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A faire
Graph subtyping In the ruleWf-Mixin, it is not ne
essary to 
he
k that the graph has sour
esin I and targets in O, sin
e more edges would not break safety.Generativity What happens if datatype and re
ord type de
larations are not generative? Isthis the end of fun
tional languages? Answer of Xavier: Harper et al. believe so, I don't, I ratherbelieve that abstra
tion is important.Generativity seen as e�e
tful stati
 operation Can the e�e
ts of Dreyer et al. be related toSewell's interpretation of abstra
t types with � quanti�ers? Types should be 
omputed and � reallyhas the e�e
t of 
reating a new variable that 
an be extruded to the top level. A question is whereexa
tly should the � 
omputations be suspended, i.e. what are the lambdas for �, under whi
hnothing happens? Generative fun
tors for sure, at least. Unfortunately, Sewell's interpreteationprobably does not a

ount for appli
ative ones anyway.On Duggan and Sourelis The method of Duggan and Sourelis for proving the soundness of theirmixin modules 
ould 
ause problems with re
ursive types, sin
e nothing prevents type de�nitionsfrom being re
ursive. But in fa
t, only datatypes 
an be mutually re
ursive, so there are onlyiso-re
ursive types.Ohter problems in Sourelis' masters thesis. The syntax does not mention the inner keyword. Typestrengthening is unde�ned on mixin module types, and wrong on fun
tor types (
orre
ted in thepapers). Signature 
onstraint is present in the syntax, but not in the typing rules (
orre
ted in thepaper), nor in the dynami
 semanti
s (impli
itely eluded be
ause subj-red holds for the languagewithout abstra
tion).Type inferen
e for MML Polymorphism is not a

ounted for here. Type inferen
e would notbe satisfa
tory, without 
hanging a bit the syntax. We 
onje
ture that grouping outputs in single/ blo
k de�nitions in the 
orre
t order solves the problem.Xavier's leitmotiv about re
ursive modules La
ks of expressiveness in Dreyer, Crary, andHarper's theory:module re
 A :sigtype tval f : B.t -> tend= stru
t... 7



endand B :sigtype tval x : tval y : A.tend= stru
ttype t = intlet x = 1let y = A.f 2endThis program is ill-typed sin
e during the type-
he
king of y, there is no way to identify t, int andB.t. Mixin modules provide a way to 
ode su
h programs in a more 
exible way.En
oding labeled and optional arguments Labeled argument 
an be en
oded in any mixinmodule 
al
ulus in fCMS ;m;CMSv ;MM;MML; : : :g, as follows (here in MM syntax). A fun
tionexpe
ting n arguments x1 : : : xn, labeled l1 : : : ln, and returning the result e, 
an be represented bya mixin of the shape hl1 . x1 : : : ln . xn;RES . ei. Labels are mandatory in fun
tion appli
ations(e li1 :ei1 : : : lin :ein), whi
h are en
oded as(
lose(e+ h�; li1 . ei1 : : : lin . eini)):RESOptional arguments are added to the en
oding by repla
ing 
omposition with overriding in theen
oding of fun
tion appli
ation, and putting the default arguments in the fun
tion, with the
orresponding labels.Subtyping mixin modules in a mobile 
ode s
enario: MoMiMo The nightmare paper byBettini, Bono, and Venneri [10℄ on depth subtyping for mixins in a distributed setting turns outtrivial with mixin modules. The problem with mixin 
lasses is that their types do not take the
ontravarian
e of methods into a

ount. But it exists indeed: 
oer
ing a method spe
i�
ation to asuper type may be unsafe, be
ause other methods may need the more pre
ise typing. For instan
e,assume a mixin 
lass with two methods f and g of types � and � 0, respe
tively, and assume g needsf to be of type � at most. Covariant subtyping of methods 
an leed to giving f a type � 00, supertype of � . But then, f 
an be overrriden by a method of type � 00, whi
h makes the implementationof g unsound. With mixin modules, the input type of f is subtyped 
ontravariantly, so this problemdoes not appear. Moreover, if subtyping points are 
learly identi�ed, as in MoMi, a me
hanismof impli
it 
oer
ions allows to solve the issue with mixin modules, quite straightforwardly. Wherea mixin module is expe
ted at type � , insert a 
oer
ion to type � . Graph subtyping and inputssubtyping 
an be assumed to be impli
it, sin
e they have no in
iden
e on the runtime. A 
oer
ionto type hI ;O;!i of any mixin module e is implemented by (e+ hI ; �i):dom(O). It adds the missinginputs at the right types, 
oer
es the present ones to the right types, and hides the unexpe
tedoutputs.Other possible designs (in future work se
tion) The thesis explores the solution of de�nitionreordering, but one 
ould imagine a more restri
tive, but perhaps more intuitive design where amixin module is a stru
ture with holes, where de�nitions 
annot be reordered. Composition thenattempts to just �ll the holes, in a deterministi
 way. The idea would be: as de�nitions know exa
tlytheir pla
e in the mixin module, maybe it is not ne
essary to in
lude dependen
y information intypes. 8



Extension of MML with additional type expressions In the style of Odersky et al. [60℄,it would probably be bene�
ial to MML to feature type expressions su
h as M1 +M2 and p.typeand 
lose M.EÆ
ien
y Splitting the 
lose operator into a reordering operator and an instantiation operatorallows to perform reordering only on
e.Extension of the result on letre
 Ajouter une 
onstru
tion blo
k(e; n) au 
al
ul �Æ t.q.� blo
k(2; n) est un lift 
ontext et un stri
t 
ontext,� Size(blo
k(e; n)) = n,� blo
k(v; n)�! v, pourvu que Size(v) = n,� Jblo
k(e; n)K = JeK, mais on perd la 
ompltude, probablement.Referen
es exemples Faire pointer les exemples du 
hapitre 
ompil vers la se
tion overview,des qu'elle sera prete.Order of evaluation Abstraire sur la fon
tion pour trouver un ordre d'evaluation 
orre
t etantdonne un graphe et les formes serait une bonne idee. On peut donner la fon
tion a
tuelle et lafon
tion qui ne depend que du graphe en exemple, et dire dans la 
ompilation qu'on 
hoisit ladeuxieme pour 
e 
hapitre.Modularizing the proofs Modulariser la preuve de surete sur les regles d'Ariola, notammentau niveau des dependan
es, 
lari�erait grandement le rapport entre les preuves de surete de MMet de �Æ. De toute fa
on, pour �Æ, faut la refaire, a 
ause de 
es regles justement.Headers Ajouter des headers, 
a fait va
hement mieux.Separate 
ompilation A paragraph explaining how to handle separate �les as 
losed mixins,and linking as a mixin 
omposition followed by a 
losure.Name spa
es In some future work se
tion, dis
uss the possibility of expli
it name spa
es insidemixin modules. The idea is to have semanti
 sub-modules, but with less rigid boundaries. Inparti
ular, 
losing a mixin modules 
ontaining name spa
es would 
atten them during 
omputation,and re
onstru
t them when building the �nal module. Thus a

ess in name spa
es works the sameas for modules, but dependen
ies 
an be �ner. Motivation is found in the �rst attempt to implementre
ursive polynomials.Notations Throughout the thesis, side-
onditions are written as premises for readability. [?℄means \please �nd a 
orre
t bibtex entry for this before giving the thesis to the referees" or\please verify this information ...". Insrer au premier endroit ou 
'est utilis la notation ? pourles ensembles disjoints, la notation j � j pour le 
ardinal d'un ensemble et la longueur d'une liste.Rempla
er presque partout \variable" par \identi�er"? La 

he est parse droite. On utiliseplutt la syntaxe OCaml que la syntaxe SML. Substitution fx 7! yg signi�e que x rempla
e y.Meta-galits : =def signi�e \is de�ned as" et � signi�e \is synta
ti
ally equal to". Homognit desmots-
lefs dans la se
tion type-
omponents et overview mixins. Quand est-
e que j'ai suppos qu'ily a des types produits, trouver et le dire. Faire plusieurs passes pour vri�er que 
es 
onventionssont respe
tes. Rempla
er les \\ \noindent par \linebreak. Priorits: d
rire au dbut les prioritsimpli
ites, notamment la sle
tion : a priorit sur tout.9
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Introdu
tion: linguisti
 
onstru
tsfor 
ode reuseThe in
reasing size and 
omplexity of programs 
ause important pragmati
 industrial problems.Maintenan
e be
omes a full time task, sometimes almost unmanageable, and safety or 
orre
tnessoften happens to be impossible to prove. At the same time, more and more formerly human jobsare done ele
troni
ally, and it therefore be
omes more important that programs really do whatthey are expe
ted to. An airplane pilot program, an underground driver program, or to a leastextent a train booking program, have to be 
orre
t. A natural idea to solve this problem { and itessentially was born 
enturies ago { is to divide problems into smaller, easier to solve ones, and toexploit and share the results. In software engineering, this 
an be done at several levels.Language abstra
tions A �rst level is provided by various forms of abstra
tion in the 
onsideredlanguage. As de�ned by Leroy [51℄,\Modularization is the pro
ess of de
omposing a program in small units (modules)that 
an be understood in isolation by the programmers, and making the relationsbetween these units expli
it to the programmers."Modules, fun
tors, or 
lasses for example, o�er a way to modularize programs. But fun
tions,or extensible datatypes, may perfe
tly be seen as modularization 
onstru
ts. Fun
tions, forinstan
e allow to write 
ode only on
e, whereas it otherwise ought to be inlined at everypla
e of use. This level has been and is still being widely explored by the programminglanguage resear
h 
ommunity. However, it only promotes 
ode reuse at the level of oneprogram. With only fun
tions or obje
ts, one 
annot reuse any 
ode from another program,whereas di�erent programs often need the same kind of fun
tionalities, su
h as graphi
alinterfa
e tools. Sharing su
h 
ode between them requires swit
hing to the level of separate
ompilation.Libraries From [51℄ again,\Separate 
ompilation is the pro
ess of de
omposing a program in small units (
om-pilation units) that 
an be type-
he
ked and 
ompiled separately by the 
ompiler,and making the relations between these units expli
it to the 
ompiler and linker."If a program is divided in several 
ompilation units, some of these may be put in a repository,from where other programs 
an use them. Su
h 
ompilation units are usually 
alled libraries,and provide means of reusing 
ode a
ross programs. Nevertheless, this does not allow full
ode reuse yet, be
ause ea
h kind of program has its parti
ular best programming language.If graphi
al interfa
es are often written in obje
t-oriented languages, this may not be the
ase for CPU intensive probabilisti
 simulations for instan
e. However, a simulation programwould be perfe
tly wrapped in a graphi
al interfa
e.Components The idea of the third and last level is to allow that, and even more, to allow it a
rossdi�erent sites. As advo
ated by M
Ilroy at the 1968 NATO 
onferen
e [57℄, programs shouldbe mainly built by assembling o�-the-shelf 
omponents { supplied by a software 
omponents11



