 = i0 ^ î di0i � iProof By appliation of rule (re), we obtain� ` let re : : : xi =Mi : : : in Mi0 : �i0 = i0 ^ î;j di0i � dij � j ^ î di0i � iSine di0j � di0i � dij , we have di0j � j � di0i � dij � j . Thus,î;j di0i � dij � j ^ î di0i � i = î di0i � iand the expeted result follows. 2Lemma 32 (subjet redution) If � `M : � = and M �!M 0, then � `M : � = .Proof The proof is by ase analysis on the redution rule used.Redution rule (beta), M = �xM1 v. The typing derivation for M an end either with anappliation of the (app) rule or with the (appvar) rule.In the (appvar) ase, we have v = y. We rename x if neessary to ensure x 6= y. The typingderivation for M is of the following form� + fx 7! � 0g `M1 : � = (0 � 1)[x 7! d℄� ` �xM1 : � 0 d�! � = 0 �(y) = � 0� `M : � = (0 � 1) ^ (y 7! d)Moreover, = (0 � 1) ^ (y 7! d) and M 0 =M1fxgy. By lemma 30, we have� `M 0 : � = (0 � 1) ^ (y 7! d)whih is the expeted result.In the (app) ase, the typing derivation for M is� + fx 7! � 0g `M1 : � = (1 � 1)[x 7! d℄� ` �xM1 : � 0 d�! � = 1 ...� ` v : � 0 = 2� `M : � = (1 � 1) ^ d� 2Moreover, M 0 = M1fxgv and = (1 � 1) ^ d� 2. By lemma 29, it follows that � `M 0 : � = ,as expeted.Redution rule (mutre), M = let re : : : xi = vi : : : in N , where the xi are fresh. We haveM 0 =Mf: : : xi 7!Mi : : :g with, for all i, Mi = let re : : : xj = vj : : : in vi. By typing, we have� + f: : : xj : �j : : :g ` N : � = N [: : : xj 7! dj : : :℄for all i, � + f: : : xj : �j : : :g ` vi : �i = i[: : : xj 7! dij : : :℄for all i; j, dij � 1for all i; j; k, dik � dij � djk147

By lemma 28, it follows that � `Mi : �i = i ^ ĵ dij � jBy lemma 31, we obtain � `M 0 : � = N ^ � î di � (i ^ ĵ dij � j)�whih is idential to the expeted result� `M 0 : � = N ^ � î di � i� ^ � îj di � dij � j�Redution rule (ontext), M = E [M1℄, M1 �!M 01 and M 0 = E [M 01℄. The result follows bystrutural indution and ase analysis over the ontext E. The only point worth mentioning isthat in the ase E = v 2 and the typing derivation ends with rule (appvar), then M1 an only bea variable, and therefore annot redue. 2Lemma 33 (progress) If � `M : � = and � 1, then either M is a value, or there exists M 0suh that M �!M 0.Proof The proof is a standard indutive argument on the typing derivation ofM , and ase analysison the last typing rule used.Rule (var). M is a variable, i.e. a value.Rule (abstr). M is a �-abstration, i.e. a value.Rule (app), M = M1 M2. We have � ` M1 : � 0 d�! � = 1 and � ` M2 : � 0 = 2. Moreover, = (1 � 1) ^ d� 2.Applying the indution hypothesis to M1 and M2, either both terms are values or at least oneredues. If M1 redues, M also redues via the ontext 2 M2. If M1 is a value and M2 redues,M also redues via the ontext M1 2. If both M1 and M2 are values, the type � 0 d�! � of M1guarantees that M1 is either a variable or an abstration. But M1 annot be a variable, beause � 1 implies 1 � 2. Hene, M1 is an abstration and we an apply the (beta) rule to redue M .Rule (appvar). Same reasoning as in the (app) ase.Rule (re), M = let re : : : xi =Mi : : : in N . If all Mi are values, M redues by rule (mutre).Otherwise, M redues via the rule (ontext). 2Theorem 3 (soundness of �Æ) If � `M : � = and (x) � 1 for all x free in M , then M eitherredues to a value or diverges, but does not get stuk.Proof The theorem follows from the following lemmas, whih are proved in appendix 6.3.2. The�rst three lemmas are substitution lemmas for general one-variable substitution, substitution ofone variable by another, and parallel substitution. They play a ruial role for proving subjetredution for the typing rules (app), (appvar) and (re) respetively.148

� D�1(X) = (X1; : : : ; Xn) is the list of the predeessors of X in D, ordered lexiographially.� D(X;Y) = min fv j X v�! Y 2 Dg (with the onvention that D(X;Y) =1 if D ontains noedges from X to Y)� FCTD(X; I) = (Mv11 ; : : : ;Mvnn), for Pred(D) � dom(I), where{ D�1(X) = (X1; : : : ; Xn){ for all i 2 f1 : : : ng, I(Xi) =Mi and D(Xi; X) = vi.� Pred(D) = fX j X v�! Y 2 D;X; Y 2 Names; v 2 Valsg� Su(D) = fY j X v�! Y 2 D;X; Y 2 Names; v 2 ValsgFigure 6.11: Operations on graphsJ�1 ! �2K = �1 0�! �2JintK = intJboolK = boolJfI ;O;DgK = hX : JO(X)KX;D;I j X 2 dom(O)i if ` fI ;O;DgJMKX;D;I = JM1K v1+(n�1)������! JM2K v2+(n�2)������! : : : JMnK vn�! JMKwhere (Mv11 ; : : : ;Mvnn) = FCTD(X; I)Figure 6.12: Translation of typesLemma 29 (substitution) If � + fx 7! � 0g ` M1 : � = 1[x 7! d℄, and � ` M2 : � 0 = 2, withx =2 FV(M2) [dom(2), then � `M1fxgM2 : � = 1 ^ d� 2.Lemma 30 (substitution by a variable) If � + fx 7! � 0g ` M : � = [x 7! d℄ and �(y) = � 0,then � `Mfxgy : � = ^ (y 7! d).Lemma 31 (parallel substitution) If � + f: : : xi : �i : : :g ` M : � = M [: : : xi 7! di : : :℄,and for all j 2 f1 : : : ng, � ` Mj : �j = j with for all i; j, xi =2 FV(Mj) [dom(j), then� `Mf: : : xi 7!Mi : : :g : � = M ^ î di � i.The soundness of �Æ then follows from the well-known properties of subjet redution (redutionpreserves typing) and progress (well-typed terms are not stuk).Lemma 32 (subjet redution) If � `M : � = and M �!M 0, then � `M : � = .Lemma 33 (progress) If � `M : � = and � 1, then either M is a value, or there exists M 0suh that M �!M 0.26.3.3 Soundness of the translationThe goal of this setion is to prove the soundness of our approah, in the sense that a well-typedMMe expression translates to a well-typed �Æ expression. The soundness of �Æ then ensures thatthe translation evaluates orretly. 149

Core terms: C ::= xM j stM variables, onstantsj �xCM j (C1 C2)M abstration, appliationj E:XM omponent projetionMixin terms: E ::= C ore termj h�; oiM mixin struturej (+E1E2)M sumj (E[X Y ℄)M rename X to Yj (E !X)M freeze Xj (E nX)M delete Xj (loseE)M loseOutput assignments: o ::= Xi i2I7! EiFigure 6.13: Syntax of type-annotated termsTo state the soundness of the translation, we need to set up a translation from soure types to�Æ types. We start by de�ning useful operations on graphs and signatures in �gure 6.11. Wede�ne FCTD(X; I) as the list of the types and valuations of the predeessors of X in D aordingto I , ordered lexiographially. Then, Pred(D) and Su(D) are simply the sets of predeessorsand suessors of any node in D. The translation of types is presented in �gure 6.12. A naturaltranslation for environments follows, de�ned by J�K = J�KÆ�. Moreover, we de�ne the initial degreeenvironment orresponding to a type environment as do(�) = 0 Æ �, that is to say the funtionequal to 0 on dom(�) and 1 elsewhere. In the sequel, we will often use valuations as degrees. Itis worth notiing that for all valuations v1; and v2, min(v1; v2) = v1 ^ v2 = v1 � v2.As the translation operates on annotated well-typed terms, we de�ne an annotated syntax in �gure6.13. The type system for annotated terms is exatly the same, exept that it looks more like awell-formedness judgment � ` E. Thus a derivation for a standard term yields a orret derivationfor the orresponding annotated term. We denote by E the annotated term orresponding to aderivation of E, whih should be lear from the ontext. A well-formed annotated term is a termwhose annotations are all well-formed types. We onsider only well-formed annotated terms in thefollowing.We now turn to proving theorem 4: the translation of a well-typed soure term is a well-typed�Æ-term.We start by stating three typing rules that are admissible in �Æ, and help type-hek the termsarising from the translation sheme. We omit the proofs of admissibility, whih are straightforward.Lemma 34 (single let re) The following typing rule is admissible for the type system of �Æ.� + fx 7! � 0g `M : � = 1[x 7! d℄ � + fx 7! � 0g ` N : � 0 = 2[x 7! d0℄ d0 � 1� ` let re x = N in M : � = 1 ^ d� 2Lemma 35 (n abstrations) The following typing rule is admissible for the type system of �Æ.� + f: : : xi : �i : : :g `M : � = (� n)[: : : xi 7! di : : :℄� ` ~�(x1; : : : ; xn):M : �1 d1+(n�1)������! �2 d2+(n�2)������! : : : �n dn�! � = Lemma 36 (n appliations) The following typing rule is admissible for the type system of �Æ.� `M : �1 d1+(n�1)������! �2 d2+(n�2)������! : : : �n dn�! � = �(xi) = �i for i = 1; : : : ; n� `M(x1; : : : ; xn) : � = (� n) ^ (: : : xi 7! di : : :)150

We now prove two tehnial lemmas on the typing of sub-expressions that our when translatingthe lose and freeze operators.Lemma 37 (translation of lose) Assume �j � e : JfI ;O;DgK = do(�). Let X1; : : : ; Xn benames suh that Xi =2 dom(�) and O(Xi) = I(Xi) and D(Xi; Xj) 6= 0 for i; j 2 f1; : : : ; ng.Further assume that for all immediate predeessors X of one of the Xi in D, either X is one ofthe Xi, or �(X) = I(X). Let M be an expression and � be a type suh that �0j �M : � = do(�0),where �0 = �+ fX1 : O(X1); : : : ; Xn : O(Xn)g. Then,�j � let re X1 = e:X1 D�1(X1) and : : : and Xn = e:Xn D�1(Xn) in M : � = do(�)Proof By de�nition of the translation of a mixin signature, and the hypotheses on �, the onditionsof lemma 36 are met, and we obtain�0j � e:Xi D�1(Xi) : O(Xi) = do(�) ^ (X 7!D(X;Xi) j X 2 D�1(Xi))Sine Xj =2 dom(�) for all j, the degree environment above is pointwise greater or equal todo(�)[Xj 7!D(Xj ; Xi) j j 2 f1; : : : ; ng℄. Thus, by lemma 24, it follows that�0j � e:Xi D�1(Xi) : O(Xi) = do(�)[Xj 7!D(Xj ; Xi) j j 2 f1; : : : ; ng℄Moreover, D(Xj ; Xi) 2 f1;1g for all i and j. Hene, the premises of the (re) typing rule are met.Applying the weakening lemma 24 to its onlusion, we obtain the desired result. 2Lemma 38 (translation of freeze) Assume �j � e : JfI ;O;DgK=do(�), where e is a variabledistint from X for all names X. Let X be a name suh that I(X) = O(X). Write D0 = D!X andI 0 = InX . Then, for all names Y 2 dom(O), if X =2 D�1(Y) we have�j � e:Y : JO(Y)KY;D0;I0 = do(�)and if X 2 D�1(Y), we have�j � ~�D0�1(Y)let re X = e:X D�1(X) in e:Y D�1(Y) : JO(Y)KY;D0;I0 = do(�)Proof Reall the de�nition of D0:D0 = D!X = (D [Daround) nDremovewhere Daround = fZ v01^v02����! Y j (Z v1�! X) 2 D; (X v2�! Y) 2 Dg and Dremove = fX v�! Y j Y 2Names; v 2 f0; 1gg.Thus, in the ase X =2 D�1(Y), no edges leading to Y are added nor removed. Hene, D0�1(Y) =D�1(Y), whih implies JO(X)KX;D!X;InX = JO(X)KX;D;I and the expeted result.Consider now the ase X 2 D�1(Y). We have D0�1(Y) = (D�1(Y) [D�1(X)) n fXg. De�ne�0 = �+ fZ : JI(Z)K j Z 2 D�1(Y)g. By lemma 36, and using the fat that e is not one of the Z,it follows that �0j � e:X D�1(X) : JOXK = fe 7! 0;Z 7!D(Z;X) j Z 2 D�1(X)gand �0 + fX : JI(X)Kgj � e:Y D�1(Y) : JOY K = fe 7! 0;Z 7!D(Z; Y) j Z 2 D�1(Y)gNotie that D(X;X) � 1, beause otherwise the graph D would not be safe, making the signaturefI ;O;Dg ill-formed. In addition, O(X) = I(X). The onditions of lemma 34 are therefore met,and we obtain �0j � let re X = e:X D�1(X) in e:Y D�1(Y) : JO(Y)K = where = fe 7! 0;Z 7!D(Z;X) j Z 6= X;Z 2 D�1(X)g^ fe 7! 0;Z 7!D(Z; Y) j Z 6= X;Z 2 D�1(Y)g151

By de�nition of D0 = D!X , is equal to fe 7!0;Z 7!D0(Z; Y) j Z 2 D0�1(Y)g. Applying lemma 35,we obtain�j � ~�D0�1(Y)let re X = e:X D�1(X) in e:Y D�1(Y) : JO(X)KX;D0 ;I0 = fe 7! 0gwhih implies the desired result by weakening. 2Theorem 4 (soundness of the translation) If � ` E : M , then J�K ` JEK : JMK = do(�) +IsRe(E).Proof The proof is by strutural indution on E, and ase analysis on E.Funtion abstration: E = �x:C and M = �1 ! �2. By indution hypothesis, J�K + fx :�1gj� JCK : �2 = do(�)[x 7!0℄+ IsRe(C). Applying the degree weakening lemma if IsRe(C) is notzero, we obtain J�K + fx : �1gj � JCK : �2 = do(�)[x 7! 0℄. From this, the (abstr) typing rule showsthat J�Kj � J�x:CK : �1 0�! �2 = do(�) + 1, whih is the expeted result sine IsRe(�x :C) = 1.Other ore language onstruts: the result follows immediately from the indution hypothesis,sine IsRe(E) = 0 in these ases.Struture onstrution: E = h�; oi and M = fI ;O;Dg. By typing, we have D = Dh�; oi, ` D,dom(o) = dom(O), and for all X 2 dom(o), � + I Æ � ` o(X) : O(X).Let o = Xi i2I7! Ei, O = Xi i2I7! Mi, vi = IsRe(Ei) and � = yj j2J7! Yj , with I(Yj) = M 0j for all j,with the Xis and Yjs ordered lexiographially, that is, if i1 < i2, then Xi1 <lex Xi2 , and similarlyfor the Yjs.By indution hypothesis, for all i, we have J�K + JI Æ �K ` JEiK : JMiK = do(� + I Æ �) + vi.But FV(JEiK) = FV(Ei) and FV(Ei) \ dom(�) = ��1(D�1(Xi)), so we an apply lemma 35,and weakening lemmas 25 and 26 to eliminate variables of dom(�) that are not free in Ei. Let(Z1; : : : ; Zn) = D�1(Xi) and for all k 2 f1 : : : ng, M 00k = I(Zk). We obtain� ` ~���1(D�1(Xi)):JEiK : JM 001 K vi+(n�1)������! : : : JM 00n K vi�! JMiK = do(�)But JMiKXi;D;I = JM 001 K vi+(n�1)������! : : : JM 00n K vi�! JMiK, beause D(Zk; Xi) = �(��1(Zk); Ei) =IsRe(Ei) = vi. The desired result follows.Closing: E = loseE0 and M = fI ;O;Dg. We apply lemma 37 repeatedly to eah let re groupin the translation, starting with the innermost one. Sine the let re are generated following aserialisation of the graph D, all free variables in a let re are bound earlier, and dependeniesbetween the variables bound in the same let re annot have degree 0 (otherwise the graph Dwould not be safe, and M would be ill-formed). The expeted result follows.Freezing: E = E1 ! X . The result follows from the indution hypothesis applied to E1, andlemma 38 applied to eah omponent of the reord generated by the translation.Delete: E = E1 nX . The result follows immediately from the indution hypothesis applied to E1.Renaming: E = E1[X Y ℄. We apply the indution hypothesis to E1, then use lemmas35 and 36 to handle the rearrangement of the parameters of the reord omponents. 2We de�ne IsRe(E) as 1 if E is an abstration �xC, and 0 otherwise, and extend this de�nition toannotated expressions. 152

Theorem 4 (soundness of the translation) If � ` E : M , then J�K ` JEK : JMK = do(�) +IsRe(E).See appendix ?? for the full proof. Notie that this result holds for non-empty ontexts �; inonjuntion with the ompositional nature of the translation, this ensures that our ompilationsheme is appliable (and sound) not only to losed programs, but also to terms with free variablesas an arise during separate ompilation.