industry, without having to modify their sour
e 
odes. (This is often 
alled \bla
k box".)The 
omponent-based approa
h bases on two main ideas.� First, di�erent parts of a program may be written in di�erent languages, keeping somesort of 
ompatibility between them, thanks to an 
ommon interfa
e de�nition language.� Se
ond, 
omponents are a

essible by various ways, in
luding the internet. The programmay 
all pro
edures de�ned in a remote 
omponent, and even ask for some kind of
omponents more or less automati
ally.In a 
omponent approa
h, 
riti
al parts of programs may be written in a very fast language,whereas the user interfa
e, or 
ommuni
ation parts for example, 
an be written in a moreexpressive { or even dedi
ated { high-level language. More than that, the program may relyon previously written 
omponents, without having to bother with their lo
ations or imple-mentations. Nevertheless, safety properties of whole programs are diÆ
ult to prove, sin
e itrequires the ability to analyze programs in di�erent languages within the same framework,and to model the proto
ols for a

essing remote 
omponents. Eventually, as a matter offa
t, most 
omponent ar
hite
tures are more or less obje
t-oriented (see e.g. [49℄), in that a
omponent looks very mu
h like a 
lass. This 
auses problems when writing 
omponents inlanguages with drasti
ally di�erent programming paradigms, su
h as fun
tional languages.These in
reasingly ambitious proposals are very promising for what 
on
erns 
ode reuse and redu
-tion of program sizes, but one has to 
onsider them with respe
t to safety. The �rst level has beenextensively studied from this standpoint, spe
i�
ally through the use of sound type systems: thereare well-known ways for ensuring stati
ally (i.e. at 
ompilation time) that an obje
t-oriented or afun
tional program will not 
rash (see e.g. [50, 78, 1℄). The se
ond level has been investigated, andsound type systems have been set up, whi
h are able to stati
ally prove that a separately 
ompiledprogram will not go wrong [51, 40, 19, 56, 65, 70℄. The 
omponent approa
h is its early phase offormalization [69℄, and types or safety seem to hardly be under 
onsideration yet.We are 
on
erned with the �rst and se
ond level, mainly. The work on designs for safe separate
ompilation [51, 40, 56℄ has lead to introdu
e linguisti
 
onstru
ts for 
onsidering 
ompilation unitsas spe
ial datastru
tures, 
alled modules. Modules are therefore a bit ubiquitous, be
ause they maybe seen either as language 
onstru
ts, almost exa
tly as say, fun
tions, or as a kind of interfa
ebetween the program and the real world, here the operating system. In the OCaml language[55℄ for instan
e, 
ompilation units are 
onsidered exa
tly as modules. In SML, they are 
loserto stru
tures (the 
ontents of a module). A 
onsequen
e is that a language with modularization
onstru
ts is a language featuring separate 
ompilation, provided the 
onsidered 
onstru
ts supportit. This allows studies of linguisti
 modularization 
onstru
ts supporting separate 
ompilation tobe viewed as sudies about 
ode reuse inside the 
onsidered language, and therefore to be notablysimpli�ed. Indeed, instead of setting up a 
ompli
ated framework where the �le system, shell
ommands, obje
t �les, are modeled, one may study linguisti
 modularization 
onstru
ts, andthen argue that they support separate 
ompilation, as done in [51, 65℄ for example. Two mainideas for su
h linguisti
 modularization 
onstru
ts have been explored, at least.Classes and mixins Languages like Java [48℄ base their modularization pro
ess on 
lasses andobje
ts. Obje
ts are basi
ally re
ords, with a set of methods to operate on them. For example,a window obje
t would typi
ally be a re
ord of a position, a size and some sub-obje
ts, withmethods moving it, showing it, et
. . . Classes are obje
t generators, and the idea is that theymay be in
rementally re�ned. Methods may be added and rede�ned as needed, thanks tothe 
omplex me
hanism of inheritan
e [48, 55℄. In order to de�ne a new 
lass, the programer
an base on an existing 
lass, without having to edit the initial 
ode manually. Only themodi�
ations have to be written. Mixins are an extension of 
lasses, where 
lass extensionsare parameterized over the extended 
lass, and thus may be applied to several base 
lasses.Important resear
h has been done on su
h languages, and they are theoreti
ally well-known.However, this approa
h 
onstrains the language very mu
h: a module is a 
lass, and all partsof the program using this module have to be written in obje
t-oriented style. This may12



impede the eÆ
ien
y, sin
e obje
t-oriented languages 
annot pretend to 
ompare with C on
riti
al domains, su
h as large probabilisti
 simulations, or symboli
 
omputation. Moreover,separate 
ompilation for 
lasses is rather limited, sin
e for instan
e Java mutually re
ursive
lasses 
annot be 
ompiled separately. Consequently, obje
t-oriented languages often rely ona system of pa
kages in order to group related 
lasses together.Modules Another approa
h investigates modules systems. A module system wraps the program-ming language, the 
ore language, with a typi
ally se
ond-
lass module language. The modulelanguage is in 
harge of all the gluing operations, and the 
ore language handles real 
om-putation. Most module systems are largely independent from the underlying 
ore language[54℄, thus not 
onstraining in any way the employed programming paradigm. Furthermore,modern module systems provide astra
t data types, thus allowing for full abstra
tion overimplementation details, and guaranteeing that invariants of a module are not broken outsideit. The main drawba
k of module systems is their la
k of 
exibility. There is a tensionbetween the need to preserve safety and the 
onvenien
e of being able to write programsa

ording to the intuition. Early module systems su
h as the one of C are unsound, and la
kparameterization, sin
e they entirely rely on the �le system. But even modern and sophis-ti
ated module systems, su
h as the one of ML, severely limit the programmer's intuitions,for instan
e in not allowing mutually re
ursive de�nitions to span module boundaries.None of these two ideas really seems to be the ultimate modularization 
on
ept, although bothpossess features that are ne
essary for su
h a 
on
ept. Classes allow very 
exible in
rementalprogramming, sin
e they allow to spe
ialize a 
lass without editing its sour
e 
ode, and only writingthe modi�
ations. Modules have the advantage to be independent of the underlying language, andto provide 
onvenient abstra
tion fa
ilities.This thesis examines an atlernative, hybrid idea of modularization 
on
ept, 
alled mixin modules.The original idea appeared in the early 90's with Bra
ha, Cook, and Lindstrom [17, 16, 18℄, andwas further developed by Duggan and Sourelis [31℄, Flatt and Felleisen [36, 35℄, An
ona and Zu

a[3, 6℄, and Wells and Vestergaard [76℄. It 
onsists in a module language { a modularization 
on-stru
t independent from the 
ore language { with features for in
remental programming, inspiredby 
lasses and mixins. Basi
ally, a mixin module is a 
olle
tion of named de�nitions and de
lara-tions. De
larations may be �lled with de�nitions by 
omposition with another mixin module. Thede�nitions of one mixin module then �ll the 
orresponding de
larations of the other one, a

ordingto their names. De�nitions are not stati
ally bound to one another, and may be overridden.The remainder of this thesis is organized as follows.Chapter 1 des
ribes known module languages and analyzes them from the viewpoints of 
exibilityand safety. A 
olle
tion of features is presented, that have been 
onsidered ne
essary somewhere inthe literature. Then, two widely used module systems are brie
y re
alled, whi
h serves as a basisfor dis
ussing their respe
tive la
ks of expressiveness in the last se
tion.Chapter 2 summarizes previous work on mixins modules, from Bra
ha's seminal thesis [16℄, to thelatest theoreti
al formalizations [6, 76, 45℄.Chapter 3 de�nes MM, our language of mixin modules, and its operational semanti
s. The seman-ti
s is de�ned thanks to the introdu
tion in the language of a new 
onstru
t let re
 for bindingmutually re
ursive de�nitions, whi
h is more general than most su
h other ones.Chapter 4 presents and proves sound a simple type system for MM, dealing with the re
ursionproblem in an elegant manner.Chapter refse
tion-implementation elaborates an implementation strategy for the let re
 
onstru
t.Its presentation abstra
ts over the implementation of the rest of the language.Eventually, 
hapter 8 examines the remaining problems and ideas for solving them.13
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Part IModularity and mixin modules
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Chapter 1Modularity and 
ode reuse
1.1 MotivationEn
apsulation, abstra
tion, hierar
hy, ... 
f Bra
ha, Wells, Harper, ...Transition: a 
onsequen
e of modularization is that programs (or programmers if the 
onstru
tionsfor modularization are extra-linguisti
) have to perform the assembly operations to 
onstru
t theintended 
ode out of pie
es. These operations are subje
t to failure, and it is diÆ
ult to set upsound type systems for all of them. As a 
onsequen
e, more 
exible modularization 
onstru
ts(su
h as obje
ts or 
omponents) provide less abstra
tion me
hanisms and safety properties thatmore sound ones (su
h as ML modules).1.2 Safety versus 
exibility1.2.1 The diamond import problem1.2.2 The extensibility problem
f Flatt...1.2.3 The modi�ability problem
f FOC1.2.4 The re
ursion problem
f ML1.3 An overview of mixin modulesA 
hara
terization of mixin modules In [6℄, An
ona and Zu

a give a semanti
 
hara
teri-zation of a system of mixin modules, in terms of a 
hara
terization of module systems, and somerequested features. 17



De�nition 1 (Module system) A module system is a language dedi
ated to modularization,built on top of a 
ore language, and meeting the two following requirements.� First, the module system must be as independent as possible from the 
ore language. Ideally,it 
an be instantiated over several 
ore languages, in a systemati
 way.� Se
ond, a module should 
orrespond to a 
ompilation unit, thus providing for separate 
om-pilation.Typi
ally, module languages are expe
ted to feature parameterization (the ability to use a modulein di�erent 
ontexts). Then, a mixin module system is de�ned as module system providing twoparti
ularly important features for modularization.De�nition 2 (Mixin modules) A module system supports mixin modules if it supports 
ross-module re
ursion and overriding.Presentation by example [Maybe split this in : here, example hiding the problems with letre
, moving them to an overview subse
tion in the se
tion on MM℄1.3.1 Mixin modulesA mixin module is an unordered, unevaluated, possibly in
omplete module: it is a set of namedde�nitions and de
larations.Consider the following mixin module, in an OCaml-like syntax:mixin A =importval x : intval f : int -> intexportdefine y = (g 0) + xdefine g z = ... f ...endThe de
laration val x : int is used by the de�nition define y = (g 0) + x.The de
laration val f : int -> int is used by the de�nition define g z = ... f ...The s
ope is mutually re
ursive, as illustrated by the de�nition define y = (g 0) + x, dependingon g.The operator for linking mixin modules is 
omposition +, whi
h 
ombines two mixin modules,�lling the de
larations of one argument with the de�nitions of the other, and vi
e versa. Considerthe following mixin module.mixin B =importval y : intval g : int -> intexportdefine x = y + 1define f z = ... g ...end 18



The 
omposition mixin C = A + B of A and B is equivalent to the mixin module:mixin C =importexportdefine y = (g 0) + xdefine g z = ... f ...define f z = ... g ...define x = y + 1endThe de
larations of one mixin module are repla
ed with the similarly named de�nitions of theother. The export se
tion is the 
on
atenation of the export se
tions of A and B. The 
ode remainsunevaluated, so the evaluation of C does not go wrong. However, there is an ill-founded re
ursionbetween x and y, and if we try to evaluate the 
ode 
ontained by C, a dynami
 error will o

ur.Fortunately, mixin modules feature late binding: one may delete the de�nition of x in B, thanks tothe delete operator |-.mixin B' =importval x : intval y : intval g : int -> intexportdefine f z = ... g ...endA new de�nition for x may be de�ned in another mixin module:mixin D = importexportdefine x = 0endThe mixin module E = A + B' + D is equivalent tomixin E = importexportdefine y = (g 0) + xdefine g z = ... f ...define f z = ... g ...define x = 0endNow, all holes are �lled, and the mixin module 
an be instantiated. It is the role of the 
loseoperator, whi
h generates a module out of a mixin module without holes: module M = 
lose E.The semanti
s of 
lose in
ludes a reordering of de�nitions, in order to avoid referen
es to a notyet evaluated de�nition. The initial ordering is kept, as far as possible. Here, it results in onlymoving the de�nition of y, be
ause it needs the values of g and x (and possibly f) to evaluate. Thede�nition module M = 
lose E is equivalent to:module M = stru
tlet re
 g z = ... f ... 19



f z = ... g ...let x = 0let y = (g 0) + xendThe evaluation of M 
onsists in su

essively evaluating the de�nitions, and returning the evaluatedmodule:module M = stru
tlet re
 f z = ... g ...and g z = ... f ...let x = 0let y = Vend(Where V is the result of (g 0) + x.)We refer to [16, 6℄ for more details on mixin modules and other operators.1.3.2 An extended binding 
onstru
tIn MM, the de�nitions of x and y 
ould not have been in
luded in the mutually re
ursive de�nitionof f and g. Indeed, the let re
 
onstru
t of ML only allows to bind synta
ti
 fun
tions (or
onstru
ted values in the 
ase of OCaml). Therefore, in the 
ase of more 
omplex dependen
iesbetween the de�nitions of a mixin module, instantiation would lead to nested let and let re
bindings. In order to avoid this 
ompli
ation, our 
al
ulus features a slightly more powerful let re
than that of ML, whi
h is reminis
ent of monadi
 re
ursive bindings [33℄. It evaluates the de�nitionsfrom left to right, and basi
ally only goes wrong when the value of a variable de�ned to the rightof the 
urrent de�nition is needed. For instan
e, the de�nitionlet re
 f x = ... g ...g x = ... f ...x = 0y = (g 0) + xevaluates 
orre
tly: f, g, and x are already values, and y is de�ned last.Noti
e that the body of f makes a referen
e to g, whi
h is de�ned to the right of it. We 
allsu
h a referen
e a forward referen
e. A forward referen
e is synta
ti
ally 
orre
t if it points to anexpression of predi
table shape. In the above example, the de�nition of g is a synta
ti
 abstra
tion,whi
h is 
onsidered an expression of predi
table shape. A forward referen
e is semanti
ally 
orre
tif it does not require the value of the referen
ed variable. In the above example, the de�nition ofg is already evaluated, so it doesn't need to inspe
t the value of f.1.3.3 Typing issuesOur let re
 is not mu
h more powerful than that of ML. Its main interest is that 
omplexseries of sequential let bindings and mutually re
ursive let re
 bindings are now written asstraightforward de�nitions. Its typing is mu
h less straightforward of 
ourse, sin
e it requiresthe analysis of dependen
ies between the de�nitions. This analysis has to go beyond immediatedependen
ies, as shown by the following example.20



Example 1 Consider the following binding, where bra
es en
lose re
ords and X and Z are re
ord�eld names.let re
 x = { X = z }y = x.X.Zz = { Z = 0 }There is a forward referen
e from x to z, but the de�nition of z is of predi
table shape, so theexpression is synta
ti
ally 
orre
t. Moreover, there are no forward referen
es needing the value ofthe referen
ed de�nition. One 
ould expe
t it to be a suÆ
ient 
ondition for the binding not to gowrong be
ause of dependen
ies. Unfortunately, the evaluation of the de�nition of y needs both thevalues of x and z.Roughly, the 
orre
t requirement is that no forward referen
e path starts with a stri
t dependen
y.We say that a de�nition x = M stri
tly depends on another one y = N, when the evaluation ofM might require the value of y. What does \might require" mean here? It is a very restri
tivesynta
ti
 approximation: the only 
ase where we dete
t that an expression M will not need thevalue of one of its free variables x is when M is a value of predi
table shape. In example 1, there is aforward referen
e path from x to z, whi
h does not end with a stri
t dependen
y, sin
e { X = z }is a value of predi
table shape. However, this path extends to a forward referen
e path from y toz, whi
h starts with a stri
t dependen
y. Therefore, the binding is reje
ted by the type system.We have seen that mixin modules are instantiated by the 
lose operator, whi
h generates a bindingout of them. In order to stati
ally ensure that this binding is 
orre
t, the type system keeps tra
k ofthe dependen
ies between mixin 
omponents. The type of a mixin 
ontains both type informationabout its 
omponents, and a graph representing their dependen
ies. When 
omposing two mixinmodules, the type system takes the union of their dependen
y graphs. When a 
on
rete mixin (amixin with no de
larations, only de�nitions), gets instantiated, its graph is required not to have
y
les with stri
t dependen
ies. This is suÆ
ient: if there is no 
y
le with stri
t dependen
ies, thenan ordering of de�nitions 
an be found, su
h that no forward referen
e path starts with a stri
tdependen
y. The 
lose operator �nds this ordering.1.3.4 What is a mixin module not?A fun
torThere are fa
ilities to extend an existing fun
tor with new �elds. However, this kind of extensiondi�ers in at least two important ways from the way a mixin extends another mixin.First, existing �elds will be shadowed by new de�nitions with the same name. With mixin modules,depending on the operator used for the extension, a previous �eld with the same name either yields a
lash or is overridden. In other words, mixin 
omponents are late-bound together, whereas module
omponents are stati
ally bound.As an example, 
onsider the following module:module A =stru
tlet f x = xlet x = f 0endIf we try to extend it with a mixin module, we de�ne:21



mixin B =importexportdefine f x = x + 1endAnd then, we 
ompose the two mixin modules by overriding (A <- B) to obtain a new mixin moduleequivalent toimportdefine x = f 0define f x = x + 1endThe previous value of f has been removed, and instantiating the result yields a module equivalenttostru
tlet f x = x + 1let x = 1endIf 
onversely we try to extend it with a fun
tor, we rather write:module B' (X : sig val x : int end) = stru
tin
lude Xlet f x = x + 1endThen, we apply the fun
tor (B'(
lose A)). This time the result is equivalent tostru
tlet f x = xlet x = f 0let f x = x + 1endwhi
h evaluates tostru
tlet x = 0let f x = x + 1endAnother di�eren
e between fun
tors and mixin modules is that, a mixin module really extendssomething, whereas a fun
tor 
ould rather be said to 
oer
e it �rst, and then extend the result.Indeed the argument of a fun
tor is as
ribed a signature, and during fun
tor appli
ation, is 
oer
edto this signature. As a result, if an argument with more �elds than expe
ted is passed as anargument to a fun
tor (that extends its argument), the result will not mention the unexpe
ted�elds.Consider for example the fun
tor 22