153

154

Chapter 7Compilation of let re
7.1 OverviewThe \in-plae updating trik" The \in-plae updating trik" outlined in [25℄ and re�ned inthe OCaml ompiler [55℄, implements let re de�nitions that satisfy the following two onditions.Consider the mutually reursive de�nition x1 = e1 : : : xn = en. First, the value of eah de�nitionshould be represented at run-time by a heap alloated blok of statially preditable size. Seond,for eah i, the omputation of ei should not need the value of any of the de�nitions ej , but onlytheir names xj . As an example of the seond ondition, a reursive de�nition like f = � x.(...f ...) is aepted, sine no omputation will try to use the value of f . Contrarily, a reursivede�nition like f = (f 0) is refused.Evaluation of a let re de�nition with in-plae updating onsists of three steps. First, for eahde�nition, alloate an uninitialized blok of the expeted size, and bind it to the reursively-de�ned identi�er. Those bloks are alled dummy bloks. Seond, ompute the right-hand sidesof the de�nitions. Reursively-de�ned identi�ers thus refer to the orresponding dummy bloks.Owing to the seond ondition, no attempt is made to aess the ontents of the dummy bloks.This step leads, for eah de�nition, to a blok of the expeted size. Third, the ontents of theobtained bloks are opied to the dummy bloks, updating them in plae.For example, onsider, in a given language L, a mutually reursive de�nition x1 = e1; x2 = e2,where it is statially preditable that the values of the expressions e1 and e2 will be representedat runtime by heap alloated bloks of sizes n1 and n2, respetively. Here is what the ompiledode does, as depited in �gure 7.1. First, it alloates two uninitialized heap bloks, at adresses l1and l2, of sizes n1 and n2, respetively. This is alled the pre-alloation step. As a seond step, itomputes e1, where x1 and x2 are bound to l1 and l2, respetively. The result is a heap alloatedblok of size n1, with possible referenes to the two uninitialized bloks. The same proess isarried on for e2, resulting in a heap alloated blok of size n2. The third and �nal step onsistsin opying the ontents of the two obtained bloks to the two uninitialized bloks. The result isthat the two initially dummy bloks now ontain the proper yli data struture.Simple generalization The sheme desribed above omputes all de�nitions one after another,and only then updates the dummy bloks in plae. From the example above, it seems quite learthat in-plae updating for a de�nition ould be done as soon as its value is available.As long as mutual referenes do not really use the referened values, as happens for reursive fun-tions for instane, both shemes behave identially. Nevertheless, in the ase where e2 really usesthe value v1 omputed for e1, for example if e2 = (x1 1), the original sheme an go wrong. Indeed,the dummy blok pre-alloated for x1 is still empty at the time where e2 is omputed. Instead,155

� Pre-alloation: � �� Computation: � �e1 e2OO
mm

� In-plae updating: e1 e2
YY

pp

Figure 7.1: The \in-plae updating trik"with immediate in-plae updating, the value v1 is already available when omputing e2. This trivialmodi�ation to the sheme thus orresponds to inreasing the expressive power of let re. It allowsde�nitions to really use previous de�nitions. Furthermore, it allows to transparently introduede�nitions with unknown sizes in let re, as shown by the following example.An example of exeution is presented in �gure 7.2. The exeuted de�nition is x1 = e1; x2 = e2; x3 =e3, where e1 and e3 are expeted to evaluate to bloks of sizes n1 and n3, respetively, but wherethe representation for the value of e2 is not statially preditable. The pre-alloation step onlyalloates dummy bloks for x1 and x3. The value v1 of e1 is then omputed. It an make referenesto x1 and x3, whih orrespond to pointers to the dummy bloks, but not to x2, whih would notmake any sense here. This value is opied to the orresponding dummy blok. Then, the valuev2 of e2 is omputed. It an refer to both dummy bloks, but it an also really use the value v1.Finally, the value v3 of e3 is omputed and opied to the orresponding dummy blok.This modi�ed sheme implements more mutually reursive de�nitions than the initial one. Thenext setion formalizes its semantis.7.2 The soure language �Æ7.2.1 SyntaxThe syntax of �Æ is de�ned in �gure 7.3. The meta-variables X and x range over names andvariables, respetively. Variables are used as binders, as usual. Names are used for aessingreord �elds, as an external interfae to other parts of the expression. Figure 7.4 reapitulates themeta-variables and notations we introdue in the remainder of this setion. The syntax inludesthe �-alulus onstruts; variables x, abstration �x:e, and appliation e1e2. The language alsoinludes reords fX1 = e1 : : :Xn = eng, reord seletion e:X and a let re onstrut. A mutually156

1. Pre-alloation: � �2. Computing e1: � �v1OO3. Updating with v1:v1 �
YY

4. Computing e2: v1 �v2YY
11

5. Computing e3: v1 v2 �
YY

// v3rr6. Updating with v3:v1 v2 v3
YY

//

ss

Figure 7.2: The re�ned \in-plae updating trik"157

x 2 Vars VariableX 2 Names NameExpression: e 2 expr ::= x j �x:e j e1e2j fX1 = e1 : : : Xn = eng j e:Xj let re x1 = e1 : : : xn = en in eFigure 7.3: Syntax of �Æ� More meta-variables:s ::= X1 = e1 : : : Xn = en Reordb ::= x1 = e1 : : : xn = en Binding� Notations:For a �nite map f , and a set of variables P ,dom(f) is its domain, od(f) is its odomainfjP is its restrition to P , and fnP is its restrition to Vars nP .� Expressions of preditable shape:e# 2 Preditable ::= fog j h�; oi j let re b in e#Figure 7.4: Meta-variables and notationsreursive de�nition has the shape let re x1 = e1 : : : xn = en in e, where arbitrary expressions aresyntatially allowed as the right-hand side of a de�nition.Syntati orretness Reords s = (X1 = e1 : : : Xn = en) and bindings b = (x1 = e1 : : : xn =en) are required to be �nite maps: a reord is a �nite map from names to expressions, and abinding is a �nite map from variables to expressions. Requiring them to be �nite maps means thatthey should not bind the same variable or name twie.Consider the let re binding b = (x1 = e1 : : : xn = en). We say that there is a forward referenefrom xi to xj if i � j, and xj ours free in ei.Forward referenes in bindings are allowed only when they point to a ertain lass of expressions, theexpressions of preditable shape. As a �rst approximation, we say that the shape of an expressionis preditable if it is a struture, a reord, or a binding followed by an expression of preditableshape. Formally e# 2 Preditable ::= fog j h�; oi j let re b in e#.Sequenes Reords and bindings are often onsidered as �nite maps in the sequel. We refer tothem olletively as sequenes, and use the usual notions on �nite maps, suh as the domain dom,the odomain od, the restrition �jP to a set P , or the o-restrition �nP outside of a set P .7.2.2 Strutural equivaleneWe onsider the expressions equivalent up to alpha-onversion of binding variables in struturesand let re expressions. For this, we de�ne the strutural ontration relation, in �gure 7.8, relyingon notions de�ned just below.A binder x, in a let re or in a funtion, may be renamed into a new variable y, provided y meetssome freshness onditions. Variable renaming is formally de�ned in �gure 7.7, using notions de�nedin �gures 7.5 and 7.6. Variable renaming is a total funtion, from pairs of an expression and a158

UnsafeNewNames(x; �x:e) = Captx(e) [FV(e)UnsafeNewNames(x; let re b in e) = � FV(let re b in e)[Captx(e)[[(y�f)2b(fyg [Captx(f))�n fxgFigure 7.5: Unsafe new names in �ÆCaptx(let re b in e) = 8>><>>: [y2dom(b)�fyg [Captx(b(y))� [Captx(e)if x 2 FV(let re b in e); otherwiseCaptx(x) = Captx() = ;Captx(�y:e) = 8<: fyg [Captx(e)if x 2 FV(�y:e); otherwiseOther ases easy. Figure 7.6: Capture in �Ævariable renaming x 7! y (x is replaed with y), to expressions. In ase renaming rosses a nodebinding one of the two variables x and y, it stops. Otherwise, it is propagated as usual. Therefore,variable renaming sometimes does not preserve meaning. For instane, renaming x with y in �y:xyields the same expression, sine renaming does not ross the node binding y. This is why weintrodue the notion of unsafe new names. It is de�ned in �gure 7.5. A new name an be unsafefor a binder if it is aptured by binders inside the sub-expression, as y is in the above example. Thenotion of apture is formalized by the Capt funtion in �gure 7.6. Basially, Captx(e) denotes theset of binding variables loated above ourrenes of x in e. For instane Captx(�y:x) is the setfyg. A new name an also be unsafe for a binder when it is free in the onsidered sub-expression.For example, renaming x to y in �x:(xy) does not preserve meaning. The strutural ontrationrelation, s, de�ned in �gure 7.8, allows to rename a binder, provided the orresponding variablerenaming is orret on the onsidered expression. The strutural redution relation 9 9 Ks is theontextual losure of the strutural ontration relation. These two relations are symmetri, andtherefore the transitive losure 9 9 Ks� of 9 9 Ks is a ongruene, alled the strutural equivalenerelation, and also written =s.In the following, all expressions are onsidered up to strutural equivalene =s.Let � = fx 7! yg. xf�g = yzf�g = z if z 6= xfX1 = e1 : : : Xn = engf�g = fX1 = e1f�g : : :Xn = enf�gg(�z:e)f�g = � �z:(ef�g) if z =2 fx; yg�z:e otherwise(let re b in e)f�g = � let re bf�g in ef�g if fx; yg \ dom(b) = ;let re b in e otherwise(x1 = e1 : : : xn = en)f�g = (x1 = e1f�g : : : xn = enf�g)Other ases easy. Figure 7.7: Variable renaming in �Æ159

y =2 UnsafeNewNames(x; let re b1; x = e; b2 in f) � = x 7! ylet re b1; x = e; b2 in f s let re b1f�g; y = ef�g; b2f�g in ff�gy =2 UnsafeNewNames(x; �x:e)�x:e s �y:(efx 7! yg)Figure 7.8: Strutural ontration relation of �ÆCon�guration: ::= b ` eValue: v 2 values ::= x j �x:e j fsvgAnswer: a 2 answers ::= bv ` vMore meta-variables:sv ::= X1 = v1 : : : Xn = vn Value reordbv ::= x1 = v1 : : : xn = vn Value bindingFigure 7.9: Con�gurations and results in �Æ7.2.3 SemantisThe semantis of �Æ is quite standard, exept for what onerns let re bindings.As shown in �gure 7.9, values inlude funtions �x:e and reords of values fsvg, where sv denotesan evaluated reord X1 = v1 : : : Xn = vn.The semantis of reord seletion and of funtion appliation are de�ned in �gure 7.10, by om-putational ontration rules, de�ning the loal omputational ontration relation . Reordprojetion selets the appropriate �eld in the reord ; and the appliation of a funtion �x:e to avalue v redues to the body of the funtion, where the argument has been bound to x.Five operations are neessary for handling bindings properly, all de�ned Ariola et al. [7℄.1. A �rst operation is let re lifting. It onsists in lifting a let re node up one level in an expres-sion. For example, an expression of the shape e1+(let re b in e2) beomes let re b in e1+e2.2. A seond operation is internal merging. During the evaluation of a binding, a de�nition mayreturn a let re as an answer, where a value is expeted. Internal merging merges this bindinginto the urrent one. An expression of the shape let re b1; x = (let re b2 in e); b3 in fbeomes let re b1; b2; x = e; b3 in f , provided no variable apture ours.3. A third operation is external merging. The shape of results in �Æ allows only one binding towrap values. Therefore, if evaluation results in two nested bindings, they must be merged intoa single one. An expression of the shape let re b1 in let re b2 in e beomes let re b1; b2 in e,provided no variable apture ours.4. A fourth operation, external substitution, allows to aess bound variables when de�ned bya surrounding binding. An expression of the shape let re b in C [x℄ beomes let re b in C [e℄,if x = e appears in b and x is not aptured by C , and no variable apture ours.5. A last operation, internal substitution, allows to aess identi�ers bound earlier in the samebinding. (Assuming left-to-right evaluation, \earlier" means \to the left of".) An expressionof the shape let re b1; y = C [x℄; b2 in e beomes let re b1; y = C [f ℄; b2 in e if x is de�ned asf in b1, and not aptured by C , and no variable apture ours.160

� Contration rulesfX1 = v1 : : : Xn = vng:Xi vi (Projet) x =2 FV(v)(�x:e)v let re x = v in e (Beta)dom(b) ? FV(L)L [let re b in e℄ let re b in L [e℄ (Lift)� Computational redution rulese e0E [e℄ 9 9 K E [e0℄ (Context) E [N ℄(x) = vE [N [x℄℄ 9 9 K E [N [v℄℄ (Subst)dom(b) ? (dom(bv) [FV(bv))(bv ` let re b in e) 9 9 K bv ; b ` e (EM)dom(b1) ? fxg [dom(bv; b2) [FV(bv; b2) [FV(f)(bv; x = (let re b1 in e); b2 ` f) 9 9 K (bv; b1; x = e; b2 ` f) (IM)� Evaluation ontextsLift ontext:L ::= 2e j v2 j 2:X j fSgMultiple lift ontext:F ::= 2 j L [F ℄Evaluation ontext:E ::= (bv ` F) j (B [F ℄ ` e)
Reord ontexts:S ::= sv; X = 2; sSequene ontexts:B ::= bv; x = 2; bStrit ontexts:N ::= 2v j 2:X� Aess in evaluation ontexts(bv ` F)(x) = bv(x) (EA) (bv; y = F ; b ` e)(x) = bv(x) (IA)Figure 7.10: Redution semantis for �ÆThe question is how to arrange these operations to make the evaluation deterministi and toensure that it reahes the result when it exists. Our hoie an be summed up as follows. There isa topmost binding. When this topmost binding is already evaluated, evaluation an proeed underthis binding. Otherwise, evaluation is allowed inside this binding. If evaluation meets anotherbinding inside the expression, this binding is lifted to be immediately under the topmost binding.Then, it is merged with the latter, internally or externally aording to the ontext. Externaland internal substitutions are allowed only from the evaluated part of the topmost binding. Inorder to simplify the presentation of the translation and the orretness proof, we distinguishthis topmost binding syntatially : the global omputational redution relation 9 9 K is a binaryrelation on on�gurations , whih are pairs of a binding, the topmost binding, and an expression,written b ` e (see �gure 7.9). Here, the topmost binding is lose to the usual notion of runtimeenvironment, with the additional feature that bound values an be mutually reursive.More formally, let re handling is done through one additional omputational ontration rule Liftperforming the lifting operation, and a omputational redution relation, de�ned in �gure 7.10.The ontration rule Lift lifts a let re binding up a lift ontext. As de�ned in �gure 7.10, a liftontext is any non-let re expression, where the speial ontext hole variable 2 appears immediatelyunder the �rst node, in position of the next sub-expression evaluated.The seond ontration rule IM orresponds to internal merging. If, during the evaluation ofthe topmost binding, one de�nition evaluates to a binding, then this binding is merged with the161

x 2 VarsX 2 NamesExpression:E 2 Expr ::= x j �x:E j EE �-alulusj let x1 = E1 : : : xn = En in E Non-reursive let bindingj fX1 = E1 : : :Xn = Eng j E:X Reordsj l j allo j update Loations, alloation, mutationFigure 7.11: Syntax of �allotopmost one. The evaluation an then ontinue.The omputational redution relation extends the omputational ontration relation to any eval-uation ontext, as de�ned in �gure 7.10. We all a multiple lift ontext a series of nested liftontexts, and an evaluation ontext is a multiple lift ontext, possibly inside a partially evaluatedbinding, or under a fully evaluated binding.The EM redution rule orresponds to external merging. It is only possible at toplevel, providedno variable apture ours.Finally, the external and internal substitution operations are modeled within a single redutionrule Subst. This rule transforms an expression of the shape E [N [x℄℄ into E [N [v℄℄, provided theontext E [N ℄ de�nes x as v and no variable apture ours. The meta-variable N ranges overstrit ontexts. A strit ontext is a ontext that requires a non-variable node to evaluate. Anexample of strit ontext is 2v, that is, the funtion part of a funtion appliation. An exampleof a non-strit ontext is (�x:e)2, that is, the argument part of a funtion appliation, where avariable would allow the evaluation to ontinue. Strit ontexts are formally de�ned in �gure 7.10.The Subst rule replaes a variable in a strit ontext with its value, aording to the ontext. Asindiated in �gure 7.10, evaluation ontexts de�ne the variable they bind, in two possible ways.First, a topmost, semantially orret, fully evaluated let re binding de�nes the variables it bindsfor the nodes under it. Seond, if (bv; x � F ; b) is the topmost, partially evaluated binding, thenbv de�nes the variables it binds, inside F , and later inside b. The two rules de�ning aess inevaluation ontexts in �gure 7.10 show how these de�nitions may be used. The two di�erent waysof aess orrespond to the external and internal substitution operations, respetively.The omputational redution relation on expressions is ompatible with strutural equivalene =s.Hene we an de�ne omputational redution over equivalene lasses of expressions, obtaining theredution relation �!.7.3 The target language �alloThe syntax of the target language �allo is presented in �gure 7.11. It distinguishes variables x fromnames X . It inludes the onstruts of the �-alulus (funtion abstration and appliation) and anon reursive let binding. Additionally, there are onstruts for reord operations (onstrution andseletion), and onstruts for modeling the heap: an alloation operator allo, an update operatorupdate, and loations l.The semantis of �allo is de�ned as a strutural redution relation on on�gurations. As de�nedin �gure 7.12, a on�guration is a pair of a heap and an expression. A heap is a �nite map fromloations l to evaluated heap bloks. An evaluated heap blok Hv 2 HeapValues is either a funtion�x:E, or an evaluated reord fSvg (where Sv ::= X1 = V1 : : :Xn = Vn), or an appliation of theshape allon, for n 2 N. Suh appliations model dummy heap bloks, ontaining unspei�ed data.A well-formed on�guration is suh that all the loations mentioned are bound in its heap.162

Con�guration:C ::= � ` E� 2 Heaps = Vars Fin��! HeapValuesAnswer: A 2 Answers ::= � ` VV 2 Values ::= x j lMore meta-variables:Hv 2 HeapValues ::= �x:E j allo n j fSvgSv ::= X1 = V1 : : :Xn = VnB ::= x1 = E1 : : : xn = EnFigure 7.12: Con�gurations and results in �alloEvaluated heap bloks are not values. Only variables and loations are values. In this alulus,funtion abstrations are not values, sine their evaluation alloates the funtion in the heap, andreturns its loation: the result of the evaluation of �x:E is a on�guration � ` l, where the loationl is bound to �x:JeK in the heap �.The related operators in the language are allo, whih reates a new empty blok of size given byits argument, and update, whih opies its seond argument in plae of its �rst one, provided theyhave the same size. For this, we assume given a funtion Size from �allo heap value bloks to N.Notation We write �hl 7! Hvi for the map equal to � anywhere but on l where it returns Hv.We write �1+�2 for the union of two heaps �1 and �2 whose domains are disjoint. In partiular,when the heap � is unde�ned on l, we write �+fl 7! Hvg to denote the union of � and fl 7! Hvg.7.3.1 Strutural equivaleneIn �allo , a notion of strutural equivalene identi�es expressions modulo variable and loationrenaming. Loations are bound only by heaps, at toplevel in on�gurations. We onsider on�gu-rations equal modulo renaming of bound loations. This relation is easy to de�ne sine the loationrenaming never ross any loation binder, so we do not formalize it here. However, we have tode�ne the strutural equivalene modulo variable renaming. A binder x, in a let or in a funtion,may be renamed into a new variable y, provided y meets some freshness onditions. Struturalequivalene is formally de�ned in �gure 7.13.Substitutions First, variable renaming is de�ned. It is a total funtion, from pairs of an ex-pression and a variable renaming x 7! y (x is replaed with y), to expressions. Nevertheless, wewill see that the omputational redution relation uses a more omplex notion of substitution thanjust variable renaming: it must also replae variables with loations in some ases. Therefore,substitutions are elements of Subst = Vars Fin��! Values. We interpret them as total funtions fromvariables to values, extending them with the identity funtion on variables, outside of their synta-ti domain. The domain dom(�) of a substitution � is the set of variables x suh that �(x) 6= x.We sometimes onsider substitutions as sets, taking the union of two of them when it makes sense,and sometimes we ompose them, in the reverse notation, sine they ome from the right. Theomposition of �1 and �2 is de�ned by xf�1Æ�2g = xf�1gf�2g: it ats as �1, then �2. Moreover, weall variable renamings, or simply renamings, the injetive substitutions whose odomains ontain163

� Substitutions Let � 2 Subst = Vars Fin��! Values.zf�g = �(z)(�x:E)f�g = �x:(Ef�nfxg[��1(fxg)g)(let B in F)f�g = let Bf�g in Ff�n dom(B)[��1(dom(B))g(x = E;B)f�g = (x = Ef�g; Bf�nfxg[��1(fxg)g)� ` Ef�g = � Æ� ` Ef�gOther ases easy.� Capture Captx(let y = E;B in F) = Captx(�y: let B in F) [Captx(E)Captx(x) = ;Captx(�y:E) = 8<: fyg [Captx(E)if x 2 FV(�y:E); otherwiseOther ases easy.� Unsafe new namesUnsafeNewNames(x; �x:E) = Captx(E) [FV(E)UnsafeNewNames(x; let x = E;B in F) = UnsafeNewNames(x; �x:(let B in F))� Strutural redution y =2 UnsafeNewNames(x; �x:E)�x:E s �y:(Efx 7! yg)y =2 UnsafeNewNames(x; let x = E;B in F)let x = E;B in F s let y = E; (Bfx 7! yg) in Ffx 7! ygFigure 7.13: Strutural equivalene in �allo

164

�(l) = �x:E� ` lV � ` Efx 7! V g (Beta) l =2 dom(�)� ` Hv �+ fl 7! Hvg ` l (Alloate)�(l) = fSvg� ` l:X � ` Sv(X) (Projet) Size(�(l1)) = Size(�(l2))� ` update l1 l2 �hl1 7! �(l2)i ` fg (Update)dom(B) ? �� ` �[let B in E℄ � ` let B in �[E℄ (Lift)Figure 7.14: Computational ontration rules for �alloonly variables, and we denote them by �. Symmetrially, we all variable alloations the injetivesubstitutions mapping variables to loations, and denote them by �.We extend substitutions to �allo expressions and on�gurations, as desribed in �gure 7.13 (wherewe take the usual notation for substitution Ef�g, meaning �(E)). In ase the substitution rossesa binder x, then it forgets any information about x. Thus, under this binder the substitutionbeomes �nfxg[��1(fxg). Otherwise, it is propagated as usual. Therefore, substitution sometimesdoes not preserve meaning. For instane, renaming x with y in �y:x yields the same expression,sine substitution does not ross the node binding y.Strutural equivalene This is why we introdue the notion of unsafe new names. It is de�nedin �gure ??. A new name an be unsafe for a binder if it is aptured by binders inside the sub-expression, as y is in the above example. The notion of apture is formalized by the Capt funtionin �gure 7.13. Basially, Captx(e) denotes the set of binding variables loated above ourrenesof x in e. For instane Captx(�y:x) is the set fyg. A new name an also be unsafe for a binderwhen it is free in the onsidered sub-expression. As an example, renaming x to y in �x:(xy) doesnot preserve meaning.The strutural ontration relation, s, de�ned in �gure 7.13, allows to rename a binder, pro-vided the orresponding variable renaming is orret on the onsidered expression. The struturalredution relation 9 9 Ks is the ontextual losure of the strutural ontration relation. These tworelations are symmetri, and therefore the transitive losure 9 9 Ks� of 9 9 Ks is a ongruene, alledthe strutural equivalene relation, and also written =s.7.3.2 SemantisThe semantis of �allo , like the one of �Æ, is given in terms of a omputational ontration relationthat handles rules for the basi onstrutors and a omputational redution relation that handlesglobal rules. As in �Æ, evaluation results are values surrounded by a heap binding:A 2 Answers ::= � ` V:Computational ontration relation The omputational ontration relation is de�ned bythe rules in �gure 7.14, using the notion of lift ontexts in �gure 7.15.The Beta rule is a bit unusual, in that it applies a heap alloated funtion to an argument V .The funtion must be a heap binding l 7! �x:E, and the result is Efx 7! V g.165

Lift ontext:� ::= 2E j V 2 j 2:X j f�gj let x = 2; B in e Reord ontext:� ::= Sv ; X = 2; SMultiple lift ontext:� ::= 2 j �[�℄Figure 7.15: Evaluation ontexts of �allo� ` E �0 ` E0� ` �[E℄ 9 9 K �0 ` �[E0℄ (Context)� ` let x = V;B in E 9 9 K � ` (let B in E)fx 7! V g (Let)� ` let � in E 9 9 K � ` E (EmptyLet) l =2 (FV(�nflg) [dom(�nflg) [FV(E))� ` E 9 9 K �nflg ` E (GC)� ` let B1 in let B2 in E 9 9 K � ` let B1; B2 in E (EM)Figure 7.16: Computational redution in �alloThe Projet rule works similarly: it projets a name X out of a heap alloated reord l 7! fSvg,where Sv is a �nite set of evaluated reord �eld de�nitions of the shape X1 = V1 : : : Xn = Vn. Theresult is Sv(X) (i.e. Vi is X = Xi).The Alloate rule is one of the key points of �allo . It states that a value blok Hv evaluatesinto a fresh heap loation ontaining Hv, and a pointer to it: � + fl 7! Hvg ` l (l fresh). If Hv isa dummy blok allon, the result is a dummy blok on the heap.The Update rule opies the ontents of a heap blok on to another one. If the loations l1 and l2are respetively bound to bloks Hv1 and Hv2 in the heap �, then � ` update l1 l2 will evaluate to�hl1 7! Hv2i ` fg.Finally, as in �Æ, the evaluation of bindings is on�ned to the toplevel of terms, whene the Liftrule, whih lifts a binding outside of a lift ontext. In �allo , lift ontexts are of the shape� ::= 2E j V 2 j 2:X j f�g j let x = 2; B in e;where � ranges over reord ontexts, of the shape � ::= Sv; X = 2; S.Computational redution relation The omputational redution relation is de�ned in �gure7.16.The Context rule shifts the ontration relation to a multiple lift ontext. Lift ontexts have beende�ned in the last paragraph, and multiple lift ontexts are simply series of nested lift ontexts.The Let rule desribes the toplevel evaluation of bindings. One the �rst de�nition is evaluated,the binding variable is replaed with the obtained value in the rest of the expression. Eventually,when the binding is empty, it an be removed with rule EmptyLet.By rule GC, when a heap binding is not used by any other binding than itself, and not used eitherby the expression, it may be removed.Finally, the EM rule states that it is equivalent to evaluate two bindings in suession, or toevaluate their union. 166

7.3.3 The �allo alulus and its onueneThe set of terms of the �allo alulus is the set of equivalene lasses for =s. The omputationalredution relation on expressions is ompatible with =s, so we may extend it to terms, to obtainthe redution relation �!.De�nition 19 The �allo alulus is the set of terms, equipped with the relation �!.Unlike in �Æ, the redution of �allo is not deterministi beause of rules GC and EM. Rule GCan apply at any time, and rule EM gives a hoie between two outomes when two suessivebindings are enountered. It is therefore important to make sure that �allo is onuent. Let C�!be the relation de�ned by the rules Context, Let, and EmptyLet. It is syntax direted, andtherefore deterministi.We �rst prove the following proposition, whih is also desribed by the following diagram, wherethe plain arrows are universally quanti�ed, and the dotted ones are existentially quanti�ed.C EM
 A

AA
AA

AA
AA

AA
AA

AA
AC

~~}}
}}

}}
}}

}}
}}

}}
}}C1 EM �

C2C
~~EM�~~C 0Proposition 9 For all on�gurations C, C1, and C2 suh that C C�! C1 and C EM�! C2, thereexists a on�guration C 0 suh that C1 EM�!� C 0 and C2 C�! EM�!� C 0.ProofIf C EmptyLet�! C1, the two obtained on�gurations are idential. If C C�! C1 by rule Let, thenthe two redutions simply ommute. If C Context�! C1, then we have to examine the underlyingontration step C C1. In all ases but one, the two redution steps simply ommute. The onlyproblemati ase is when the applied rule is Lift. We have C = � ` �[E℄, with E = �[let B in E1℄,and C1 = � ` �[let B in �[E1℄℄.� If � ::= 2F j V 2 j f�g j 2:X , as rule EM applies on C, we must have � of the shapelet x = �1; B1 in let B2 in F 0. ThereforeC1 = � ` let x = �1[let B in �[E1℄℄; B1 in let B2 in F 0;and C2 = � ` let x = �1[�[let B in E1℄℄; B1; B2 in F 0:Let C 0 = � ` let x = �1[let B in �[E1℄℄; B1; B2 in F 0:We obtain easily that C1 and C2 both redue to C 0, in one step of EM�! and Lift�!, respetively,whih is as expeted. 167

� If � = let x = 2; B1 in F , then � might still be of the shape letx = �1; B01 in letB2 inF 0,in whih ase the previous reasoning applies. If it is not of this shape, then the let bindingontained in � is part of the EM redex, so � = 2, and F is of the shape let B2 in F 00. So,we have a diagram of the shape:� ` letx = (let B in E1); B1in letB2inF 00 Lift //

EM
��

� ` letB inletx = E1; B1 inlet B2 in F 00EM
��� ` letB; x = E1; B1 inlet B2 in F 00EM
��� ` let x = (let B in E1);B1; B2inF 00 Lift //

� ` letB inletx = E1; B1; B2inF 00 EM // � ` letB; x = E1; B1; B2inF 00
2This result extends by a simple indution to the following orollary, pitorially desribed by thefollowing diagram. C EM � AAAAAAAAAAAAAAAAC

~~}}
}}

}}
}}

}}
}}

}}
}}C1 EM �

C2C
~~EM�~~C 0

Corollary 7 For all on�gurations C, C1, and C2 suh that C C�! C1 and C EM�!� C2, there existsa on�guration C 0 suh that C1 EM�!� C 0 and C2 C�! EM�!� C 0.
Then, the relation CEM�! is de�ned as C�!, extended with rule EM. Formally, CEM�!= C�! [EM�!.Thanks to the previous orollary, we prove that the CEM�! relation is onuent. This is done byonsidering the relation CEM�! EM�!�, whih is strongly onuent. In other terms for any two redutionsteps C CEM�! EM�!� C1 and C CEM�! EM�!� C2, there exist a on�guration C 0 and two redution steps168

C1 CEM�! EM�!� C 0 and C2 CEM�! EM�!� C 0. A pitorial view of this is given by the following diagram:C CEM
 A