module F(X : sig end) = stru
tin
lude Xendand the mixin modulemixin A =importexportendWhen applied to a module X = stru
t let x = 0 end, the fun
tor F generates an empty module,thus not extending X at all.On the 
ontrary, when 
omposed with a mixin module X = import export define x = 0 end,the mixin module A evaluates to a mixin module equivalent to X, thus really re-exporting all the
omponents of it.A mixin 
lassA mixin 
lass is basi
ally a 
lass extension parameterized over the super
lass it extends. It is aspe
ial kind of fun
tion over 
lasses. At �rst glan
e, a �rst di�eren
e appears: mixin 
lasses are tiedto the obje
t-oriented programming paradigm. True, but not enough to make a 
lear distin
tion:a 
lass exports some de�nitions, as a module does, and �eld de�nitions require some 
omputationto happen at initialization time, whi
h is pretty mu
h the kind of intera
tion mixin modules havewith their 
lients.A deeper di�eren
e is that (at least our) mixin modules feature 
omponent reordering a

ording totheir dependen
ies, thus allowing to automati
ally rearrange almost any kind of program parts. Onthe 
lass side, no reordering of initialization 
omputations is performed, so mixin 
lasses are lessexpressive in this respe
t. Further, mixin modules allow to spe
ify the order in whi
h 
omputationsare performed, whi
h is not the 
ase with 
lasses.A

ording to Bra
ha [16℄, mixin module operators express inheritan
e me
hanisms in a �ner waythan mixin 
lasses operators. Spe
i�
ally, they allow to resolve 
on
i
ts during multiple inheritan
emore 
exibly than with mixin 
lasses. However, sin
e then, new notions of mixin 
lasses haveappeared, whi
h 
ould invalidate this 
laim [35℄.On the whole, the underlying fundamental idea of any module system is 
onservativity. Conserva-tivity is a semi-formal term designing the property that any running 
ode obtained by 
ombinationof modules 
ould have been produ
ed without the module system, by a monolithi
 program. Thisnotion 
on
erns the stru
ture of the program as well as the eÆ
ien
y, and it requires that, as faras possible, a module system only does modularization, and that it does not de
rease the overalleÆ
ien
y of programs. Mixin 
lass-based systems are extensions of 
lass-based systems. In pra
-ti
e, it implies obje
t-oriented programming, so mixin 
lasses as a module system do more thanjust modularize some monolithi
 
ode. In theory, one 
ould use mixin 
lasses as a pure modu-larization 
onstru
t, but as su
h they are not expressive enough. Indeed, they hardly allow morethan grouped, parameterized de�nition of fun
tions with late binding and inheritan
e. This isquite powerful already, and roughly 
orresponds to Jigsaw plus initialization (see se
tion 2.1), butis not 
exible enough with respe
t to initialization. In programs, 
omputations 
an be arbitrarilyinterleaved with fun
tion de�nitions, and this should be re
e
ted by the module system.On the 
ontrary, some 
lass-based languages, su
h as C++ [73℄, allow to share some data betweenall instan
es of a same 
lass, through \stati
 members" de�nitions, whi
h mixin modules do notsupport dire
tly. 23
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Chapter 2A brief history of mixin modules
2.1 JigsawIn his PhD thesis [16℄ and the related arti
les with Cook [17℄ and Lindstrom [18℄, Bra
ha presentsfor the �rst time the idea of mixins as a modularity me
hanism relatively independent from thebase language { the Jigsaw \framework". His mixins are partially de�ned re
ords of named valuesunder a re
ursive s
ope. They are equipped with a set of novel operators on them, whi
h expressin a very 
lean way multiple inheritan
e with enhan
ed 
exibility, 
omponent sharing, renaming,hiding, and rede�nition (overriding).We brie
y give an idea of the language. Its syntax is in �gure 2.1. We abstra
t over typing issues.A module is a sequen
e of 
omma separated de
larations (a label X), and de�nitions def , whi
h
an be 
ore de�nitions X = E or module de�nitions X = e. De�nitions must bind values, and mayrefer to one another and to de
larations. Modules must be 
losed: they must not have any freevariable. This is really simple yet: no virtual de�nitions, no distin
tion between instan
e variablesand methods, no \friend" de
larations, et
. . . The 
omplexity and expressiveness of Jigsaw residesin the operator suite.Module 
omposition jj has the e�e
t of �lling the holes (the de
larations) of both modules withthe de�nitions of the other, and vi
e versa. For example, if label X was de
lared in e1 and de�nedin e2, it is now de�ned in e1 jj e2, as in e2. Modules must not have any de�nition in 
ommon, onlyde
larations, possibly.Module overriding is similar, but modules may de�ne 
ommon labels. The ones from the rightargument repla
e the ones from the left argument. De�nitions are late bound by default: assumethat in e1, the de�nition of X makes a 
all to Y , and that Y is de�ned in both e1 and e2. Then,in any instan
e of e1� e2, the one and only Y de�nition available is the one from e2, and X 
allsit as well.There is a way to make binding stati
, through the freeze operator. After freezing a label Xin a module, it is still available to the outside world, but the other de�nitions of the modulesemanti
ally rather refer to a lo
al 
opy of it, whi
h 
annot be modi�ed anymore. The dualoperator freeze all ex
ept freezes all labels but the given ones.Name 
on
i
ts during a 
omposition e1 jj e2 may be solved in several basi
 ways. Assume forexample that the label X is de�ned in both e1 and e2.� If one of the 
on
i
ting de�nitions, say the one of e1, must be 
hosen as the �nal one for bothmodules (overriding the one of e2), then X may be deleted from e2 (e2 nX). This 
an bedone another way, in the 
ase where only a few de�nitions have to be kept from one module,25



Module: e ::= module binding1; : : : ; bindingn end Basi
 modulej e1 jj e2 Compositionj e1� e2 Overridej e freezeX Freezingj e freeze all ex
eptfX1 : : : Xng Complementary freezingj e nX Deletionj e �X1 : : : Xn Proje
tionj e hideX Hidingj e showfX1 : : : Xng Showj e[X1 7! X2℄ Renamingj e 
opyX asY Copy asInstan
e: i ::= instantiate eDe�nition sequen
e: binding ::= X j def Bindingdef ::= X = e j X = E De�nitionFigure 2.1: Syntax of Jigsawby the proje
tion operator, whi
h deletes all de�nitions of a module, ex
ept the given ones(ei �X1 : : :Xn).� If one of them, say X in e1, is the good one for the outside world, but the de�nition of X ine2 must still be referen
ed by the de�nitions of e2 after 
omposition, then X 
an be hidden ine2 (e2 hideX). Other 
omponents will keep their anonymous 
opy of it, but it will not appearin the interfa
e of the module, whi
h may safely be merged with e1. Similarly to deletion,this 
an be done another way, in the 
ase where only a few labels have to remain visible, bythe show operator, whi
h hides all 
omponents but the given ones.� If 
on
i
ting names have to be kept both, having di�erent 
apabilities, then de�nitions andde
larations may be renamed (ei[X 7! Y ℄). The new names must not be mentioned in theargument.Of 
ourse these operators may be used for di�erent purposes ; for example, renaming may be usedfor plugging a de�nition of a module in an input label of another module, even if they do notinitially have the same names.The last operator, 
opy, is not easy to understand ; espe
ially, it is not easy to see why it isimportant. Bra
ha takes the example of a mixin supposed to add borders to windows, in the
ontext of a window manager, and of an obje
t-oriented 
ore language. Let Border be a mixinde�ning the fun
tions display and display border, and de
laring only the missing fun
tiondisplay body. The fun
tion display su

essively 
alls display border and display body.Border = moduledisplay body,display () =display border () ;display body ()endNow we dispose of another mixin de�ning the fun
tions for windows. Assume it has been de�nedas follows. 26



Window = moduledisplay () =...endThe reasonable intention is to plug window.display in border.display body, keeping the nameborder.display. So a kind of renaming of display into display body in window is needed. But itis more 
ompli
ated than that. Other referen
es to display inside window should refer to the �naldisplay fun
tion, i.e. border.display, and that would 
ertainly not be the 
ase with renaming:they would point to the renamed window.display fun
tion. The expression 
opy display asdisplay body 
opies the body of display, giving it the label display body. It is then possible tooverride display with the de�nition from border, obtaining the expe
ted behaviour.Con
lusion From the standpoint of design, Jigsaw is rather 
onvin
ing: mixins are more powerfulthan 
lasses, without their traditional problems with binary methods, or multiple inheritan
e forexample. They move the expressive power from the basi
 
onstru
t to the operator set, resultingin a more 
exible design. But more generally, mixins are presented as being usable \to introdu
emodularity into a variety of languages, regardless of whether they support �rst 
lass obje
ts". Morethan that, it suggests that highly epxressive me
hanisms for modularization su
h as inheritan
e, latebinding, and so on, 
ould be exploited outside the 
ontext of obje
t-oriented languages. Indeed, oneof the main 
hara
teristi
s of obje
ts is self appli
ation, whi
h is not at all a ne
essity in Jigsaw.Bra
ha did not push this aspe
t of his work as mu
h as he 
ould have: the only examples andappli
ations given, in
luding a full 
edged implementation of Modula-� (an extension of Modula-3 [20℄), are obje
t-oriented. The extension of non obje
t-oriented languages is only informallysuggested.The framework has oÆ
ial weaknesses of 
ourse, su
h as the la
k of support for name based typing(type abbreviations, generative types), or for abstra
t data types.Other drawba
ks of Jigsaw are:� Modules do not 
ontain any free variable.� Modules 
ontain only values, whi
h almost redu
es mixin-based module systems to librariesof fun
tions. For example, if instantiation of a mixin requires some initialization 
ode to berun, it has to be done manually, whi
h breaks the abstra
tion power of mixins modules.� The semanti
s of Jigsaw is given by translation to an untyped �-
al
ulus with re
ords, andtyping rules are given. The type system is pretended to be sound, but there is no attemptto argue on that, and doubt remains about some oddities. For example, in the informaldes
ription, mixins look like 
lasses, with a global re
ursive s
ope, and in the formal de�nition,they are translated as re
ords of values. This leads to assume that the sour
e level re
ursives
ope of modules will be translated as self a

ess to 
omponents, by re
ord label, but thisdoes not appear at all in the translation.From the standpoint of implementation, interesting ideas are introdu
ed, espe
ially the notion ofdynami
 and stati
 o�sets for 
ompiling method 
alls. The implementation of the freeze operatorthough, seems strange, sin
e it does nothing, as if freezing would only a
t on the type system.Nevertheless, it seems that this does not �t the semanti
s.As a 
on
lusion, Jigsaw is not really usable dire
tly as a sound theoreti
al basis for mixin modules,but its design must be a guideline for our investigations.27