AA
AA

AA
ACEM

~~}}
}}

}}
}}EM� ~~~~~~~~~~ EM� @@@@@@@@C1CEM

C2CEM
~~EM � EM�~~C 0Proposition 10 The relation CEM�! EM�!� is strongly onuent.Proof To prove this last statement, we proeed by ase on the CEM rules applied, from C, toreah C1 and C2, respetively. If the two rules are EM, then as this relation is deterministi, weonlude easily, and similarly if the two redutions are C�! steps. The only relevant ase is whenone redution is a C�! step, say C C�! C1, and the other is in EM�!.In this ase, we have C C�! C 01 EM�!� C1. By the previous orollary, we obtain a C 02 suh thatC2 CEM�! EM�!� C 02. Then, by onuene of the deterministi relation EM�!, we obtain C 0 suh thatC 01 EM�!� C 0 and C 02 EM�!� C 0. This on�guration is also suh that C1 and C2 redue to it by relationCEM�! EM�!�, in at most one step.This is depited by the following diagram. CC

~~~~
~~

~~
~~

~~
~~

~~
~~ EM �  @@@@@@@@@@@@@@@@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@

C 01EM�~~~~~~~~~~~~~~~~~~ EM ���C1
EM �  

C2C
~~EM���C 02EM�~~C 0169



2Corollary 8 (Conuene of �allo) The �allo allulus is onuent.7.4 Translation7.4.1 Generalized ontexts in �alloThe purpose of this paper is to prove that �Æ an be faithfully translated into �allo . A desiredproperty for this translation, in order to make the proof of orretness easier, is that a result istranslated as a result, not needing any additional omputation. However, a simple abstration suhas �x:x is a value of �Æ, and ould be translated as suh in �allo , but is not a result of �allo . Theorret translation is rather the on�guration fl 7! �x:xg ` l. The drawbak of suh a method isthat the translation is no longer ompositional, at least in the usual sense. Indeed, the translationof an appliation suh as (�x:x)(�x:x) is not the appliation of the translation of the funtion tothe translation of the argument.De�nitionIn order to overome this diÆulty, we introdue a non-standard notion of ontexts in �allo , whihtake as an argument on�gurations, rather than just expressions. Con�gurations are pairs of aheap and a multiple lift ontext, and the appliation of a ontext � ` � to a on�guration �0 ` Eis � +�0 ` �[E℄.We are not done yet. We have indeed seen that results in �Æ an be of the shape bv ` v. We imaginethat bv will be translated as the heap, roughly. But heaps of �allo only ontain heap bloks, i.e.dummy bloks, funtions or evaluated reords. Therefore, in the ase where bv ontains de�nitionsof the shape x = y for example (or x = 1 if we had onstants), we have to �nd another solution.Furthermore, this solution has to take into aount the asymmetry of let re in �Æ. Indeed, theheap x = y; z = x in fat maps both x and z to the value y. Our solution is to retain the partof �Æ heaps that annot be inluded in �allo heaps as substitutions. For instane, the �Æ bindingx = y; z = x is translated as the substitution fz 7! xg Æ fx 7! yg (reall that omposition ofsubstitution is \left to right").But then, ontexts again beome a bit more ompliated, beause they must inlude a substitutionpart. Indeed, the �Æ ontext x = y; z = x ` 2 does not orrespond to any standard evaluationontext in �allo . Instead, we have to de�ne a stronger kind of evaluation ontexts, inluding aheap �, a standard ontext �, and a substitution �. We write them � ` �[�℄, and denote themby 	.Applying a ontext to a on�guration is valid if the two heaps de�ne disjoint sets of loations, andif the substitution arried by the ontext is orret for the on�guration, in the following sense.De�nition 20 (Substitution orretness) A substitution � is orret for an expression E i�8x 2 dom(�); �(x) =2 Captx(E):This de�nition extends straightforwardly to heaps and on�gurations. Fortunately, when the pro-posed substitution is not orret for the onsidered on�guration, strutural equivalene allowsto rename all the problemati binders in it, and �nd an equivalent on�guration for whih thesubstitution is orret.Similarly, the omposition 	1 Æ	2 of two ontexts 	i = �i ` �i[�i℄ is �1 +�2 ` �1[�2℄[�2 Æ �1℄,provided the substitution �2Æ�1 is orret for the heap �1+�2 and the ontext �1[�2℄. But again,strutural equivalene always allows to �nd orret equivalent ontexts (sine binders in ontextsare not in position to apture the plaeholder).170



PropertiesIn this setion, we prove some properties of stability of the redution relation inside ontexts. Notevery redution step is valid inside ontexts, sine for instane the Let and EmptyLet are onlyvalid at toplevel. However, we will see that inside ontexts of the shape � ` 2[�℄, redution ispreserved.We �rst prove that ontration is preserved under orret substitution.Proposition 11 If C1  C2 and � is orret for C1 and C2, then C1f�g  C2f�g.Proof By ase on the applied ontration rule. Let Ci = �i ` Ei, for i = 1; 2.Beta. Then E1 = lV , and �1 = �2, and �1(l) = �x:E. We have E1f�g = l(V f�g), and as � isorret, (�x:E)f�g = �x:(Ef�g). So �1f�g ` l(V f�g)  �2f�g ` Ef�gfx 7! (V f�g)g. As� is orret for C1, x is not in the domain or odomain of �, so � Æ fx 7! (V f�g)g = fx 7!V g Æ �, and therefore C1f�g  �2f�g ` E2f�g.Alloate, Update, Projet. Similar.Lift We again have �1 = �2, with E1 = �[let B in E℄ and E2 = let B in �[E℄. By the sideondition on the Lift rule, we also know that dom(B) ? FV(�). By hypothesis, we �nallyhave dom(B) disjoint from the domain and odomain of �.So, C1f�g = �1f�g ` �f�g[let Bf�g in Ef�g℄, whih redues to�1f�g ` letBf�g in�f�g[Ef�g℄, as expeted.2This property extends to omputational redution.Proposition 12 If C1 �! C2 and � is orret for C1 and C2, then C1f�g �! C2f�g.Proof By ase on the applied rule. Let again Ci = �i ` Ei, for i = 1; 2.Context. By appliation of the previous proposition.EmptyLet. Trivial.Let. We have C1 = �1 ` let x = V;B in E, and C2 = �1 ` let Bfx 7! V g in Efx 7! V g. So,C1f�g = �1f�g ` let x = (V f�g); Bf�g in (Ef�g);whih redues to�1f�g ` let Bf�gfx 7! (V f�g)g in (Ef�gfx 7! (V f�g)g);but as x is not in the domain or odomain of �, the substitution � Æ fx 7! (V f�g)g is equalto fx 7! V g Æ �, so C1f�g redues to�1f�g ` let Bffx 7! V g Æ �g in (Effx 7! V g Æ �g);whih is exatly C2f�g.2Now, we prove that redution by the Context rule is preserved inside any evaluation ontext.171



Evaluation ontext:	 ::= � ` �[�℄Restrited evaluation ontext:� ::= � ` 2[�℄ Figure 7.17: Evaluation ontexts in �alloProposition 13 If C1 Context�! C2, then for any ontext 	, 	[C1℄ Context�! 	[C2℄.Proof Let C1 = �1 ` E1, C2 = �2 ` E2, C 01 = 	[C1℄, C 02 = 	[C2℄, and 	 = � ` �[�℄. Let usassume w.l.o.g. that � is orret for the onsidered objets. Then, C 01 = (�1 +�)f�g ` �[E1℄f�gand C 02 = (�2 +�)f�g ` �[E2℄f�g.Let us prove �rst that C 001 Context�! C 002 , with C 001 = (�1 +�) ` �[E1℄ and C 002 = (�2 + �) ` �[E2℄.As we know, C1 redues to C2 by rule Context, so in fat, E1 = �[E01℄, E2 = �[E02℄, and theproof of C1 �! C2 is of the shape: �1 ` E01  �2 ` E02C1 �! C2But it is trivial that ontration rules are not a�eted by additional bindings in the heap, so weobtain easily that � +�1 ` E01  �+�2 ` E02Then, by rule Context, we have C 001 �! C 002 :Finally, by proposition 12, we dedue thatC 001 f�g �! C 002 f�g;whih is the expeted result.2Now, we would like a similar property to be true with any redution, but we have seen that itdoes not hold beause of the toplevel nature of the LetRe rule. However, we have a slightlyproperty, with ontexts of the shape � ` 2[�℄, whih we denote by the meta-variable �, and allweak evaluation ontexts. (The two notions of ontexts introdued in this setion are realled in�gure 7.17.) A toplevel redution remains toplevel inside a weak evaluation ontext.Proposition 14 If C1 �! C2, then �[C1℄�! �[C2℄.7.4.2 De�nition of the two translationsThis setion desribes the translation. It onsists in fat in two translations. The �rst one, alledthe standard translation, is very intuitive, but not easily proved orret. The seond one is muhless intuitive, but is easier to prove orret. The key tehnial point is that the standard translation172



Translation of expressions:JxK = xJ�x:eK = �x:JeKJe1e2K = Je1KJe2KJf : : : Xi = ei : : : gK = f : : : Xi = JeiK : : : gJe:XK = JeK:XJlet re b in eK = let Dummy(b);Update(b) in JeKDummy pre-alloation of bindings:Dummy(�) = �Dummy(x = e; b) = (x = allon;Dummy(b)) if Size(e) = nDummy(x = e; b) = Dummy(b) if Size(e) = [?℄Computation of bindings:Update(�) = �Update(x = e; b) = (y = (updatexJeK);Update(b)) if Size(e) = n, with y freshUpdate(x = e; b) = (x = JeK;Update(b)) if Size(e) = [?℄Figure 7.18: Translation (standard translation)redues to the seond translation, without using the Beta or Projet rules, and therefore withoutperforming any real omputation.Both translations rely on a funtion Size from to �Æ expressions to N [ f[?℄g. This funtion issupposed to guess the size of the result of the translation of its argument. We assume that the sizeof any expression of preditable shape is known, and moreover that the size of variables is unde�ned.In other words, for any e# 2 Preditable, Size(e#) 6= [?℄, and for any variable x, Size(x) = [?℄.The standard translation The standard translation is de�ned in �gure 7.18. It is almost diretfor variables, funtions, appliations, and reord operations, but the translation of bindings is moreintriate. The translation of a binding b is the onatenation of two bindings in �allo . The �rst ofthem is alled the pre-alloation binding, and gives instrutions to alloate dummy bloks on theheap for de�nitions of known size. The seond binding is alled the update binding. It omputesde�nitions, and alternatively updates the previously pre-alloated dummy bloks for de�nitionsof known sizes, or simply binds the result for de�nitions of unknown sizes. As announed, thistranslation does not map results to results. A simple example is �x:x, whih is translated as �x:x.To reah a result, this translation still has to redue to the on�guration fl 7! (�x:x)g ` l.The seond translation, named the TOP translation, performs all this kind of redutions at themeta-level, in order to assoiate results to results. As a onsequene, it assoiates �allo on�gura-tions to �Æ expressions, and �allo on�gurations to �Æ on�gurations. It is de�ned in �gures 7.19and 7.20.The TOP translation The idea is that the TOP translation is used until the urrent point ofevaluation in the expression, and beyond that point, the standard translation is used.Variables are still translated as variables. A funtion �x:e is translated as with the standardtranslation, i.e. �x:JeK, but the result is alloated on the heap, at a fresh loation l: fl 7! �x:JeKg `l. 173



Translation of expressions as on�gurations:JxKTOP = ; ` xJ�x:eKTOP = fl 7! �x:JeKg ` lJfsvgKTOP = �+ fl 7! fSvgg ` l for JsvKTOP = � ` SvJfsv ; X = e; sgKTOP = �1 +�2 ` fSv; X = E; JsKg for 8<: e =2 valuesJsvKTOP = �1 ` SvJeKTOP = �2 ` EJveKTOP = �1 +�2 ` V E for � JvKTOP = �1 ` VJeKTOP = �2 ` EJe1e2KTOP = � ` EJe2K for � e1 =2 valuesJe1KTOP = � ` EJe:XKTOP = � ` E:X for JeKTOP = � ` EJlet re b in eKTOP = � JbKTOP[; ` JeK℄ if b is not evaluatedJbKTOP[JeKTOP℄ otherwiseTranslation of on�gurations:Jb ` eKTOP = Jlet re b in eKTOPTranslation of bindings and evaluated reords:Jbv ; bKTOP = TDum(b) ÆTOP(bv) ÆTUp(b) where b 6= (x = v; b0)JX1 = v1 : : :Xn = vnKTOP = ℄1�i�n�i ` (X1 = V1 : : :Xn = Vn)with 8i; JviKTOP = �i ` ViFigure 7.19: The TOP translation (�rst part)

174



Translation of evaluated bindings: Ev. binding ! (heap � substitution � variable alloation)TOP(�) = ; ` (id ; id )TOP(x = v; bv) = � ` (� Æ fx 7! V g; �) if 8<: Size(v) = [?℄JvKTOP = ; ` VTOP(bv) = � ` (�; �)TOP(x = v; bv) = � ` (�; � [ fx 7! lg) if 8<: Size(v) = nJvKTOP = � ` lTOP(bv) = � ` (�; �)Atual dummy pre-alloation: Binding ! (heap � variable alloation)TDum(�) = ; ` idTDum(x = e; b) = TDum(b) if Size(v) = [?℄TDum(x = e; b) = �+ fl 7! allong ` � [ fx 7! lg if � Size(v) = nTDum(b) = � ` �Atual omputation of bindings: Binding ! (heap � binding of �allo)TUp(�) = ; ` �TUp(x = e; b) = �1 +�2 ` x = E;B if 8<: Size(v) = [?℄JeKTOP = �1 ` ETUp(b) = �2 ` BTUp(x = e; b) = �1 +�2 ` y = (updatexE); B if 8>><>>: Size(v) = nJeKTOP = �1 ` ETUp(b) = �2 ` By freshFigure 7.20: The TOP translation (ontinued): bindings

175



An evaluated reord takes the translations of its �elds and puts them in a reord alloated on theheap at a fresh loation l: � + fl 7! fSvgg ` l. Here, � ` Sv is the translation of the reord sv,de�ned in �gure 7.19. If sv = (X1 = v1 : : : Xn = vn), and for eah i, JviKTOP = �i ` Vi, then� ` Sv = ℄1�i�n�i ` (X1 = V1 : : : Xn = Vn).When the reord is not fully evaluated, it is not yet alloated on the heap. It is divided into itsevaluated part sv, and the rest X = e; s. sv is translated as for evaluated reords, into �1 ` Sv.The �eld e is translated with the TOP translation, into �2 ` E, and s is translated with thestandard translation. We denote by JsK the reord s, translated with the standard translation.Funtion appliation works like reords: if the funtion part is not a value, then it is translatedwith the TOP translation, while the argument is translated with the standard translation. If thefuntion is a value, then both parts are translated with the TOP translation.The translation of a reord seletion e:X onsists in translating e with the TOP translation, andthen seleting the �eld X .TOP translation of bindings The translation of bindings is more ompliated. As for reords,the binding is divided into its evaluated part bv and the rest b, whih an be empty, but does notbegin with a value.The rest of the binding b, is translated as follows. The pre-alloation pass, in the standard trans-lation, onsists in giving instrutions for alloating dummy bloks. Here, these bloks are diretlyalloated by the funtion TDum, whih returns the heap of dummy bloks, and the substitutionreplaing variables with the orresponding loations. The update pass, in the standard transla-tion, onsists in either updating a dummy blok with the translation of the de�nition, or simplybinding it. Here, it is almost the same, exept that the �rst de�nition is translated with the TOPtranslation, while the remaining ones are translated with the standard translation. The TUp is inharge of these operations.Roughly, the binding bv is translated as a heap and a substitution, by the TOP funtion. De�nitionsof unknown size x = v yield a translation of the shape ; ` V , and are inluded in the translationas a substitution x 7! V . De�nitions of known size x = v are translated as a heap and a variablealloation: v has a translation of the shape � ` l, and it is inluded in the translation of bv as �,and the alloation x 7! l.In pratie, it is useful to distinguish substitutions oming from de�nitions of unknown size, whihan be of any shape, from substitutions oming from de�nitions of known size, whih are alloations,and therefore have the shape x 7! l. Indeed, when putting the results together, it is importantto take the order into aount, for de�nitions of unknown size. For instane, a binding suh asy = z; x = y generates two substitutions y 7! z and x 7! y, but the �rst one must be performed last.This is why, aording to the de�nition of TOP, the result would be fx 7! ygÆfy 7! zg. This worksbeause syntatially, de�nitions of unknown size an only be mentioned by subsequent de�nitionsin the binding. However, de�nitions of known size an be mentioned by previous de�nitions. Thekey is that the substitutions they generate are alloations, so they are not modi�ed by othersubstitutions, and an be performed right in the end. Formally, the translation of bv is a heap �,a substitution �, orresponding to the de�nitions of unknown size, and an alloation �, giving theloations alloated in � for the de�nitions of known size. Semantially, it orresponds to a heap� and the substitution � Æ �, and will be used as suh.The three funtions for translating bindings, TDum, TUp, and TOP, an be viewed as ontexts.The TDum returns a heap � and an alloation �, and it forms a ontext � ` 2[�℄. The TUpfuntion returns a heap � and a binding B, whih form a ontext � ` let B in 2[id ℄. TheTOP funtion returns a heap �, a substitution �, and an alloation �, and it forms a ontext� ` 2[� Æ �℄. Notie that the ontext orresponding to TUp is not an evaluation ontext. Inase the whole binding bv; b is evaluated (i.e. b is empty), then the ontexts for pre-alloation176



and update, TDum(b) and TUp(b) are empty, and the translation of let re bv; b in e is the TOPtranslation of e, JeKTOP, put in the ontext TOP(bv). Otherwise, the translation of let re bv; b in eis the standard translation of e, put in the ontext TDum(b) ÆTOP(bv) ÆTUp(b).7.4.3 Relating the two translationsAn interesting fat is that the standard translation of any expression redues to its TOP translation,in any ontext. The proof of this property is in three steps. First, we prove it for values. Then, weprove that the standard translation of a binding redues to its TOP translation. Finally, we provethe expeted result.In fat, for values, we prove a more powerful result, namely that the standard translation reduesto the TOP translation, but only by rule Context, with a premise using Alloate, whih wewrite Context (Alloate).We make some additional hypotheses related to the orretness of the Size funtion.Hypothesis 3 For all expressions e; f; e0, for all value v, for all bindings b; b0, for all substitution�, for all ontext C :� If Size(e) = n and b ` e�! b0 ` e0, then Size(e0) = n ;� If Size(v) = n, then there exist � and l suh that JvKTOP = � ` l and Size(�(l)) = n ;� If Size(e) = Size(f) = n, then Size(C [e℄) = Size(C [f ℄).� Size(ef�g) = Size(e) ;� Size(let re b in e) = Size(e).Proposition 15 (Translation of values redues to TOP) For all ontext 	 and for all valuev, 	[; ` JvK℄ �!� 	[JvKTOP℄, only by rule Context (Alloate).Proof By indution on v.� v = x, trivial.� v = �x:e. Then JvK = �x:JeK, so in any ontext ; ` JvK redues in one Context (Alloate)step to fl 7! �x:JeKg ` l, whih is the TOP translation of v.� v = fX1 = v1 : : :Xn = vng. By indution hypothesis, for any ontext 	i, for eah i, we have	i[; ` JviK℄�!	i[JviKTOP℄:Let for eah i, JviKTOP = �i ` Vi. By a trivial indution on n, we prove that for any ontext	, 	[; ` JfX1 = v1 : : : Xn = vngK℄�!� 	[ ℄1�i�n�i ` fX1 = V1 : : :Xn = Vng℄;only by rule Context (Alloate). By proposition 13, this on�guration in turn reduesby rule Context (Alloate) to	[ ℄1�i�n�i + fl 7! fX1 = V1 : : : Xn = Vngg ` l℄;whih is exatly JvKTOP.2 177



Corollary 9 For all weak evaluation ontext �, expression E, and binding b of the shape b = (x =v; b0), � ÆUpdate(b)[; ` E℄�!� � ÆTUp(b)[; ` E℄Proof We know that � ÆUpdate(b)[; ` E℄ = �[let y = �[JvK℄;Update(b0) in E℄,where (y;�) = � (x;2) if Size(v) = [?℄(z; updatex 2) otherwise (z fresh):This expression an be seen as 	[; ` v℄ for some 	. By proposition 15, it redues to 	[JvKTOP℄,so we obtain � Æ let y = �;Update(b0) in E[JvKTOP℄, whih is exatly � ÆTUp(b)[; ` E℄. 2Now, let us have a look at the translation of bindings. The TOP translation splits the bindingsin two, aording to the �rst non-value de�nition. But of ourse, one ould split at another point,provided the �rst part ontains only values. Indeed, the �rst part is given as an argument to theTOP funtion, whih is de�ned only on evaluated bindings, whereas the seond part is given as anargument to the TDum and TUp funtions, whih work as well on value and non-value de�nitions.We all a partial translation of a binding b = bv; bv 0; b0 its TOP translation, omputed as if bv 0 wasnot evaluated, i.e. TDum(bv 0; b0) Æ TOP(bv) Æ TUp(bv 0; b0). We prove that any partial translationredues to the TOP translation. We proeed in three main steps: �rst, we prove that the pre-alloation pass is performed at the objet level by the ode generated by the Dummy funtion,and at the meta level by the TDum funtion, in the same way ; then we prove a similar propertyfor the funtions Update and TUp ; and we eventually onnet the two to prove the whole desiredproperty.Proposition 16 (Dummy) For all binding B, for all weak evaluation ontext �,�[; ` let Dummy(b); B in E℄�!� (� ÆTDum(b))[; ` let B in E℄:Proof By indution on b. If b is empty, then there is nothing to prove. Otherwise, we are in oneof the following ases.� b = (x = e; b0), with Size(e) = [?℄. Then Dummy(b) = Dummy(b0) and TDum(b) =TDum(b0), so by indution hypothesis, we obtain the expeted result.� b = (x = e; b0), with Size(e) = n. Then Dummy(b) = (x = allon;Dummy(b0)). LetTDum(b0) = � ` �, we have TDum(b) = � + fl 7! allong ` � [ fx 7! lg, for a freshl. Let � be a weak evaluation ontext, and E0 = �[let Dummy(b); B in E℄. We haveE0 = �[; ` let x = allon;Dummy(b0); B in E℄. By rule Context (Alloate), wehave E0 �! �[fl 7! allong ` let x = l;Dummy(b0); B in E℄. By proposition 14, thislast expression redues to �[fl 7! allong ` (let Dummy(b0); B in E)fx 7! lg℄. Let �0 =TDum(x = e) = fl 7! allong ` 2[fx 7! lg℄ and �1 = � Æ �0; we an view the expression as�1[; ` let Dummy(b0); B in E℄, whih by indution hypothesis redues to �1[TDum(b0)[; `let B in E℄℄. In other words, we obtain �[TDum(x = e) ÆTDum(b0)[; ` let B in E℄℄, whihis the expeted result, sine obviously TDum(x = e) ÆTDum(b0) = TDum(b).2Proposition 17 (Update) Let b = (x = v; b0). For all weak evaluation ontext �, for all expres-sion E, we have� ÆTDum(b) ÆTUp(b)[; ` E℄�!� � ÆTDum(b0) ÆTOP(x = v) ÆUpdate(b0)[; ` E℄:Proof 178



� If Size(v) = n, then JvKTOP = �v ` l, and we haveTUp(b) = �v ` y = updatex l;Update(b0);with a fresh y. Alternatively, we an hoose another fresh loation l0 for the result, and haveJvKTOP = �0v ` l0, with �0v = �vnl + fl0 7! �v(l)g.Let E0 = � ÆTDum(b) ÆTUp(b)[; ` E℄.We have E0 = � ÆTDum(b)[�0v ` let y = updatex l0;Update(b0) in E℄, and also Size(v) = nand TDum(b) = TDum(b0) Æ (fl 7! allong ` fx 7! lg). SoE0 = � ÆTDum(b0)[(�0v + fl 7! allong ` let y = updatex l0;Update(b0) in E)fx 7! lg℄:But by hypothesis 3, Size(�0v(l0)) = n, so rule Update applies, and E0 redues to� ÆTDum(b0)[(�0v + fl 7! �0v(l0)g ` let y = fg;Update(b0) in E)fx 7! lg℄;and then, as y is fresh, by rule Let to� ÆTDum(b0)[(�0v + fl 7! �0v(l0)g ` let Update(b0) in E)fx 7! lg℄:But the loation l0 is not used anymore, so by rule GC, the obtained expression redues to� ÆTDum(b0)[(�0vnl0 + fl 7! �0v(l0)g ` let Update(b0) in E)fx 7! lg℄:And �nally, we notie that �0vnl0 + fl 7! �0v(l0)g = �v, so E0 redues to� ÆTDum(b0)[(�v ` let Update(b0) in E)fx 7! lg℄= � ÆTDum(b0) ÆTOP(x = v)[; ` let Update(b0) in E℄= � ÆTDum(b0) ÆTOP(x = v) ÆUpdate(b0)[; ` E℄:� If Size(v) = [?℄, then there exists a y suh that JvKTOP = ; ` y, soTUp(b) = ; ` x = y;Update(b0):Let E0 = � ÆTDum(b) ÆTUp(b)[; ` E℄.We have E0 = � ÆTDum(b)[; ` let x = y;Update(b0) in E℄,and by rule Let, by proposition 14, E0�!� ÆTDum(b)[; ` (let Update(b0) in E)fx 7! yg℄.But TOP(x = v) = TOP(x = y) = ; ` (x 7! y; id), so E0�!� ÆTDum(b) ÆTOP(x = v)[; `let Update(b0) in E℄, whih is the expeted result.2Proposition 18 (Pre-alloated loations are de�nitive) If TDum(bv) = �1 ` �1, thenthere exist �2; �2; �2 suh that TOP(bv) = �2 ` (�2; �2) and �1 = �2.In the following proposition, we onsider a substitution � as a ontext ; ` 2[�℄.Proposition 19 (Deomposition of the translation of evaluated bindings) Let bv = (x =v; bv 0) and TDum(bv 0) = �bv0 ` �bv 0 . We haveTOP(bv) = �bv 0 ÆTOP(x = v) ÆTOP(bv 0):179



Proof Let TOP(x = v) = �v ` (�v ; �v), and TOP(bv 0) = � ` (�; �). We have TOP(bv) =�v + �bv0 ` (� Æ �v ; � [ �v). By proposition 18, we an hoose �; �, and � suh that � = �bv 0 .Then, �bv 0 ÆTOP(x = v) ÆTOP(bv 0)= �+�v ` � Æ � Æ �v Æ �v Æ �bv 0= �+�v ` � Æ �bv 0 Æ �v Æ �v Æ �bv 0But �v and �bv 0 have disjoint domains and odomains, so they ommute and we obtain�bv 0 ÆTOP(x = v) ÆTOP(bv 0)= �+�v ` � Æ �bv 0 Æ �v Æ �bv 0 Æ �vFurthermore, �bv 0 and �v also have disjoint domains and odomains, so they ommute. Finally,�bv 0 is idempotent, so �bv 0 ÆTOP(x = v) ÆTOP(bv 0)= �+�v ` � Æ �v Æ �bv 0 Æ �v= �+�v ` (� Æ �v) Æ (�bv 0 [ �v)= TOP(bv)2Proposition 20 (Commuting ontexts) Let �1 = �1 ` 2[�1℄ and �2 = �2 ` 2[�2℄. Ifdom(�2) ? �1 and �21 = �1, then �1 Æ �2 = �1 Æ �2 Æ �1.Proof This property is simple, provided �2 Æ �1 = �1 Æ �2 Æ �1. Reall that dom(�2) ? �1. Weprove that the two total funtions � = �2 Æ �1 and �0 = �1 Æ �2 Æ �1 from variables to values arepointwise equal.� On x 2 dom(�2), by hypothesis x =2 dom(�1), so we have �0(x) = xf�1gf�2gf�1g =xf�2gf�1g = �(x).� On x =2 dom(�2), distinguish the two ases.{ If x 2 dom(�1), then �(x) = xf�2gf�1g = xf�1g. But by hypothesis �1(x) 2 od(�1) ?dom(�2), so �0(x) = xf�1gf�2gf�1g = �1(x)f�2gf�1g = �1(x)f�1g = xf�21g = xf�1g =�(x):{ If x =2 dom(�1), then �(x) = x = �0(x).2Corollary 10 Let bv = (bv1; bv2) be a syntatially orret binding. Let TDum(bv2) = �2 ` �2.We have �2 ÆTOP(bv1) Æ �2 = �2 ÆTOP(bv1).Proof Let TOP(bv1) = �1 ` (�1; �1). By proposition 20, it is enough to prove dom(�1 Æ �1) ? �2and �22 = �2. But we have dom(bv1) ? dom(bv2), so dom(�1 Æ �1) ? dom(�2). Moreover, od(�2)ontains only loations, whereas dom(�1 Æ �1) ontains only variables, so od(�2) ? dom(�1 Æ �1).Finally, as all variable alloations, �2 is idempotent. 2Corollary 11 Let bv = (bv1; bv2) and TDum(bv2) = �2 ` �2. We haveTOP(bv) = �2 ÆTOP(bv1) ÆTOP(bv2):Proof By indution on bv1.� bv1 = �, beause �2 is idempotent. 180



� bv1 = (x = v; bv 01). Let bv 0 = bv 01; bv2, TDum(bv 0) = �0bv0 ` �bv 0 , and TDum(bv 01) = �0bv 01 `�bv 01 . By de�nition of TDum, we have �bv 0 = �bv 01 [ �2. Then, we an alulateTOP(bv) = �bv 0 ÆTOP(x = v) ÆTOP(bv 0) (by lemma 19)= �bv 0 ÆTOP(x = v) Æ �2 ÆTOP(bv 01) ÆTOP(bv2)(by indution hypothesis)= �bv 01 [ �2 ÆTOP(x = v) Æ �2 ÆTOP(bv 01) ÆTOP(bv2)= �bv 01 Æ �2 ÆTOP(x = v) Æ �2 ÆTOP(bv 01) ÆTOP(bv2)= �bv 01 Æ �2 ÆTOP(x = v) ÆTOP(bv 01) ÆTOP(bv2)(by proposition 10)= �2 Æ �bv 01 ÆTOP(x = v) ÆTOP(bv 01) ÆTOP(bv2)= �2 ÆTOP(bv1) ÆTOP(bv2) (by proposition 19)2Proposition 21 (TOP Update pass) For all weak evaluation ontext �, and on�guration C,� ÆTDum(bv ; b) ÆTUp(bv ; b)[C℄�!� � ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[C℄:Proof By indution on bv. If bv = �, there is nothing to prove. Otherwise, let bv = (x = v; bv 0).By proposition 17,� ÆTDum(bv; b) ÆTUp(bv; b)[C℄�!� � ÆTDum(bv 0; b) ÆTOP(x = v) ÆUpdate(bv 0; b)[C℄:But by orollary 10, this is equal to� Æ � ÆTOP(x = v) ÆTDum(bv 0; b) ÆUpdate(bv 0; b)[C℄;where TDum(bv 0; b) = � ` �.By indution hypothesis, we know that the obtained expression redues to� Æ � ÆTOP(x = v) ÆTDum(b) ÆTOP(bv 0) ÆUpdate(b)[C℄:But if we let TDum(bv 0) = �1 ` �1 and TDum(b) = �2 ` �2, we have � = �1 [ �2, so� Æ � ÆTOP(x = v) ÆTDum(b) ÆTOP(bv 0) ÆUpdate(b)[C℄= � Æ �1 Æ �2 ÆTOP(x = v) ÆTDum(b) ÆTOP(bv 0) ÆUpdate(b)[C℄= � Æ �1 ÆTDum(b) ÆTOP(x = v) ÆTOP(bv 0) ÆUpdate(b)[C℄( by orollary 10 )= � ÆTDum(b) Æ �1 ÆTOP(x = v) ÆTOP(bv 0) ÆUpdate(b)[C℄( beause TDum(b) is not modi�ed by any substitution )� ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[C℄ ( by proposition 19 )2Proposition 22 (Update pass) For all weak evaluation ontext �, and on�guration C,� ÆTDum(bv; b) ÆUpdate(bv; b)[C℄�!� � ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[C℄:Proof By orollary 9, we have� ÆTDum(bv ; b) ÆUpdate(bv ; b)[C℄�!� � ÆTDum(bv; b) ÆTUp(bv; b)[C℄:By proposition 21, it further redues to � ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[C℄: 2181



Proposition 23 (Partial translation of bindings) For all evaluation ontext 	,	[; ` Jlet re bv; b in eK℄�!� 	 ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[; ` e℄:Proof Let 	 = � ` �[�℄, and � = � ` 2[�℄. LetE0 = 	[; ` JeK℄ = 	[; ` let Dummy(bv ; b);Update(bv; b) in JeK℄By rule Lift and modulo variable renaming, we haveE0 �!� �[; ` let Dummy(bv; b);Update(bv ; b) in �[JeK℄℄:By proposition 16, this expression redues to � ÆTDum(bv; b)[; ` let Update(bv ; b) in �[JeK℄℄.By proposition 22, it in turn redues to � ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[�[JeK℄℄, whih is equalto 	 ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[JeK℄: 2Lemma 39 (Standard translation redues to TOP translation) For all ontext 	 and forall expression e, 	[; ` JeK℄�!� 	[JeKTOP℄:Proof By indution on e. If e is a value, we use proposition 15.Appliation. Let e = e1e2, 	 be a ontext, and E0 = 	[; ` JeK℄ = 	[; ` Je1KJe2K℄. Let alsoJe1KTOP = �1 ` E1. By indution hypothesis, E0 �!� 	[�1 ` E1Je2K℄. If e1 is not a value,this is diretly 	[JeKTOP℄. Otherwise, E1 is a value, say V1, and 	0 = 	[�1 ` (V12)[id ℄℄ isan evaluation ontext, so by indution hypothesis again, if we let Je2KTOP = �2 ` E2, then	0[; ` Je2K℄�!� 	0[�2 ` E2℄, whih is equal to 	[�1 +�2 ` V1E2℄ = 	[JeKTOP℄.Reord �eld seletion. Simple by indution hypothesis.Reord. Let e = fsv ; X = f; sg, where f is not a value. Let JsvKTOP = �1 ` Sv. By a trivialindution on sv, we prove that 	[; ` Jfsv; X = f; sgK℄ �!� 	[�1 ` fSv; X = JfK; JsKg℄.This expression an be viewed as 	0[; ` JfK℄, with 	0 = 	[�1 ` fSv; X = 2; JsKg℄. LetJfKTOP = �2 ` F . By indution hypothesis, the above expression redues to 	0[�2 ` F ℄,whih is equal to 	[�1 +�2 ` fSv; X = F; JsKg℄, and this is the expeted result.Binding. Let e = let re b in f .1. If b = �, then JbKTOP = ; ` 2[id ℄, so JeKTOP = JfKTOP. So, 	[; ` JeK℄ = 	[; `let � in JfK℄. By rules Lift and then EmptyLet, it redues to 	[; ` JfK℄, whih byindution hypothesis redues to 	[JfKTOP℄, as expeted.2. If b = bv, non empty, then JeKTOP = TOP(bv)[JfKTOP℄. We have	[; ` JeK℄= 	[; ` Jlet re bv in fK℄�!� 	 ÆTOP(bv)[; ` JfK℄(by proposition 23)�!� 	 ÆTOP(bv)[JfKTOP℄(by indution hypothesis)= 	[JeKTOP℄182