Core identi�ersx 2 Varsx 2 Names Module identi�erss 2 MVarss 2 MNames Type identi�erst 2 TVarst 2 TNames Constru
tors
 2 CNamesPath: p ::= � j s j p:sModule: Mt ::= stru
tM end j fun
tor(stru
ture ss : St)Mt j (Mt : St)j p j p(p) jM�(Mb)M jMt
Mt j 
los(Mt)Mixin body: Mb ::= val ff = �x:E j type tt j t is� jMb;Mb j �Module body: M ::= stru
ture ss =Mt j type tt j t = � j t is� jM ;M j DValue de�nition: D ::= fun f 1f = �x1:E1 jj : : : jj f 2f = �x2:E2j val xx = E j D;D j �Core: E ::= ? j x j p:x j p:
(E1 : : : En) j EE j �x:Ej letD inE j 
aseE of R1 0j0 : : : 0j0 Rn j innerMat
hing: R ::= P ) EPattern: P ::= x j p:
(x1 : : : xn)Module type: St ::= sigS end j funsig(stru
ture ss : St)St j S�(S)SSignature: S ::= type tt j t = � j t is� j val xx : �j stru
ture ss : St j S;S j �Core type: � ::= t j p:t j �1 ! �2Data type de�nition: � ::= 
(�1 : : : �n) j � [ �Figure 2.2: Syntax for DS2.2 Duggan and Sourelis' mixin modulesIn [31, 32℄, Duggan and Sourelis introdu
e a language of mixin modules, whi
h we will name DShere. It is a proposal for making ML modules more extensible. Their work is quite di�erent fromBra
ha's: they do not attempt to use his operators, ex
ept 
omposition and instantiation. A
onsequen
e is that their mixin modules do not feature renaming, deletion, or 
opy. However, theyfeature a more powerful { and more spe
i�
 to ML { version of 
omposition. Indeed, when twomixin modules A and B de�ne and export a fun
tion f , and when this fun
tion is de�ned withpattern-mat
hing in both mixin modules, then the 
omposition of A and B attempts to mergethose pattern-mat
hings, thus building a less partial f from the two initial ones. There are similarme
hanisms at the level of 
on
rete data types, building a new data type with the 
onstru
tors ofboth arguments. Also DS features a limited form of late binding, as explained below.2.2.1 Overview of the languageMore formally, DS is de�ned by the syntax in �gure 2.2. A distin
tion is made between names x, s,t and variables x , s , t , respe
tively for the 
ore language, for modules, and for types. A basi
 mixinmodule A =def M1�(Mb)M2 is de
omposed into three parts: the prelude M1, the body Mb, and theinitialization M2. The module bodies M1 and M2 are usual ML stru
ture bodies: they are lists ofnamed de�nitions, in
luding any 
ore language expression, mutually re
ursive fun
tions, modules,or types. Ea
h de�nition is bound both by a name and a variable. In a mixin module, bindingvariables are alpha-
onvertible, and binding names are not, be
ause linking mixin modules is based28



on names, as we will see. In A, the body Mb is a restri
ted form of stru
ture body: only synta
ti
fun
tions and ML-like data type de�nitions are allowed. Mixin modules 
an be merged togetherwith the 
omposition operator 
. The prelude and initialization parts of the two arguments aresequen
ed one after another, and the bodies are merged, in the following sense.� Two fun
tions de�nitions �x:E1 and �y:E2 bound to the same external name (whi
h are thenrequired to have the same internal variable), are merged into one fun
tion �x:Efinner 7!�y:E2g� Two data type de�nitions �1 and �2 bound to the same external name (whi
h are thenrequired to have the same internal variable), are merged into a single data type de�nition�1 [ �2, provided no 
onstru
tor names are de�ned twi
e.Thus, the 
omposition of two basi
 mixin modules M11 �(M1b )M12 and M21 �(M2b )M22 is(M21 ;M11 )�(M2b 
M1b )(M22 ;M12 );where 
 denotes the above des
ribed merging. Apart from the mixin bodies, the two arguments'
omponents should not intera
t, and their binding variables are required to be pairwise disjoint.Mixin modules 
ontain unevaluated 
ode, and the 
lose operator 
los allows to evaluate them, and
reate a proper module with their exported 
omponents. Other synta
ti
 entries in
lude the ones ofthe ML-module language, namely basi
 modules stru
tM end, fun
tors fun
tor(stru
ture ss : St)Mt(where St is a mixin module type). The 
ore language is a toy fun
tional language with patternmat
hing, and two spe
ial 
onstru
ts:� the ? \unde�ned" 
onstru
t, whi
h arises in 
ase of an expression mat
hed by none of theproposed patterns ;� and the inner 
onstru
t, whi
h 
alls a future extension of the 
onsidered fun
tion.2.2.2 Expressiveness and limitationsMain expressiveness exampleThe DS language allows to more intuitively modularize interpreters, and by extension any programoperating on stru
tures similar to abstra
t syntax trees. The idea is demonstrated by writing aninterpreter for a toy language in DS , as sket
hed hereafter. The parti
ularity of the interpreteris that it is implemented as a set of mixin modules that only have to be 
omposed together tobuild the 
omplete program, even though these mixin modules split 
y
li
 de�nitions. For instan
e,numeri
al 
onstants are treated by the following Num mixin module.Num =def �� type tterm; t isConst(int)type vvalue; v isNum(int)type eenv; e = string ! vevaleval = �x:�env : 
asex of0j0 Const(i)) Num(i)0j0 x) (inner x env )�The Num mixin module de�nes the Const 
onstru
tor for the type term of terms, and the partof the eval evaluation fun
tion whi
h evaluates it to the 
orresponding Num 
onstru
tor, bound29



to the value type for values. The mixin module may be 
omposed with the mixin module forfun
tions and appli
ations, de�ned by Fun
:Fun
 =def � fun bindbind = �x:�v:�env :�y: if x = y then v else(env y)�� type tterm; t is Var (string)[Abs (string ; t)[App (t ; t)type vvalue; v isClos(t ; e)type eenv; e = string ! vevaleval = �x:�env : 
asex of0j0 Var(s)) (env s)0j0 Abs(s; term)) Clos(Abs(s; term); env)0j0 App(f; term))(
ase eval f env of0j0 Clos(Abs(s; fbody); env 0))eval fbody (bind s (eval term env) env 0)0j0 x) raise Error )0j0 x) (inner x env)��Similarly, Fun de�ne the 
onstru
tors and the evaluation related to the handling of higher-orderfun
tions in the interpreted language. The 
omposition of Num and Fun yields a mixin moduleequivalent toInterp =def � fun bindbind = �x:�v:�env :�y: if x = y then v else(env y)�� type tterm; t is Var (string)[Abs (string ; t)[App (t ; t)[Const(int)type vvalue; v is Clos (t ; e)[Num (int)type eenv; e = string ! vevaleval = �x:�env : 
asex of0j0 Const(i)) Num(i)0j0 Var(s)) (env s)0j0 Abs(s; term)) Clos(Abs(s; term); env)0j0 App(f; term))(
ase eval f env of0j0 Clos(Abs(s; fbody); env 0))eval fbody (bind s (eval term env) env 0)0j0 x) raise Error)0j0 x) (inner x env)��Here Interp is observationally equivalent to the 
omposition of Num and Fun, but in DS , themerging of the two eval fun
tions would rather appear as a �rst mat
hing on theConst 
onstru
tor,and another, nested one on the remaining 
onstru
tors, repla
ing the initial 
all to inner.Noti
e also that in DS , stri
tly speaking, the env type 
ould not be shared during 
omposition asin Interp, sin
e only data type de�nitions are allowed in mixin bodies. A workaround would be toinline the de�nition of env in the mixin bodies, and possibly to export it in the initialization se
tion.Alternatively, an extension of DS , allowing any type de�nition in mixin bodies, and merging typeabbreviations when equal, would probably not be too diÆ
ult to formalize.Other observations on expressivenessGeneralized abstra
tion As Bra
ha's mixins, mixin modules in DS allow to abstra
t oversome module 
omponents in another way than with fun
tors. Indeed, putting a de�nition ff =30