3. If b = bv; b0, with b0 non empty, then JeKTOP = TDum(b0) ÆTOP(bv) ÆTUp(b0)[; ` JfK℄.We have 	[; ` JeK℄= 	[; ` Jlet re bv; b0 in fK℄�!� 	 ÆTDum(b0) ÆTOP(bv) ÆUpdate(b0)[; ` JfK℄(by proposition 23)�!� 	 ÆTDum(b0) ÆTOP(bv) ÆTUp(b0)[; ` JfK℄(by indution hypothesis)= 	[JeKTOP℄27.5 Corretness7.5.1 Translation of ontexts and ompositionalityBoth the standard and the TOP translations rely on sizes. In a binding, if a de�nition x = e is ofknown size, then it is translated as the binding y = updatex JeK, whereas otherwise, it is translatedas x = JeK. For this reason, it is not ompositional in the usual sense: a straightforward propertysuh as JE [e℄K = JE K[JeK℄ does not hold. Moreover, there is no straightforward translation forontexts: onsider let re x = 2 in fg for instane; should it be translated as if the expression�lling the hole was of known size or unknown size?The TOP translation retains a kind of ompositionality though. We de�ne omplete ontextsin �Æ, as normal ontexts, exept that the ontext hole is now annotated with a size indiation� 2 N [ f[?℄g. Complete ontext appliation is only valid if the argument as the expeted size.Complete ontexts are then translated exatly as expressions. For this, the de�nition in �gure7.19 is simply extended with J2�KTOP = J2�K = 2, given that a ontext hole 2� has size �, andthat it is not a value. Normal ontexts are translated, with an additional argument giving the sizeof the ontext hole. For instane, we write JE KTOP� for JE [2� ℄KTOP. The standard translation isompositional for this notion of ontexts.Proposition 24 (Compositionality of the standard translation) For all ontext E and ex-pression e, JE [e℄K = JE KSize(e)[JeK℄:The translation is ompositional with respet to this notion of ontexts, provided the right sizeindiation is hosen, and that the expression �lling the hole is not a value. Indeed, in the translationof bindings, a distintion is made between evaluated and unevaluated de�nitions, whih breaksompositionality in this ase, beause the ontext hole is not onsidered a value. Fortunately, forvalues, a weaker property of ompositionality modulo redution holds, whih allows to prove thatthe translation is faithfull.Proposition 25 (Compositionality for lift ontexts) If e =2 Values, thenJL [e℄KTOP = JL KTOPSize(e)[JeKTOP℄:Proof By ase analysis on L . We treat one example ase, appliation: L = 2f . We haveJL [e℄KTOP = JefKTOP = � ` EJfK, where JeKTOP = � ` E. But JL KTOPSize(e) = ; ` 2JfK, whih isthe expeted result. 2Proposition 26 (Compositionality for multiple lift ontexts) If e =2 Values, thenJF [e℄KTOP = JF KTOPSize(e)[JeKTOP℄:183



Proof By indution on F . If F = 2, there is nothing to prove. Otherwise, let F = L [F 0℄ and� = Size(e).By indution hypothesis, JF 0[e℄KTOP = JF 0KTOP� [JeKTOP℄.As the Size funtion is ompositional, � 0 = Size(F 0[e℄) = Size(F 0[2� ℄).By proposition 26, JL [F 0[e℄℄KTOP = JL KTOP�0 [JF 0[e℄KTOP℄ = JL KTOP�0 [JF 0KTOP� [JeKTOP℄℄.By proposition 26, JL [F 0℄KTOP� = JL [F 0[2� ℄℄KTOP = JL KTOP�0 [JF 0[2� ℄KTOP℄ = JL KTOP�0 [JF 0KTOP� ℄.So, JL [F 0[e℄℄KTOP = JL [F 0℄KTOP� [JeKTOP℄. 2Lemma 40 (Compositionality for evaluation ontexts) If e =2 Values, thenJE [e℄KTOP = JE KTOPSize(e)[JeKTOP℄:Proof By ase on E . Let � = Size(e).� If E = F , use proposition 26.� If E = bv ` F , then JE [e℄KTOP=TOP(bv)[JF [e℄KTOP℄=TOP(bv)[JF KTOP� [JeKTOP℄℄=(TOP(bv) Æ JF KTOP� )[JeKTOP℄=JE KTOP� [JeKTOP℄:� If E = (bv; x = F ; b ` f), then let b0 = (x = F [e℄; b). We have JE [e℄KTOP = TDum(b0) ÆTOP(bv) ÆTUp(b0)[; ` JfK℄, sine F [e℄ annot be a value.Let �0 ` E0 = JF [e℄KTOP = JF KTOP� [JeKTOP℄ (by proposition 26).Let �u ` B = TUp(b), and � 0 = Size(F [e℄) = Size(F [2� ℄).Let (x0;�0) = � (x;E0) if � 0 = [?℄(x; updatex E0) otherwiseWe have TUp(b0) = �u + �0 ` x0 = �0[E0℄; B. Let 	0 = �u ` let x0 = �0; B in JfK. Wehave JE [e℄KTOP=TDum(b0) ÆTOP(bv) Æ	0 Æ JF KTOP� [JeKTOP℄=JE KTOP� [JeKTOP℄:2When the expression �lling the ontext hole is a value, we have seen that this ompositionalityproperty is false. We nevertheless prove a weaker one.Proposition 27 (Semi-ompositionality for lift ontexts) For all evaluation ontext 	,	[JL KTOPSize(v)[JvKTOP℄℄�!� 	[JL [v℄KTOP℄:Proof By ase on L . Let � = Size(v) and �v ` V = JvKTOP.� If L is of the shape v02 or 2:X , then 	[JL KTOPSize(v)[JvKTOP℄℄ = 	[JL [v℄KTOP℄:� L = 2e. Let JeKTOP = � ` E. We have JeKTOP� = ; ` 2JeK and 	 Æ JL KTOP� [JvKTOP℄ =	[�v ` V JeK℄, whih by lemma 39 redues to 	[�v +� ` V E℄ = 	[JL [v℄KTOP℄:184



� L = fsv; X = 2; sg. Let JsvKTOP = �0v ` Sv 0, JsK = S, and JsKTOP = �0 ` S0.We have 	ÆJL KTOP� [JvKTOP℄ = 	[�v+�0v ` fSv 0; X = V; Sg℄, whih by lemma 39 redues to	[C℄ = 	[�v+�0v+�0 ` fSv 0; X = V; S0g℄. If s is not evaluated, then C is exatly JL [v℄KTOP.Otherwise, 	[C℄ redues by rule Context (Alloate) to 	[�v+�0v+�0+fl 7! fSv 0; X =V; S0gg ` l℄, whih is exatly 	[JL [v℄KTOP℄.2Proposition 28 (Semi-ompositionality for multiple lift ontexts) For all evaluation on-text 	, 	[JF KTOPSize(v)[JvKTOP℄℄�!� 	[JF [v℄KTOP℄:Proof By indution on F . If F = 2, there is nothing to prove. Otherwise, F = L [F 0℄. Let� = Size(v) and � 0 = Size(F 0[2� ℄) = Size(F 0[v℄) (by hypothesis 3).By proposition 27, as neither F 0[2� ℄ nor F 0[v℄ are values, we have JF KTOP� = JL KTOP�0 [JF 0KTOP� ℄ andJF [v℄KTOP = JL KTOP�0 [JF 0[v℄KTOP℄.By indution hypothesis, 	 Æ JF KTOP� [JvKTOP℄= 	 Æ JL KTOP�0 Æ JF 0KTOP� [JvKTOP℄= 	 Æ JL KTOP�0 [JF 0KTOP� [JvKTOP℄℄�!� 	 Æ JL KTOP�0 [JF 0[v℄KTOP℄= 	[JL KTOP�0 [JF 0[v℄KTOP℄℄= 	[JF [v℄KTOP℄2Proposition 29 (Semi-ompositionality for evaluation ontexts) For all evaluationontext 	, 	[JE KTOPSize(v)[JvKTOP℄℄�!� 	[JE [v℄KTOP℄:Proof By ase analysis on E .� E = (bv ` F ). Let � = Size(v) and � 0 = Size(F [2� ℄) = Size(F [v℄) (by hypothesis 3). Wehave (	 Æ JE KTOP� )[JvKTOP℄= 	 ÆTOP(bv) Æ JF KTOP� [JvKTOP℄�!� 	 ÆTOP(bv)[JF [v℄KTOP℄(by proposition 28)= 	[Jbv ` F [v℄KTOP℄= 	[JE [v℄KTOP℄:� E = (B [F ℄ ` e), with B = (bv; x = 2; b). Let � = Size(v) and � 0 = Size(F [2� ℄) = Size(F [v℄)(by hypothesis 3). Let also b0 = (x = 2�0 ; b). We have	 Æ JE KTOP� [JvKTOP℄= 	 ÆTDum(b0) ÆTOP(bv) Æ (TUp(b0)[; ` JeK℄) Æ JF KTOP� [JvKTOP℄�!� 	 ÆTDum(b0) ÆTOP(bv) Æ (TUp(b0)[; ` JeK℄)[JF [v℄KTOP℄( by proposition 28)If F [v℄ is not a value, the obtained expression is exatly 	[JE [v℄KTOP℄. Otherwise, theobtained expression is a partial translation of E [v℄, so by proposition 23, it redues to	[JE [v℄KTOP℄, as expeted.2 185



7.5.2 Translation of aessIn �Æ, the topmost binding is used as a heap, to store the values of variables. These values maythen be opied when the orresponding bound variable is used in a strit ontext. In �allo , heapsan only ontain bloks, i.e. reords and funtions. Variables (or onstants if the alulus featuredthem) annot be stored in them. Instead, we have seen that they are substituted on the y duringthe translation. This distintion makes the translation of aess a bit weird.Proposition 30 If TOP(bv) = �a ` (�; �), bv(x) = v, and JvKTOP = �v ` V , then �v � �a and(� Æ �)(x) = V f� Æ �g.Proof By indution on bv.� bv = �. Contradits bv(x) = v.� bv = (x = v; bv 0) and Size(v) = n. We haveJvKTOP = �v ` lTOP(bv 0) = �0a ` �0�0TOP(bv) = Thv +�0a ` (�0; (�0 + fx 7! lg)) = �a ` (�; �)Obviously, we have �v � �a. Furthermore, by syntati orretness of bv, x =2 dom(�), so(� Æ �)(x) = �(x) = l = V = V f� Æ �g.� bv = (x = v; bv 0), with Size(v) = [?℄. We haveJvKTOP = ; ` y = �v ` VTOP(bv 0) = �0a ` (�0; �0)TOP(bv) = �0a ` (�0 Æ fx 7! yg; �0);and therefore (� Æ �)(x) = yf�0g = V f�g.� bv = (y = v0; bv 0) and Size(v0) = n. We haveJv0KTOP = �0v ` lTOP(bv 0) = �0a ` (�0; �0)TOP(bv) = �0a +�0v ` (�0; �0 + fy 7! lg) = �a ` (�; �):By indution hypothesis, �v � �0a, so �v � �0a. By indution hypothesis, (�0 Æ �0)(x) =V f�0g, so (� Æ �)(x) = (�0 Æ �0)(x)fy 7! lg = V f�0 Æ �0 Æ fy 7! lgg = V f� Æ �g.� bv = (y = v0; bv 0) and Size(v0) = undefined. We haveJv0KTOP = ; ` zTOP(bv 0) = �0a ` (�0; �0)TOP(bv) = �0a ` (�0 Æ fy 7! zg; �0) = �a ` (�; �):By indution hypothesis, �v � �0a, so �v � �0a. By indution hypothesis, (�0 Æ �0)(x) =V f�0g. But by syntati orretness of bv, we know that y is not free in bv 0, so y =2 od(�0),and as we additionally have y =2 dom(�0), we an dedue that fy 7! zgÆ�0 = �0 Æfy 7! zf�0gg.So, we have (� Æ �)(x)= xf�0 Æ fy 7! zg Æ �0g= xf�0 Æ �0 Æ fy 7! zf�0ggg= ((�0 Æ �0)(x))fy 7! zf�0gg= V f�0 Æ �0gfy 7! zf�0gg= V f�0 Æ �0 Æ fy 7! zf�0ggg= V f�0 Æ fy 7! zg Æ �0g= V f� Æ �g:186



2Proposition 31 (Aess) Let 	 = JE KTOP� = � ` �[�℄. If E (x) = v and JvKTOP = �v ` V ,then �(x) = V f�g and �v � �.Proof By ase analysis on the proof of E (x) = v.EA. E = bv ` F , and bv(x) = v. We haveJE KTOP� = TOP(bv) Æ JF KTOP� :Let TOP(bv) = �a ` (�a; �a) and JF KTOP� = �0 ` �0[id ℄. We an dedue � = �a Æ �a. Byproposition 30, we have �v � �a � � and (�a Æ �a)(x) = V f�a Æ �ag, or in other words�(x) = V f�g, whih is the expeted result.IA. E = (bv; x = F ; b ` e). Then, JE KTOP� = TDum(x = F [2� ℄; b) Æ TOP(bv) Æ TUp(x =F [2� ℄; b)[; ` JeK℄.Let TDum(x = F [2� ℄; b) = �d ` �dTOP(bv) = �a ` (�a; �a)TUp(x = F [2� ℄; b)[; ` JeK℄ = �0 ` �0:We have � = �aÆ�aÆ�d. By proposition 30, �v � �a, so �v � �. Furthermore, (�aÆ�a)(x) =V f�aÆ�ag, so �(x) = xf�aÆ�aÆ�dg = xf�aÆ�agf�dg = V f�aÆ�agf�dg = V f�g, as expeted.27.5.3 Translation of internal mergingProposition 32 (Internal merging) If b ` e IM�! b0 ` e0, then Jb ` eKTOP �!� Jb0 ` e0KTOP.Proof Let b ` e = (bv; x = (let re b1 in e1); b1 ` f), and b0 ` e0 = (bv ; b1; x = e1; b2 ` f). Letb0 = (x = (let re b1 in e1); b2) and b00 = (x = e1; b2).We have Jb ` eKTOP = TDum(b0) ÆTOP(bv) ÆTUp(b0)[; ` JfK℄.Let now (x0;�0) = � (x;2) if Size(e1) = Size(let re b1 in e1) = [?℄ (f hypothesis 3)(y; updatex 2) with y fresh otherwise.Let also �1 ` E1 be de�ned as follows. If b1 is evaluated, let �1 ` E1 = Je1KTOP, and otherwise�1 ` E1 = ; ` Je1K. This way, we always have Jlet re b1 in e1KTOP = Jb1KTOP[�1 ` E1℄.Finally, let �1 = ; ` let x0 = �0;Update(b2) in JfK, and b1 = bv1; b01, where b01 does not begin witha value. We have TUp(b0)[; ` f ℄= �1[Jb1KTOP[�1 ` E1℄℄= �1 ÆTDum(b01) ÆTOP(bv1) ÆTUp(b01)[�1 ` E1℄:But the ontext TDum(b01) ÆTOP(bv1) is a weak evaluation ontext, and the domain of its substi-tution only onerns variables in the domain of b1, whih are disjoint from free variables in b2; f; xby the side ondition to the rule IM. Therefore, this ontext ommutes with �1, andTUp(b0)[; ` f ℄= TDum(b01) ÆTOP(bv1) Æ�1 ÆTUp(b01)[�1 ` E1℄:Now, if b1 is not fully evaluated, the two translation are semantially idential. But if b1 is fullyevaluated, i.e. b01 = �, then Jb0 ` e0KTOP translates with the TOP translation until e1, and possiblyfurther, if e1 is a value too. We distinguish the two ases.187



1. b1 is not fully evaluated. Let TUp(b01) = �01 ` B01. We have �1 ` E1 = ; ` Je1K and with� = TDum(b0) ÆTOP(bv) ÆTDum(b01) ÆTOP(bv1),Jb ` eKTOP= �[�01 ` let x0 = let B01 in Je1K[; ℄Update(b2) in JfK℄Lift�! �[�01 ` let B01 in let x0 = Je1K[; ℄Update(b2) in JfK℄EM�! �[�01 ` let B01; x0 = Je1K[; ℄Update(b2) in JfK℄= �[�01 ` let B01; x0 = Je1K[; ℄Update(b2) in JfK℄= � ÆTUp(b01; b00)[; ` JfK℄:But let us now examine � a bit TDum(b0) ÆTOP(bv) Æ TDum(b01) ÆTOP(bv1). First, notiethat TDum(b0) = TDum(b00), by hypothesis 3.Then, TOP(bv) and TDum(b01) are two weak evaluation ontexts, and the domain of thesubstitution of TDum(b01) is inluded in dom(b01), whih is disjoint from the free variablesof bv, so if TDum(b01) = �0d ` �0d, then TOP(bv) Æ TDum(b01) = �0d Æ TOP(bv) Æ TDum(b01).Moreover, �0d is a variable alloation, and is therefore idempotent, so we an apply proposition20 to obtain � = TDum(b00) ÆTDum(b01) ÆTOP(bv) ÆTOP(bv1)= TDum(b00; b01) ÆTOP(bv) ÆTOP(bv1)= TDum(b01; b00) ÆTOP(bv) ÆTOP(bv1):Furthermore, TOP(bv1) = �bv1 ` (�bv1 ; �bv1). As �bv1 is idempotent, we have TOP(bv1) =�bv1 Æ TOP(bv1). But we know that the domain of �bv1 is disjoint from the free variablesof TOP(bv), so TOP(bv) Æ �bv1 = �bv1 Æ TOP(bv), and therefore � = TDum(b01; b00) Æ �bv1 ÆTOP(bv) Æ TOP(bv1). But by orollary 10, �bv1 Æ TOP(bv) Æ TOP(bv1) = TOP(bv; bv1), so� = TDum(b01; b00) ÆTOP(bv; bv1).Finally, we obtain thatJb ` eKTOP = TDum(b01; b00) ÆTOP(bv ; bv1) ÆTUp(b01; b00)[; ` JfK℄= Jbv; bv1; b01; b00KTOP[; ` JfK℄= Jbv; b1; x = e1; b2KTOP[; ` JfK℄= Jb0 ` e0KTOP:2. b1 is fully evaluated. We have Jb ` eKTOP = TDum(b0) ÆTOP(bv) ÆTOP(bv1) Æ�1[�1 ` E1℄.Let TOP(bv1) = �bv1 ` (�bv1 ; �bv1). We know that �bv1 is idempotent, so TOP(bv1) =�bv1 Æ TOP(bv1). As above, dom(�bv1) ? FV(TOP(bv)), so TOP(bv) Æ TOP(bv1) = �bv1 ÆTOP(bv) ÆTOP(bv1), in whih by orollary 10 we reognize TOP(bv; bv1).Therefore, Jb ` eKTOP = TDum(b0) ÆTOP(bv; bv1) Æ�1[�1 ` E1℄.But we notie that �1[�1 ` E1℄ = TUp(b00)[; ` JfK℄. And by hypothesis 3, TDum(b0) =TDum(b00). Let TDum(b0) = �b0 ` �b0 . By proposition 20, we haveTDum(b0)ÆTOP(bv ; bv1) =�b0 ÆTOP(bv ; bv1) ÆTDum(b00), so Jb ` eKTOP = �b0 ÆTOP(bv ; bv1) ÆTDum(b00) ÆTUp(b00)[; `JfK℄.Let b00 = (bv0; b000), with b000 not beginning with a value. By proposition 21, Jb ` eKTOP �!��b0 ÆTOP(bv; bv1) ÆTDum(b000 ) ÆTOP(bv0) ÆUpdate(b000 )[; ` JfK℄.But if TDum(bv0) = �bv0 ` �bv0 and TDum(b000) = �b000 ` �b000 , then �b0 = �bv0 + �b000 , so byproposition 20, the obtained expression is equal to �bv0ÆTDum(b000 )ÆTOP(bv ; bv1)ÆTOP(bv0)ÆUpdate(b000)[; ` JfK℄. But �bv0 ommutes with TDum(b000 ), so we obtain TDum(b000) Æ �bv0 ÆTOP(bv ; bv1)ÆTOP(bv0)ÆUpdate(b000)[; ` JfK℄, whih by orollary 10 is equal to TDum(b000)Æ�bv0 ÆTOP(bv ; bv1; bv0) ÆUpdate(b000 )[; ` JfK℄, whih is exatly Jb0 ` e0KTOP.2 188