funx:(inner x) in the body of a mixin module s1 has the same e�e
t as abstra
ting over ff . Theadvantage is that the mixin module s2 providing the de�nition for ff 
ould perfe
tly have abstra
tedover another de�nition gg, whi
h s1 would provide. However, in DS , as in Jigsaw, this abstra
tionme
hanism does not work with mixin modules, sin
e they are not allowed in mixin bodies. The onlyway to abstra
t over them is by fun
tor abstra
tion. This makes the above example of abstra
tionimpossible to implement dire
tly with mixin modules instead of fun
tions. In other terms, mixinmodule spe
i�
 features in DS do not 
on
ern nested mixin modules.Extension In [32℄, mixin modules are slightly extended with extensible data types 
onstru
tors.This means that during 
omposition, two type 
onstru
tors with the same names, respe
tivelyexpe
ting two lists of types �11 : : : �1n1 and �21 : : : �2n2 , are merged. The result is a type 
onstru
torexpe
ting the list of types �11 : : : �1n1 ; �21 : : : �2n2 . The extended 
al
ulus is used to show how toimplement interpreters for domain-spe
i�
 languages in a modular way [30℄.Overriding The DS language features a limited form of overriding, for 
omponents de�ned inthe body of the 
onsidered mixin module. Indeed, a fun
tion f , exported by a mixin module A 
anbe overridden with the new de�nition E, not mentioning inner, by 
omposing A with the mixinmodule B =def �(fun ff = E), obtaining B 
A. The de�nition of f in B 
A is Efinner 7! E0g,where E0 is its de�nition in A. And it is equal to E, sin
e it does not mention inner. At 
lose time,other de�nitions will refer to the new de�nition.Typing The DS language is equipped with a type system based on manifest types [51, 40℄, andfeaturing type abstra
tion. Soundness is known to be diÆ
ult to prove in the presen
e of typeabstra
tion. Indeed, an expression supposed to be of an abstra
t type t only evaluates to a valueof its implementation type, say int for example. The equational theory of types does not 
ontainthe equality t = int , and therefore subje
t redu
tion does not hold. For DS , soundness is provedin a non-standard way. First, a new type system is de�ned, as the initial one, but without typeabstra
tion. Basi
ally, the types of modules in the se
ond system are types of the �rst one, but arerequired to only export manifest types. It is then showed that a term of type St in the system withtype abstra
tion is ne
essarily well-typed in the one without type abstra
tion. Finally, soundnessis proved for the type system without type abstra
tion, whi
h entails soundness for the one typeabstra
tion (see also [56℄). Noti
e that this is a proof of type soundness, in the sense that well-typed programs do not go wrong, but it does not guarantee that abstra
tion is preserved duringredu
tion. Indeed, it does not prove that during redu
tion, values of abstra
t types will not beused at other types.Con
lusionDS 
ontains many interesting ideas for the design of a highly modular, ML-like language. However,all its features are expressed through the single 
omposition operator. Bra
ha aimed at splittingthe 
omplexity of modularity into spe
i�
, simpler operators. The language DS does not followthis re
ommendation. Moreover, it ties the module language to the parti
ular 
ore language ML,and spe
i�
ally to extensible pattern mat
hing and data types. Extensible pattern mat
hing anddata types are 
ertainly useful, but not in every 
ase, and we prefer to 
onsider their treatmentas orthogonal to the module system. Finally, the fa
t that mixin module spe
i�
 features arerestri
ted to a dedi
ated area, where only datatypes and fun
tions are admitted, seems a bit adho
, and we would prefer a 
leaner treatment. 31



2.3 UnitsThe \Programming language team"(PLT), spe
i�
ally Felleisen, Flatt, and Krishnamurthi, havewidely studied the subje
t of language designs for in
reasing the reusability of software 
omponents.The 
omponent-based and obje
t-oriented approa
hes have been investigated, but what interestsus here 
on
erns the modular approa
h.2.3.1 MzS
hemeAn important result of their work is of pra
ti
al nature, and 
onsists in the extension of theprogramming language MzS
heme with units. MzS
heme [34℄ is an implementation of the pro-gramming language S
heme, a dynami
ally typed, fun
tional and imperative language, originatingin Lisp. Units are a language 
onstru
t dedi
ated to modularization. The idea 
omes from theobservation that if pa
kages were not hard-wired to their imports, then they would be extensi-ble. What is intended by \hard-wired" here is that pa
kages synta
ti
ally refer to �xed externalimports. Flatt's idea 
onsists in making these imports abstra
t, i.e. parameters of the pa
kage,and making all further links between pa
kages expli
it to the programmer: if a pa
kage A providesthe value f, and the pa
kage B imports a value g, and if the programmer estimates that A's f
orresponds to what B's g is expe
ted to do, then they may be linked together by an expressionsu
h as (simpli�ed)(
ompound-unit(import ...)(export ...)(link (A)(B (A f))))spe
ifying that B's import if �lled by A's f.The language is designed a

ording to Flatt's prin
iple of external 
onne
tions [35℄:A language should separate 
omponent de�nitions from 
omponent 
onne
tions.In MzS
heme, a unit is a 
ompletely standard data stru
ture, resembling a re
ord of possiblymutually re
ursive named de�nitions, and initialization expressions. The thing is that de�nitions
an be empty ; in other terms, the re
ord has holes. Some of the re
ord de�nitions may be justde
lared, instead of de�ned.As an example basi
 unit, 
onsider the following unit DB, de�ning a database stru
ture, parame-terized over the way the 
lient wants to report errors.(unit(import error)(export new insert delete)(define new � � �)(define insert � � �)(define delete � � �))Nothing spe
ial here, it resembles a fun
tion. But now, let GUI be:32



v ::= unit j 
 j fnx) ee ::= 
ompound -expr j invoke-expr j letre
-expr j e; e j x j ee j vunit-expr ::= unit import variable-mapping�export variable-mapping�de�nitions e
ompound -expr ::= 
ompound import y�export y�link e link and e linkinvoke-expr ::= invoke ewith value-invoke-link�letre
-expr ::= let re
 de�nitions in ede�nitions ::= value-defn�value-defn ::= valx = vlink ::= with y� provides y�variable-mapping ::= y = xvalue-invoke-link ::= y = ex ::= variabley ::= linking variable
 ::= primitive 
onstantFigure 2.3: Syntax for Unitd(unit(import insert)(export open error)(define open � � �)(define error � � �))de�ning the user interfa
e for the previous database. Re
ursion is allowed to span unit boundaries,so DB and GUI may be 
onne
ted to form a 
ompound unit PROGRAM. As we have both DB dependingon GUI through error and vi
e versa through insert. This solves the re
ursion problem from thestandpoint of expressive power, but not with respe
t to safety, sin
e nothing ensures that there
ursion is well-founded.Units are pie
es of unevaluated 
ode, and triggering the evaluation of a 
omplete unit is done bythe invoke form, as in invoke PROGRAM. This triggers a left to right evaluation of all the 
lausesin the unit body.Units are �rst-
lass values, and this makes the language parti
ularly expressive. In parti
ular, unitsdire
tly a

ount for dynami
 linking, sin
e a 
hoi
e between several units may be made at runtime.As a demonstration of expressive power, Flatt [35℄ elegantly solves an instan
e of the extensibilityproblem with units and 
lasses, through a straightforward en
oding of mixins, as units importing a
lass and exporting the modi�ed 
lass. Units do not feature overriding of de�nitions, and thereforea solution to the modi�
ation problem with units probably would use 
lass inheritan
e for this.2.3.2 TheoryIn his thesis [35℄, Flatt formalizes a theory of units, in three 
al
uli. Unitd, the �rst unit 
al
ulusmore or less models the behavior of MzS
heme. The next two ones (Unit
 and Unite) su

essivelyadd 
onstru
ted types and type abbreviations to Unitd.33
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es to yi 7! xix1 = v1x2 = v2e1; e2ye 7! xeFigure 2.5: A 
ompound unit and its redu
tionThe Unitd 
al
ulus The syntax for Unitd is de�ned in �gure 2.3. A unit is a quadruple of alist of imports, of the shape y1 = x1 : : : yn = xn, a list of exports, of the same shape, a list of valuede�nitions x1 = v1 : : : xn = vn, and an initialization expression e. Roughly, a unit is an in
omplete,unevaluated program, and it may be 
ombined with other units, almost arbitrarily. The import andexport se
tions serve to mediate the internal name spa
e of the unit with its environment, throughthe use of linking variables. A synta
ti
 distin
tion is made between linking variables, denoted byy, and plain variables x. Linking variables a
t as external names for de�nitions. Indeed, we will seethat during the 
omposition of two units A and B, plain variables from A must be di�erent from theones from B (and vi
e versa), ex
ept if they are imported or exported as the same linking variable.A pi
torial view of a basi
 unit is given in �gure 2.4. Dotted arrows indi
ate a possible dependen
yof the target on a plain variable de�ned by the sour
e: apart from free variables, the de�nitions areallowed to refer to themselves and to imported variables. The initialization expression is allowedto refer to both de�nitions, imported variables, and also external, free variables. The plain arrowrequires the internal variables of the target to be in
luded in the ones of the sour
e: the exportedvariables must be de�ned within the unit (with arbitrary external names).The 
ompound 
onstru
t 
omposes two units A and B as follows.
ompoundimport yiexport yelinkAwith yw1 provides ye1andB with yw2 provides ye2The notation y represents a sequen
e of linking variables. Two intermediate layers of variablemappings are introdu
ed: the import layer yw1 yw2 and the export layer ye1 ye2. Their role is34



to make 
onne
tions between both arguments and with the external interfa
e of the result. Thearguments are expe
ted to evaluate to basi
 unit expressions, and the semanti
s of 
ompositionthen simply merges the sets of de�nitions and sequen
es the two initialization expressions. ThediÆ
ulty is that all layers must agree on internal variables, as indi
ated in �gure 2.5. The arrowsrepresent in
lusion of variable mappings: the target variable mapping must be in
luded in the unionof the sour
e variable mappings. Moreover, intermediate variable mappings allow to stati
ally havean estimation of imports and exports of both arguments, even when they are not synta
ti
 basi
units. Besides, they enable to resolve some name 
on
i
ts. Indeed, if the two arguments exporta variable y, it is possible to ignore one of them, by simply not putting it in the 
orrespondingexport layer. We will see below that this enables a form of subtyping.The invoke form transforms a unit into a let re
 as expe
ted, and the rest of the 
al
ulus, featuringfun
tions and let re
 bindings, is exa
tly as expe
ted.Restri
tions The 
al
ulus indeed models MzS
heme, with some restri
tions.1. Pa
kages are not modeled (thus restri
ting separate 
ompilation to single units).2. The 
omposition operator is binary instead of n-ary and that it does not allow renamingduring 
omposition.3. De�nitions must be values.Simultaneously, it extends MzS
heme's units on two points.1. Linking in 
ompound units is done by name, instead of position.2. In unit bodies, de�nitions are separated from initialization expressions, and during linking,they are all put after all de�nitions.Extensions should be a good thing. The �rst one has been introdu
ed in MzS
heme, with signedunits. The se
ond one has not, to our knowledge.We will not argue here about the �rst two restri
tions, sin
e they would probably be easily over-
ome.But let us examine a bit the 
onsequen
es of the third one. Restri
ting de�nitions to values 
onsid-erably simpli�es the semanti
s of invoke, sin
e it be
omes a mutually re
ursive de�nition (let re
)of values, followed by a unique initialization expression. In 
ontrast, without this restri
tion, anoperational semanti
s would have to spe
ify the order of evaluation and to feature a more powerfullet re
 
onstru
t for des
ribing this evaluation. As a 
onsequen
e, the programmer must expli
itlyevaluate all its de�nitions before building a unit, with the in
onvenient that they 
annot be re-exported, sin
e variables are not values. This is probably not too restri
tive, sin
e units are �rst
lass, but in some 
ases, it is annoying, as shown by the following example.Example 2 Assume that we are supposed to write a unit whi
h prints ML-like type variables:they are represented as re
ords, but are unnamed, and the unit must therefore 
hoose names 'a,'b, et
. . . , and provide a reset fun
tion.In OCaml, this is done with the fun
tor of �gure 2.6, with an internal referen
e, whi
h the printfun
tion in
rements, and the reset fun
tion resets. With Unitd, it seems that either the referen
ewould have to be de�ned outside the unit, whi
h might break the abstra
tion, or a better workaroundhas to be found. A possibility 
an be sket
hed as followsletPrintTyV ar = fn())letx = ref 'a' inunit import error eqexport print tyvar: : :35



module PrintTVar(Base : sigval error : string -> 'aend)(TVar : sigtype tval eq : t -> t -> boolend) = stru
tlet vars = ref ([℄ : (TVar.t * string) list)let 
urrent_name = ref 'a'let reset () = 
urrent_name := 'a' ; vars := [℄let new_name () =let 
 = !
urrent_name inlet n = Char.
ode 
 inif n > 122then Base.error "
annot print that many type variables. "elselet 
' = 
har_of_int (n + 1) in
urrent_name := 
';"'" ^ (String.make 1 
)let string_of_tyvar v =trysnd (List.find (fun (v', name_v') -> TVar.eq v v') !vars)with| Not_found ->let s = new_name () invars := (v, s) :: !vars;slet print_tyvar fmt v =Format.fprintf fmt "%s" (string_of_tyvar v)end Figure 2.6: Printing type variables in OCaml
36



(let x = e1 in e2 is synta
ti
 sugar for (fn x ) e2) e1.) It 
onsists in wrapping the unitinside a fun
tion that de�nes a lo
al referen
e and returns the unit, whi
h may use the referen
e,without breaking the abstra
tion. The restri
tion of de�nitions to values seems therefore reasonable,but still a bit ad ho
. It 
learly would be preferable to allow any expression as a de�nition.In the other se
tions, we examine the other aspe
ts of units independently of this importantdrawba
k, and of the restri
tions.2.3.3 TypesStill in Flatt's thesis [35℄, two su

essive extensions of Unitd with types are presented. Unit
introdu
es 
onstru
ted types in a simpli�ed form. De
larations of the shapetype t = x1
 ; x1d �1 j x2
 ; x2d �2 � xmare allowed, and should be read as the de
laration of a type with two 
onstru
tors x1
 : �1 ! t andx2
 : �2 ! t, two destru
tors x1d : t ! �1 and x2d : t ! �2, and a �lter xm, whi
h takes a value oftype t as argument and returns true if it is of the form (x1
 v) and false otherwise.Types may be exported (as abstra
t types), thanks to type linking variables s. The programmermay de
ide to export the 
onstru
tors and destru
tors for his type, or not. In 
ontrast with themanifest types [51℄ { translu
ent sums [40℄ systems, there is no me
hanism for externally sele
ting
omponents, so every use of values related to 
onstru
ted types are in their unit of de�nition, orin a unit importing them. As a 
onsequen
e, there is no need for the usual intri
ate tri
ks forreferring to abstra
t types: they are synta
ti
ally bound by imports. A type system is presented,whi
h is proved sound, ex
ept for variant errors: a term su
h as x1d(x2
e) is well-typed.The se
ond extension 
on
erns type abbreviations. The only diÆ
ulty is to prevent re
ursive typede�nitions, whi
h is done by keeping tra
k of type dependen
ies in the the unit types, and dete
ting
y
les at 
omposition site. Exporting type abbreviations as manifest types is not possible yet, butit seems to be easy to add.Subtyping There is no subsumption rule in the typed unit 
al
uli (for algorithmi
 reasons), butsubtyping is inlined in the 
omposition and invoke rules. The well-known problem for subtypingextensible re
ords with symmetri
 
on
atenation [42℄ does not 
ause trouble here. Symmetri

on
atenation takes the union of two re
ords, provided labels do not 
lash. The problem basi
allyis the following. The intuitive subtyping relation between extensible re
ords is that a re
ord de�ningmore labels, with �ner types, than another re
ord may safely repla
e it. This intuition is wrong,be
ause a re
ord with more labels than expe
ted may entail label 
lash during 
on
atenation.Here, the 
omposition operator 
oer
es its argument in one go to the expe
ted type. Indeed, theintermediate layers (see �gure 2.5) avoid unexpe
ted label 
lashes.A new idiom for modularization Semanti
ally, modules are not nested, and there is no 
on-stru
tion for a

essing a de�nition inside a module. Instead, the idea is that the whole program is alet re
 de�nition, followed by initialization expressions, but that units allow to split it into parame-terizable fragments, whi
h may be separately distributed and used. This signi�
antly departs fromtraditional modules, whi
h are more or less assimilated with re
ords. Module evaluation allows tode�ne a re
ord, and after that, other parts of the program have a

ess to its de�nitions, throughthe sele
tion operator. Here, idiomati
ally, the program stru
ture is less hierar
hi
al: in order touse a de�nition exported by a unit, the programmer has to merge his 
ode with it, to produ
e anew unit, whi
h stays 
at. (More than that, as only values are allowed as de�nitions, 
ompoundunits 
annot be de�ned inside units, thus restri
ting the possibilities of unit nesting.)As a 
anoni
al example, from [35℄ again, the diamond problem be
omes more or less meaninglesswith units. In ML, assume for instan
e a Symbol module, used by fun
tors Parser and Lexer,37



Symbol : SYMBOLtype tfun
tor Lexer : LEXER(Symbol : SYMBOL) =type sym = Symbol.t fun
tor Parser : PARSER(Symbol : SYMBOL) =type sym = Symbol.tfun
tor Reader ( Lexer : LEXER)(Parser : PARSERwith type sym = Lexer.sym). . .Figure 2.7: An example diamond problem, with fun
tors
Symbol = unitexport type symLexer = unitimport type symexport lex : str ! sym Parser = unitimport type symexport parse : sym ! exprReader = unit import type symlex : str ! symparse : sym ! exprexport read : str ! expr. . .Figure 2.8: An example diamond problem, with units
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both of whi
h are later used by the main fun
tor Reader, as in �gure 2.7. Type sharing allows tospe
ify that the Symbol module imported by Parser and Lexer has to be the same, in order for themain program to be 
orre
t (
f the type sharing spe
i�
ation \type sym = Lexer.sym"). Moreover,the linking is performed by �rst building the real lexer and parser, by applying ea
h fun
tor toSymbol, and then applying Reader to the results. With units, there would be units for the symbol,lexer and parser entities, but instead of referring to an imported unit Symbol, the lexer and parserwould refer dire
tly to its de�nitions, as sket
hed in �gure 2.8. Similarly the Reader unit dire
tlyimports the type sym and the fun
tions lex and parse. Linking is done by 
omposing the four unitstogether. (It is not really possible in the unit 
al
uli be
ause of the various restri
tions, but theidea should be 
lear.)This formalism is an interesting aspe
t of the PLT work, be
ause it reveals that the 
omplexityintrodu
ed by the need for exporting data types and use them outside of their initial s
ope, asin traditional module systems, might be over
ome by di�erent design 
hoi
es, without loosingexpressive power. Given the depth of this 
omplexity [28℄, the issue is worth exploring. A drawba
kof this approa
h might arise from the la
k of a stru
tured name-spa
e. The dot notation [21℄ hasno meaning with units. One 
ould argue that the name spa
e is even more stru
tured with units,sin
e the internal names are irrelevant to the meaning of the unit, espe
ially during 
omposition.Therefore, the programmer may 
all variables exa
tly as she wishes a

ording to the 
ontext, linkingvariables making the 
onne
tions. However, as argued by Szyperski in [74℄, it is often 
onvenient tofeature both stati
 linking, as when using library fun
tions, so hard-wired imports are still useful.From this perspe
tive, it is interesting to noti
e that the pa
kage system of MzS
heme remains,even in the presen
e of units.2.4 CMSAfter the work of Bra
ha et al., a 
ontemporary work to those of Duggan et al., and Flatt et al. isAn
ona's PhD work on a semanti
 
hara
terization of mixin modules [3℄. He de�nes mixin moduleswith the tools of 
ategory theory. After this, An
ona and Zu

a reformulated and improved thisde�nition in terms of a 
al
ulus with an operational semanti
s, 
alled CMS [5℄. At the same time,Wells and Verstergaard developed their m-
al
ulus [76℄, whi
h is similar to CMS in many ways.These two 
ontributions are less pragmati
 and more foundational than previous work on mixinmodules. We give an overview of both of them, and 
ompare their respe
tive merits, beginningwith CMS in this se
tion. For both 
al
uli, we 
hange notations and names a bit for homogeneityreasons.2.4.1 Syntax and semanti
sSyntax CMS [5, 6℄ de�ned by the pseudo-syntax in �gure 2.9. Contrarily to Flatt and Felleisen'swork, the distin
tion between �-
onvertible variables and �xed external names is here synta
ti
allyenfor
ed: variables are ranged over by x; y; z and names are ranged over by X;Y; Z.CMS is parameterized over an arbitrary 
ore language, with some 
onditions, not expli
ited here,sin
e they are very intuitive, see [5℄ for details. C denotes a 
ore expression. In CMS , a 
oreexpression must be wrapped in an expli
it substitution � in the style of [2℄, whi
h must 
over thewhole set of its free variables, and not be re
ursive (FV(
od(�)) ? dom(�)).CMS basi
 modules are 
onstru
ted by the [�; o; �℄ form. The meta-variable � ranges over inputassignments, whi
h are lists of bindings from variables to names, written xi i2I7! Xi. The notation isused also below for output and lo
al assignments, in the same sense. Assignments must 
orrespondto surje
tive �nite maps and the xis must be di�erent. Output assignments o map names toexpressions, and represent the de�nitions exported by the module. Lo
al assignments � mapvariables to expressions, and are the hidden de�nitions of the module. The s
ope of the variables39