� Evaluated binding ontextsB v ::= bv1; x = 2; bv2 with Depth(bv1; x = 2; bv2) de�ned as 1+ j bv1 j� Depth of an evaluation ontextDepth(2) = 0Depth(L [F ℄) = 1 +Depth(F )Depth(bv ` F ) = 1+ j bv j +Depth(F )Depth(B v [F ℄ ` e) = Depth(B v ) +Depth(F )�Measuring the number of let re nodes�l(e) is the number of let re nodes not under a � in e (same for on�gurations).�Measuring the depth of the let re to lift (same for on�gurations)�d(F [L [let re bv in e℄℄) = 1 +Depth(F )�d(e) = 0 otherwisewell de�ned sine the sum of the depths of let re nodes stritly dereases.�Measuring the binding level of the hot variable�b(e) is the depth of the binder of the hot variable, if any:�b(B v [v℄; y = F [x℄; b ` e) = Depth(B v ) if (B v [v℄)(x) = v�b(B v [v℄ ` F [x℄) = Depth(B v ) if (B v [v℄)(x) = v�b(e) = 0 otherwise�Measure �e(e) = (�l(e); �d(e))�() = (�l(); �d(); �b()) (lexiographially ordered).Figure 7.21: Measure7.5.4 SimulationDue to their di�erent ways of handling bindings, the two alulus �Æ and �allo do not yield astep by step simulation. Indeed, a redex and its redut in �Æ may have the same translation. Asan example, onsider any expressions of the shape L [let re bv in e℄ and let re bv in L [e℄. Thebinding bv is translated as a heap � and a substitution �, in both ases, and the fat that it isunder or above the L ontext is not visible in the translation. The only problem with this isthat in some ases an in�nite redution sequene in �Æ ould be translated as an empty one in�allo , thus possibly hanging the in�nite looping observable behaviour. In order to ensure thatthis doesn't happen, we prove that suh silent redution steps annot happen inde�nitely. Forthis, we introdue a measure on expressions and on�gurations that stritly dereases during silentredutions steps. Its de�nition is given in �gure 7.21.It �rst de�nes two funtions from expressions to N. The �rst, �l, is the number of let re nodesnot under a lambda in the given expression. The seond, �d is the depth of the let re node to liftin the given expression, if any. Formally, if e is of the shape F [L [let re b in f ℄℄, then the let renode an be lifted by rule Lift, so the result is the depth of the ontext F [L ℄, or 1 plus the depthof F .The funtions �l and �d form a measure �e on expressions, de�ned by �e = (�l; �d), orderedlexiographially.Moreover, these two funtions are straightforwardly extended to on�gurations, replaing F withE for the seond de�nition.A third funtion �b is de�ned, but only on on�gurations, giving the depth of the binder for thehot variable, if any. We say that x is the hot variable in  if  is of the shape E [N [x℄℄. Then�b(e) is the depth at whih x is bound in E . Formally, we de�ne evaluated binding ontexts as189



binding ontexts of the shape bv1; x = 2; bv2, and their depth as 1 plus the ardinal of bv1. Thenthe depth of multiple lift ontexts is de�ned as the number of nested lift ontexts, and the depthof evaluation ontexts is de�ned aordingly.A property of this measure is that it is monotone through ontextual losure.Proposition 33 If �e(e) > �e(e0), then for any evaluation ontext E , �(E [e℄) > �(E [e0℄).Proof The property learly holds for both measures �l and �d, thus for their lexiographi produtas well. 2Lemma 41 (Contration simulated) If e e0, then JeKTOP�!+ Je0KTOP or JeKTOP = Je0KTOPand for any E , �(E [e℄) > �(E [e0℄).Proof By ase analysis on the applied rule.Beta. e = ((�x:f)v), and e0 = letreinx = vf . Let JvKTOP = �v ` V . We have JeKTOP =�v + fl 7! (�x:JfK)g ` lV , whih redues by rule Beta to �v + fl 7! (�x:JfK)g ` ffx 7! V g.Let us now alulate TOP(x = v).� If Size(v) = [?℄, then �v ` V = ; ` V , and TOP(x = v) = ; ` (x 7! V; id ); soJx = vKTOP = ; ` 2[x 7! V ℄ = �v ` 2[x 7! V ℄.� Otherwise, �v ` V = �v ` l, and TOP(x = v) = �v ` (id ; x 7! l); so Jx = vKTOP =�v ` 2[x 7! l℄ = �v ` 2[x 7! V ℄.So, in both ases, we have Jx = vKTOP = �v ` 2[x 7! V ℄. Therefore, Jx = vKTOP reduesto Jx = vKTOP[JfK℄, whih by lemma 39 redues to Jx = vKTOP[JfKTOP℄, whih is exatlyJe0KTOP.Projet. e = fsvg:X and e0 = sv(X). Let sv = (X1 = v1 : : : Xn = vn), X = Xi0 , and foreah i, JviKTOP = �i ` Vi. We have JsvKTOP = ℄1�i�n�i ` (X1 = V1 : : :Xn = Vn), andJeKTOP = ℄1�i�n�i + fl 7! fX1 = V1 : : : Xn = Vngg ` l:X . By rule Projet, it redues to℄1�i�n�i+fl 7! fX1 = V1 : : :Xn = Vngg ` Vi0 , whih by rule GC redues to �i0 ` Vi0 , whihis exatly Je0KTOP.Lift. e = L [let re b in f ℄ and e0 = let re b in L [f ℄.� If b is evaluated, then JeKTOP = JL KTOP Æ TOP(b)[JfKTOP℄. Let TOP(b) = � ` (2; �).In the ontext JL KTOP Æ TOP(b), the only substitution is �, whose domain is dom(b),whih by the side ondition to the Lift rule is disjoint from the free variables of L , sothe ontexts ommute, and JeKTOP = TOP(b) Æ JL KTOP[JfKTOP℄ = Je0KTOP.� If b is not evaluated, then b = bv; b0, with b0 non empty and not beginning with a value.We have JeKTOP = JL KTOP Æ TDum(b0) Æ TOP(bv) Æ TUp(b0)[; ` JfK℄. But as above,the ontext JL KTOP has not substitution and is not a�eted by the ones of TDum(b0),TOP(bv), and TUp(b0). So JeKTOP = TDum(b0)ÆTOP(bv)ÆTUp(b0)ÆJL KTOP[; ` JfK℄ =Je0KTOP.This is the only ase where the two translations are diretly equal. We thus have to showthat �d(e) > �d(e0). And indeed �d(e) = �d(L [let re b in f ℄) = 2 + 0, whereas �d(e0) =�d(let re b in L [f ℄) = 0. Conlude by proposition 33.190



2There is a last diÆulty lying in the way to the theorem of simulation, due to di�erent sharingproperties of the two aluli. Consider the on�guration  = (x = fX = �y:yg ` (x:X)x). Itredues by rule Subst to 0 = (x = fX = �y:yg ` (fX = �y:yg:X)x). By the TOP translation, is translated to a on�gurationC = � l1 7! �y:y;l2 7! fX = l1g � ` (l2:X)l2:By the same translation, 0 is translated to a on�gurationC 0 =8>><>>: l1 7! �y:y;l2 7! fX = l1g;l3 7! �y:y;l4 7! fX = l3g 9>>=>>; ` (l4:X)l2:The heap �0 of C 0 ontains an additional opy of the reord and the funtion. This phenomenonhappens at eah appliation of the Subst rule. But exept in ase of a faulty on�guration (seebelow), suh a redution step is neessarily followed by a Beta or a Projet step. In our example,a Projet step ours, that destroys the opied reord: 0 redues to 00 = (x = fX = �y:yg `(�y:y)x). This redution step destroys the opied reord immediately after it has been opied.Similarly, when a funtion is opied, it is immediately destroyed by a Beta redution step. Inboth ases, the translated on�guration redues in one step, by the same rule (Projet or Beta).As a onsequene, our simulation theorem takes this possibility into aount, and allows a oupleof suessive redutions steps to be simulated by a single one.But this is not yet suÆient. Indeed, in the ase of the Projet rule, not only the reord isdupliated, but also the values it ontains. In our example, the funtion �y:y is opied. And evenafter applying the Projet rule, it remains, as shown by the translation of 00:C 00 =8<: l1 7! �y:y;l2 7! fX = l1g;l3 7! �y:y 9=; ` l3l2:Our solution to this problem onsists in only onsidering expressions where all the reord �eldsare variables, whih we all R-normal expressions. Any expression an be transformed into anR-normal one, by applying the following NameFields rule, in any ontext.9i; ei =2 Vars 8i; j; xi =2 FV(ej)fX1 = e1 : : : Xn = eng R�! let re x1 = e1 : : : xn = en in fX1 = x1 : : :Xn = xng (NameFields)This proess neessarily terminates sine the number of reords not ontaining only variables strilydereases. The redution rules of �Æ obviously preserve the R-normality. This way, after a sequeneof a Subst step followed by a Projet step, no dupliation has been made: an expression of theshape x:X has been replaed with another variable.We an now state our �nal theorem. A �Æ on�guration is said stuk on a free variable when itis of the shape E [N [x℄℄ and E (x) is unde�ned. This de�nition is extended to �allo on�gurations(replae E with 	). We say that a on�guration is faulty if it is in normal form and is not a validanswer and is not stuk on a free variable. Roughly, the theorem states that if a on�guration redues to another one 0, then� either 0 is faulty and so is the translation of ,� or the translation of  redues to the one of 0,191



� or 0 itself redues to 00, suh that the translation of  redues to the one of 00,� or  and 0 are translated to the same on�guration, but �() > �(0).This ompliated result is due to the fat that �Æ �rst needs to dupliate a funtion before to applyit, and to dupliate a reord before to selet a omponent from it, and to the fat that the TOPtranslation identi�es some on�gurations, by performing some lifting and merging steps by itself.Theorem 5 (Small steps enoding) For all R-normal on�guration , if �!0 and JKTOP =C, then one of the four situations below holds:1. Either 0 is faulty, and then C is faultytoo ;  //JK
��

0 = //C = //2. or there exists C 0 suh that Je0K = C 0and C �!+ C 0 ;  //JK
��

0JK
��C + // C 03. or there exists 00, C 0 suh that J00K =C 0 and C �!+ C 0 ;  //JK

��

0 // 00JK
��C + // C 04. or J0K = C diretly, and �() > �(0)  �& //JK

��

0JK����
��

��
�CProof By ase analysis on the applied rule.Context. By lemma 41.IM. By proposition 32, noting that the number of let re nodes dereases by one when applyingthe rule.EM.  = bv ` let re b in e and 0 = bv; b ` e. Let us now de�ne C1 by ; ` JeK if b is not evaluated,and JeKTOP otherwise. Then JKTOP = TOP(bv)ÆJbKTOP[C1℄. Let b = bv 0; b0, where b0 does notbegin with a value. We have JKTOP = TOP(bv)ÆTDum(b0)ÆTOP(bv 0)ÆTUp(b0)[C1℄. But thesubstitution of the ontext TDum(b0) does not a�et TOP(bv) and onversely the substitutionof TOP(bv) does not a�et TDum(b0), so the two ontexts ommute. But then TOP(bv) isnext to TOP(bv 0). Let � be the substitution of TDum(bv 0). It does not a�et TOP(bv), bythe side ondition to the EM rule, so TOP(bv) ÆTOP(bv 0) = � ÆTOP(bv) ÆTOP(bv 0), whihby orollary 10 is equal to TOP(bv; bv 0). Therefore, JKTOP = TDum(b0) Æ TOP(bv; bv 0) ÆTUp(b0)[C1℄ = Jbv ; bKTOP[C1℄. The number of let re nodes again dereases by one.Subst.  = E [N [x℄℄, 0 = E [N [v℄℄, and E (x) = v. Let 	 = JE KTOP = � ` �[�℄.� If v is a variable y, then JvKTOP = ; ` y, and by proposition 31, �(x) = yf�g, soJKTOP = J0KTOP. But, the depth of the binder of the hot variable, from the depth ofx = y in E , beomes either an upper y = v0 de�nition, or the depth 0, if y is not de�nedby E , so �() > �(0).� If 0 is faulty, i.e. either N = 2v0 and v is a reord, or N = 2:X and v is a funtion ora reord with no X �eld, then C is faulty too.192



� If v = �y:e and N = 2v0, then 0 �! 00 = E [let re y = v0 in e℄.Let Jv0KTOP = �0v ` V 0. Let � = �0v ` 2[id ℄. We have C = 	 Æ �[lV 0℄.But by proposition 31, the loation l = �(x) is suh that �(l) = �y:JeK. Therefore, Credues by rule Context (Beta) to 	 Æ �[JeKfy 7! V 0g℄. By lemma 39, this redues to	 Æ �[JeKTOPfy 7! V 0g℄.Let now �0 = � Æ fy 7! V 0g. The obtained on�guration an be written 	 Æ �0[JeKTOP℄.But TOP(y = v0) = �0v ` 2[y 7! V 0℄ = �0, so Jlet re y = v0 in eKTOP = �0[JeKTOP℄,and the obtained term an also be written JE KTOP[Jlet re y = v0 in eKTOP℄, whih byproposition 29, redues to JE [let re y = v0 in e℄KTOP, whih is exatly J00KTOP.� If v = fsvg, N = 2:X , with X 2 dom(sv), then 0 �! 00 = E [sv(X)℄.By hypothesis,  is in R-normal form, so there exist names X1 : : :Xn and variablesx1 : : : xn suh that sv = (X1 = x1 : : : Xn = xn). Then, sv an be viewed as a reord of�allo , and JvKTOP = fl 7! fsvgg ` l.By proposition 31, we have �(x) = l and �(l) = fsvg. We have JKTOP = 	[x:X ℄ =	[l:X ℄. As  redues to 0, there exists an index i0 suh that X = Xi0 . So, JKTOPredues in one Projet step to 	[xi0 ℄, whih is JE KTOP[Jxi0 KTOP℄, so by lemma 39, itredues to JE [xi0 ℄KTOP, whih is exatly the translation of 00.2Eventually, we state a less preise theorem, more like what we would obtain with big step semantis.Theorem 6 (Big steps enoding)1. For all expression e, if ; ` e�!� a, then ; ` JeK�!� JaKTOP.2. For all expression e, if e goes wrong, i.e. ; ` e redues to a faulty on�guration, then JeKalso goes wrong.3. For all expression e, if e loops, i.e. there exists an in�nite redution sequene starting from; ` e, then JeK also loops.4. For all expression e, if e gets stuk on a free variable, then so does JeK.Proof For items 1 and 2, notie that ; ` JeK redues to JeKTOP, and then reason by indutionon the length of the redution sequene. For item 3, by ontrapositive: we know that there is aredution sequene in �allo simulating the one in �Æ, but it ould be of phantom steps, i.e. thesame on�guration ould be a translation for all steps. However this would ontradit the stritdereasing of the measure, whih is of ourse bounded by 0. For item 4, the redution leading tothe on�guration stuk on a free variable is simulated, and the reahed on�guration being thetranslation of a stuk on�guration is also stuk. 2The initial goal here was to prove the orretness of our ompilation sheme, but in fat we havea ompleteness result for free.Theorem 7 (Big steps ompleteness)1. If ; ` JeK�!� A, then there exists a suh that ; ` e�!� a and JaKTOP = A.2. If JeK goes wrong, then e also goes wrong.3. If JeK loops, then e also loops.4. If JeK gets stuk on a free variable, then so does e.193



Proof There are four possible �nal states for a on�guration: it an redue to a value, or it anget stuk on a free variable, or it an go wrong, or it an loop. We know that if a on�guration; ` e reahes a �nal state, then so does J; ` eKTOP. But the four possible �nal states are mutuallyexlusive. Therefore, if the translation of an expression reahes a �nal state, then the originalon�guration neessarily reahes the same one. 2Remark 3 (Free variables) Free variables do not appear during redution, and the ases wherethe evaluation gets stuk on a free variable do not our if the initial expression is losed.7.6 Related workCyli expliit substitutions In [64℄, Rose de�nes a alulus with mutually reursive de�-nitions, where the dediated onstrut for reursion is presented as expliit yli substitution,referring to the expliit substitutions of L�evy et al. [2℄. Instead of lifting reursive bindings to thetop of terms as we do, the alulus pushes them inside terms, as usual with expliit substitutions.This results in the loss of sharing information. Any term is allowed in reursive bindings, butinside a reursive binding, when omputing a de�nition, it is not possible to use the value of anyde�nition from the same binding. In �Æ, the rule for substitution Subst allows this, in onjuntionwith the internal aess rule IA. In Rose's alulus, orret all by value redution requires that inany binding, reursive de�nitions redue to values, without really using eah other. In this respet,it is less powerful than �Æ. Besides, it does not impose size onstraints on de�nitions, but is alsonot onerned with data representation.Lesanne et al. [9℄ study sharing and di�erent evaluation strategies, with a slightly di�erent notionof yli expliit substitution. Any term is aepted in a reursive de�nition, but instead of goingwrong when the reursive value is really needed, as in our system, the system of [9℄ loops. The fousof the paper is on the omparison between �-graph redution and environment based evaluation,and di�erent evaluation strategies. No emphasis is put on data representation either.Equational theories of the �-alulus with expliit reursion Ariola et al. [7℄ study a�-alulus with expliit reursion. Its semantis is given by soure-to-soure rewrite rules, wherelet re is lifted to the top of terms, and de�nitions in a binding may use eah other, as in �Æ.The semantis of our soure language �Æ is largely inspired by their all-by-value alulus, as aquite straightforward speialization of it. Thus, our work an be seen as importing the internalsubstitution rule IA from equational theory to language design. Nevertheless, the onerns aredi�erent: we deal with implementation and data representation, while Ariola et al. rather examineonuene, sharing and di�erent evaluation strategies, inluding strong redution (redution under�-abstration).let re for objets and mixin modules Boudol's onstrut [12℄, or Hirshowitz and Leroy's[45℄, are di�erent from the one of �Æ in several aspets. First, they aept stritly more expressionsas reursive de�nitions. For instane, Boudol's semantis of objets makes an extensive use ofreursive de�nitions suh as let re o = generator(o) in e. Suh de�nitions are impossible in �Æ.However, �Æ allows to de�ne in the same binding some reursive values, followed by omputationsusing these values. The semantis of mixin modules [47℄ requires omplex sequenes of alternatereursive and non-reursive bindings, whih are trivial to write in �Æ. On the whole, the loss ofexibility for valid reursive de�nitions allows to improve eÆieny, thanks to the loss of additionalindiretions.We believe that it is possible to ombine the ideas of [12℄ and [47℄. Consider a language where areursive de�nition an be of any shape, and an now be syntatially annotated with integersrepresenting its expeted size. This language an be ompiled exatly as �Æ, but it features a more194



powerful let re onstrut. The idea should be seen as a ompilation tehnique for Boudol's objetsand Hirshowitz and Leroy's mixin modules, where the neessary size informations are statiallyavailable.

195



196



Chapter 8Untyped ompilation with loalde�nitions

197



198



Future work and onlusions

199



IndexCalulus of onstrutions, 101arrier, 113olletions, 113onrete dynami graph, 90onstruted values, 101onstrutors, 99, 101Ddatatype de�nition, 101Eentities, 113equi-reursive, 100Iindutive types, 101interfaes, 113iso-reursive, 100Mmethods, 113module-reursive referenes, 112Nnodes, 90, 93Oopaque, 99opaque �xed-point, 111Ppartial mathings, 101phase-splitting, 110Rreursively dependent signature, 111representation independene, 99representation type, 113SShao's equation, 100speies, 113stati dependeny graph, 90Ttransluent sums, 98transparent, 99transparent �xed-point, 111

Type paths, 101type unfolding, 101Vvirtually onrete, 46

200



Bibliography[1℄ Mart��n Abadi and Lua Cardelli. A Theory of Objets. Springer-Verlag, 1996.[2℄ Mart��n Abadi, Lua Cardelli, Pierre-Louis Curien, and Jean-Jaques L�evy. Expliit substitu-tions. J. Fun. Progr., 1(4):375{416, 1991.[3℄ Davide Anona. Modular Formal Frameworks for Module Systems. PhD thesis, Universita diPisa, 1998.[4℄ Davide Anona, Sonia Fagorzi, Eugenio Moggi, and Elena Zua. Mixin modules and ompu-tational e�ets. Tehnial report, DISI, Universit�a di Genova, 2002.[5℄ Davide Anona and Elena Zua. A primitive alulus for module systems. In GopalanNadathur, editor, Prin. and Pratie of Del. Prog., volume 1702 of LNCS, pages 62{79.Springer-Verlag, 1999.[6℄ Davide Anona and Elena Zua. A alulus of module systems. J. Fun. Progr., 12(2):91{132,2002.[7℄ Zena M. Ariola and Stefan Blom. Skew onuene and the lambda alulus with letre. Annalsof pure and applied logi, 117(1{3):95{178, 2002.[8℄ Zena M. Ariola and Jan Willem Klop. Lambda alulus with expliit reursion. Inf. andComp., 139:154{233, 1997.[9℄ Zine-El-Abidine Benaissa, Pierre Lesanne, and Kristo�er H. Rose. Modeling sharing andreursion for weak redution strategies using expliit substitution. In Prog. Lang., Impl.,Logis, and Programs, 1996.[10℄ Viviana Bono, Lorenzo Bettini, and Betti Venneri. Subtyping mobile lasses and mixins.FOOL'03.[11℄ Viviana Bono, Mihele Bugliesi, Mariangiola Dezani-Cianaglini, and Luigi Liquori. Subtypingfor extensible, inomplete objets. Fundamenta Informatiae, 38(4):325{364, 1999.[12℄ G�erard Boudol. The reursive reord semantis of objets revisited. In David Sands, editor,Europ. Symp. on Progr., volume 2028 of LNCS, pages 269{283. Springer-Verlag, 2001.[13℄ G�erard Boudol. The reursive reord semantis of objets revisited. Researh report 4199,INRIA, 2001. Preliminary version presented at ESOP'01, LNCS 2028.[14℄ S. Boulm�e. Sp�ei�ation d'un environnement de alul formel erti��e. PhD thesis, Universit�eParis VI, 2000.[15℄ Sylvain Boulm�e, Th�er�ese Hardin, and Renaud Rioboo. Modules, objets et alul formel. InJourn. Fran. des Lang. Appliatifs, 1999.[16℄ Gilad Braha. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheri-tane. PhD thesis, University of Utah, 1992.201



[17℄ Gilad Braha and William Cook. Mixin-based inheritane. In OOPSLA, volume 25(10) ofSIGPLAN Noties, pages 303{311. ACM Press, 1990.[18℄ Gilad Braha and Gary Lindstrom. Modularity meets inheritane. In Proeedings of theIEEE Computer Soiety International Conferene on Computer Languages, pages 282{290,Washington, DC, 1992. IEEE Computer Soiety.[19℄ Lua Cardelli. Program fragments, linking, and modularization. In 24th symp. Priniples ofProgr. Lang., pages 266{277. ACM Press, 1997.[20℄ Lua Cardelli, J. Donahue, L. Glassman, M. Jordan an B. Kalsow, and G. Nelson. Modula-3 report (revised). Tehnial Report 52, Digital Equipment Corporation Systems ResearhCenter, 1989.[21℄ Lua Cardelli and Xavier Leroy. Abstrat types and the dot notation. In M. Broy andC. B. Jones, editors, Proeedings IFIP TC2 working onferene on programming onepts andmethods, pages 479{504. North-Holland, 1990. Also available as researh report 56, DECSystems Researh Center.[22℄ Thierry Coquand and G�erard Huet. The alulus of Construtions. Inf. and Comp.,76(2/3):95{120, 1988.[23℄ Judia�el Courant. An appliative module alulus. In Theory and Pratie of Software De-velopment 97, Leture Notes in Computer Siene, pages 622{636, Lille, Frane, April 1997.Springer-Verlag.[24℄ Judia�el Courant. Un alul de modules pour les syst�emes de types purs. Th�ese de dotorat,Eole Normale Sup�erieure de Lyon, 1998.[25℄ Guy Cousineau, Pierre-Louis Curien, and Mihel Mauny. The ategorial abstrat mahine.Siene of Computer Programming, 8(2):173{202, 1987.[26℄ Karl Crary, Robert Harper, Perry Cheng, Leaf Petersen, and Chris Stone. Transparent andopaque interpretations of datatypes. Tehnial Report CMU{CS{98{177, Carnegie MellonUniversity, 1998.[27℄ Karl Crary, Robert Harper, and Sidd Puri. What is a reursive module? In Prog. Lang.Design and Impl., pages 50{63. ACM Press, 1999.[28℄ Derek R. Dreyer, Karl Crary, and Robert Harper. A type system for higher-order modules.In symp. Priniples of Progr. Lang., 2003.[29℄ Derek R. Dreyer, Robert Harper, and Karl Crary. Towards a pratial type theory for reursivemodules. Tehnial Report CMU{CS{01{112, Carnegie Mellon University, Pittsburgh, PA,Marh 2001.[30℄ Domini Duggan. A mixin-based, semantis-based approah to implementing modular reusabledomain-spei� programming languages. In Europ. Conf. on Objet-Oriented Progr., 2001.[31℄ Domini Duggan and Constantinos Sourelis. Mixin modules. In Int. Conf. on FuntionalProgr., pages 262{273. ACM Press, 1996.[32℄ Domini Duggan and Constantinos Sourelis. Reursive modules and mixin-based inheritane.Unpublished draft, 2001.[33℄ Levent Erk�ok, John Launhbury, and Andrew Moran. Semantis of �xIO. In Fixed Points inComp. S., 2001.[34℄ Matthew Flatt. PLT MzSheme: language manual. Tehnial Report TR97-280, Rie Univer-sity, 1997.[35℄ Matthew Flatt. Programming Languages for Reusable Software Components. PhD thesis, RieUniversity, 1999. 202



[36℄ Matthew Flatt and Matthias Felleisen. Units: ool modules for HOT languages. In Prog.Lang. Design and Impl., pages 236{248. ACM Press, 1998.[37℄ Jean-Yves Girard. Interpr�etation fontionnelle et �elimination des oupures de l'arithm�etiqued'ordre sup�erieur. Th�ese d'�Etat, Universit�e Paris VII, 1972.[38℄ Neal Glew. A theory of seond-order trees. In Daniel Le M�etayer, editor, Europ. Symp. onProgr., volume 2305 of LNCS, pages 147{161. Springer-Verlag, 2002.[39℄ Dan Grossman, Greg Morrisett, and Steve Zdanewi. Syntati type abstration. ACMTrans. Prog. Lang. Syst., 22(6):1037{1080, 2000.[40℄ Robert Harper and Mark Lillibridge. A type-theoreti approah to higher-order modules withsharing. In 21st symp. Priniples of Progr. Lang., pages 123{137. ACM Press, 1994.[41℄ Robert Harper, John C. Mithell, and Eugenio Moggi. Higher-order modules and the phasedistintion. In 17th symp. Priniples of Progr. Lang., pages 341{354. ACM Press, 1990.[42℄ Robert Harper and Benjamin Piere. A reord alulus based on symmetri onatenation.In symp. Priniples of Progr. Lang., pages 131{142, Orlando, Florida, 1991.[43℄ Robert Harper and Chris Stone. An interpretation of standard ML in type theory. TehnialReport CMU{CS{97{147, Carnegie Mellon University, 1997.[44℄ Masatomo Hashimoto and Atsushi Ohori. A typed ontext alulus. Tehnial report, KyotoUniversity, 1997.[45℄ Tom Hirshowitz and Xavier Leroy. Mixin modules in a all-by-value setting. In Daniel LeM�etayer, editor, Europ. Symp. on Progr., volume 2305 of LNCS, pages 6{20, 2002.[46℄ Tom Hirshowitz and Xavier Leroy. Mixin modules in a all-by-value setting. Long version of[45℄, 2002.[47℄ Tom Hirshowitz, Xavier Leroy, and J. B. Wells. A redution semantis for all-by-value mixinmodules. Researh report RR-4682, INRIA, January 2003.[48℄ Java. http://java.sun.om.[49℄ Javabeans. http://java.sun.om/beans.[50℄ Xavier Leroy. Typage polymorphe d'un langage algorithmique. Th�ese de dotorat, Universit�eParis VII, 1992.[51℄ Xavier Leroy. Manifest types, modules, and separate ompilation. In 21st symp. Priniples ofProgr. Lang., pages 109{122. ACM Press, 1994.[52℄ Xavier Leroy. Appliative funtors and fully transparent higher-order modules. In Pro. 22ndsymp. Priniples of Programming Languages, pages 142{153. ACM Press, 1995.[53℄ Xavier Leroy. A syntati theory of type generativity and sharing. Journal of FuntionalProgramming, 6(5):667{698, 1996.[54℄ Xavier Leroy. A modular module system. J. Fun. Progr., 10(3):269{303, 2000.[55℄ Xavier Leroy, Damien Doligez, Jaques Garrigue, Didier R�emy, and J�erôme Vouillon. TheOCaml 3.06 referene manual, 2002. Available at http://aml.inria.fr/.[56℄ Mark Lillibridge. Transluent Sums : a Foundation for Higher-Order Module Systems. PhDthesis, Shool of Computer Siene, Carnegie Mellon University, 1997.[57℄ M.D. MIlroy. Mass produed software omponents. Report on a Conferene of the NATOSiene Committee, 1968. 203



[58℄ Robin Milner, Mads Tofte, Robert Harper, and David MaQueen. The De�nition of StandardML (revised). The MIT Press, 1997.[59℄ John C. Mithell. On the equivalene of data representations. In V. Lifshitz, editor, Arti�ialintelligene and mathematial theory of omputation, pages 305{330. Aademi Press, 1991.[60℄ Martin Odersky, Vinent Cremet, Christine R�ol, and Matthias Zenger. A nominal theory ofobjets with dependent types. FOOL'03.[61℄ Chris Okasaki. Purely Funtional Data Strutures, hapter 10. Cambridge University Press,1998.[62℄ Virgile Prevosto and Damien Doligez. Algorithms and proofs inheritane in the Fo language.??, 2002.[63℄ Didier R�emy. Typing reord onatenation for free. In Carl A. Gunter and John C. Mithell,editors, Theoretial Aspets Of Objet-Oriented Programming. Types, Semantis and LanguageDesign. MIT Press, 1993.[64℄ Kristo�er H. Rose. Expliit yli substitution. Unpublished, Marh 1993.[65℄ Claudio V. Russo. Types for Modules. PhD thesis, University of Edinburgh, 1998.[66℄ Claudio V. Russo. Reursive strutures for Standard ML. In Int. Conf. on Funtional Progr.,pages 50{61, 2001.[67℄ Masahiko Sato and Rod Burstall. Expliit environments. In First International Workshop onExpliit Substitutions: Theory and Appliations to Programs and Proofs, 1998.[68℄ Masahiko Sato, Takafumi Sakurai, and Rod Burstall. Expliit environments. In Int. Conf. onTyped Lambda Caluli and Appl., 1999.[69℄ Jo~ao Costa Seo and Lu��s Caires. A basi model of typed omponents. In Europ. Conf. onObjet-Oriented Progr., volume 1850, pages 108{128, 2000.[70℄ Peter Sewell. Modules, abstrat types, and distributed versioning. In symp. Priniples ofProgr. Lang., 2001.[71℄ Zhong Shao. Transparent modules with fully syntati signatures. Tehnial ReportYALEU/DCS/TR{1181, Yale University, 1999.[72℄ Chris Stone. Singleton kinds and singleton types. PhD thesis, Carnegie Mellon University,2000.[73℄ B. Stroustrup. The C++ Programming Language. Addison-Wesley, 2 edition, 1991.[74℄ Clemens A. Szyperski. Import is not inheritane; why we need both: Modules and lasses. InEurop. Conf. on Objet-Oriented Progr., volume 615 of LNCS, pages 19{32, 1992.[75℄ J. B. Wells and Ren�e Vestergaard. Conuent equational reasoning for linking with �rst-lassprimitive modules. Long version of [76℄.[76℄ J. B. Wells and Ren�e Vestergaard. Equational reasoning for linking with �rst-lass primitivemodules. In Europ. Symp. on Progr., volume 1782 of LNCS, pages 412{428. Springer-Verlag,2000.[77℄ Benjamin Werner. Une th�eorie des onstrutions indutives. PhD thesis, Universit�e Paris VII,1994.[78℄ Andrew K. Wright and Matthias Felleisen. A syntati approah to type soundness. Inf. andComp., 1992. 204