Expression: E ::= x Variablej C[�℄ Core expressionj [�; o; �℄ Basi
 modulej E1 +E2 Sumj ��jEj�o Redu
tj freeze�f (E) Freezej E:X Sele
tFinite maps: � ::= xi i2I7! Xi Input assignmento ::= Xi i2I7! Ei Output assignment� ::= xi i2I7! Ei Lo
al assignment� ::= Xi i2I7! Yi; Y j2Jj RenamingFigure 2.9: CMS syntaxbound by � and � is the whole mixin module. A basi
 module is well-formed if � and � do not bindany variable in 
ommon. Composition �1 Æ�2 is de�ned on �nite maps, only if 
od(�2) � dom(�1).Union �1 + �2 is de�ned on �nite maps �1 and �2, provided dom(�1) ? dom(�2).Module operators in
lude 
omposition, here 
alled the sum, whi
h links two modules together. Theredu
t operator ��jEj�o , is roughly a powerful renaming operator, but not only, sin
e it expressesde�nition hiding. Here �� and �o are renaming, whi
h synta
ti
ally are pairs of an assignmentmapping names to names and a list of names, whi
h we 
all the unused names. The unusednames must not be in the 
odomain of the assignment. In other terms, renamings are �nite maps,as assignments, but they are not for
ed to be surje
tive. CMS also in
ludes a powerful freezingoperator, for making some de�nitions early bound, and the usual sele
tion operator.Variables are �-
onvertible in basi
 modules, and we will 
onsider expressions modulo �-
onversion.Semanti
s The semanti
s of CMS is de�ned as the least 
ontextually 
losed relation respe
tingthe rules in �gure 2.10. The rules only apply when both sides of the �! symbol are well-formedexpressions. The strength of CMS is the way inputs and outputs are kept separated, whi
h allowsfor very powerful yet simple operators.By rule AZ-Core, the redu
tion relation �! of CMS in
ludes the transitive 
losure of the re-du
tion on 
ore expressions �!C , whi
h is a parameter of the system. Moreover, sometimes theevaluation of a 
ore expression C[�℄ 
an require the value of a variable x, expli
itely bound in thesurrounding substitution �. Then, by rule AZ-Sub, if the expression to whi
h x is bound has theform C 0f�1g, then x is repla
ed with C 0 in C, (thanks to the 
ore substitution, whi
h is also aparameter of the system,) while the pending substitution now in
ludes the bindings in �1, and nolonger binds x.Rule AZ-Sum simply takes the unions of the present �nite maps, provided no 
lash or variable
apture o

urs. Spe
i�
ally, writing o1+o2 implies that o1 and o2 have disjoint domains. Inputs areshared, but variables mapping to the same name are kept di�erent. Another operator, 
alled theleft preferential sum E1�E2 is also de�ned, whi
h does not require the outputs to be disjoints, butrather gives pre
eden
e to outputs 
oming from the right. It is de�ned by the following redu
tionrule: (dom(�1) [ dom(�1)) ? (FV([�2; o2; �2℄))(dom(�2) [ dom(�2)) ? (FV([�1; o1 + o; �1℄)) dom(o) � dom(o2)([�1; o1 + o; �1℄� [�2; o2; �2℄)�! [�1 + �2; o1 + o2; �1 + �2℄ (AZ-Override)40



Rule AZ-Redu
t des
ribes the a
tion of the redu
t operator ��jEj�o . In fa
t, it 
ould be dividedinto two operators, one for redu
ing input ��jE, and one for redu
ing outputs Ej�o . Both a
tionsare similar though. Ea
h of them bases on a renaming �� and �o, respe
tively. Input renaming
hanges the input names, but not the 
orresponding variables, and possibly adds new (unused)input variables. This is done by 
omposing the renaming with the former input assignment. Forinstan
e, if a name X is renamed into another name Y , then �� in
ludes a binding X 7! Y , and� in
ludes a binding x 7! X . Then, the 
omposition of � and �� has a binding x 7! Y . If therenaming has unused names, or if dom(��) 
ontains names not in 
od(�), then a fresh variable isasso
iated to ea
h of them, thus adding dummy inputs. If the renaming is not inje
tive, then someinputs get shared. Similarly, output renaming 
omposes the renaming with the output assignment,possibly forgetting some exported names. Renaming X to Y as above would here be done with abinding Y 7! X , the initial output assignment having a binding X 7! E. The renamed output,o Æ �o, then has a binding Y 7! E.The freeze operator, des
ribed by rule AZ-Freeze, makes some de�nitions early bound in a mixinmodule. As an additional argument, it takes a renaming from some input names to some outputnames. The �nite map tells whi
h de�nitions must be asso
iated to the frozen input names. Theinternal variables 
orresponding to the frozen names are de�nitely bound as lo
al de�nitions. Asan example, 
onsider the following mixin modulefreezeX 7!Z;Y 7!Z([X 7! x; Y 7! y;Z 7! E; ℄)whi
h redu
es to [;Z 7! E;x 7! E; y 7! E℄:As a side observation, CMS does not at all bother with sharing 
omputations.Finally, a mixin module without any input is ready to be used by the outer world.De�nition 3 (Con
rete and open mixin modules) A mixin module is said 
on
rete if it doesnot have any input. Otherwise, it is 
alled open.Rule AZ-Sele
t sele
ts a de�nition out of a 
on
rete mixin module [; o; �℄, with � = xi i2I7! Ei.One 
annot simply 
opy the body E = o(X), be
ause it might 
ontain referen
es to the lo
alde�nitions. Su
h internal 
alls are implemented as follows. Ea
h free o

uren
e of xi 2 dom(�) inE is repla
ed with a kind of 
losure: the lo
al de�nitions � of the mixin module are put in a newmixin module, whi
h only exports a name Y , bound to the de�nition Ei. xi then 
orresponds tosele
ting Y in this mixin module.The operational semanti
s of CMS is 
on
uent, as stated by the following theorem by An
ona andZu

a [5℄.Theorem 1 (CMS is Chur
h-Rosser) If E �!� E1 and E �!� E2, then there exists E0 su
hthat E1 �!� E0 and E2 �!� E0.2.4.2 TypesCMS is equipped with a type system that re
e
ts the distin
tion between input and outputs. Coreexpressions have 
ore types, and mixin modules have types of the form [��; �o℄, where �� and �oare signatures, i.e. �nite sets of pairs of a name and a type. �� is the input signature, representingthe requirements put on inputs, while �o is the output signature, de
laring the 
apabilities o�eredby the output de�nitions. Typing judgments are parameterized by the 
orresponding judgments41



C �!+C C 0C[�℄�! C 0[�℄ (AZ-Core) C[x 7! C 0[�1℄; �2℄�! Cfx 7! C 0g[�1; �2℄ (AZ-Sub)E1 = [�1; o1; �1℄ E2 = [�2; o2; �2℄ BV(E1) ? FV(E2) BV(E2) ? FV(E1)E1 +E2 �! [�1 + �2; o1 + o2; �1 + �2℄ (AZ-Sum)��j[�; o; �℄j�o �! [�� Æ �; o Æ �o; �℄ (AZ-Redu
t)
od(�2) ? dom(�f )freeze�f ([�1 + �2; o; �℄)�! [�2; o; �+ o Æ �f Æ �1℄ (AZ-Freeze)[; o;xi i2I7! Ei℄:X �! o(X)fxj j2I7! [;Y 7! Ej ;xi i2I7! Ei℄:Y g (AZ-Sele
t)Figure 2.10: Redu
tion rules for CMSon 
ore expressions and types. The typing rules are presented in �gure 2.11. Our presentation isa bit di�erent from that of An
ona and Zu

a, in that we do not use type annotations to guide apossible typing algorithm. In a sense, our presentation 
ould be viewed as the Curry-style versionof their Chur
h-style presentation.By rule AZ-T-Var, a variable has the type it is assigned in the environment. By rule AZ-T-Core,the expli
it substitution 
onstru
t is typed as a let binding. The bound expressions Ei must have
ore types. They are added to the environment to type the �nal 
ore expression C, thanks to the
ore type system.Rule AZ-T-Basi
 des
ribes the typing of a basi
 mixin module. A type has to be guessed for ea
hbound variable, those of the input � = xi i2I7! Xi and those of the lo
al de�nitions � = xk k2K7! Ek,say xi : � i2I[Ki . With these types, the lo
al de�nitions 
an be 
he
ked to have the expe
ted types�k2Kk , and the exported de�nitions 
an be typed � j2Jj . The �nal type of the expression 
an then beformed: it has the input types as an input signature, and the export types as an output signature.This type must be 
he
ked well formed, whi
h means that the signatures are �nite maps.Rule AZ-T-Sum des
ribes how the sum of two mixin modules is typed. Provided the two outputsdo not de�ne any name in 
ommon, the sum takes the union of the input types and of the outputtypes. Thus, some 
ommon inputs 
an be shared during 
omposition. The result type must be
he
ked well formed, as for instan
e two similarly named inputs 
ould have di�erent types in thetwo input signatures.Rule AZ-T-Redu
t, given that the argument mixin module has type [��; �o℄, guesses two signa-tures ��0 and �o0 su
h that the input and output renamings respe
tively map �� to ��0 and �o0 to�o, preserving types, as witnessed by the side-
onditions �� : �� ! ��0 and �o : ��0 ! �o. Noti
ethat the renamings are allowed not to be surje
tive, whi
h lets some 
hoi
e to the type system inattributing types to the names that are not present in the original type.Similarly, rule AZ-T-Freeze 
he
ks that the freezing map �f maps some input spe
i�
ations tooutput spe
�
ation, preserving types, and removes the frozen de
larations from the input signature.Finally, in the 
ase of a sele
tion, rule Proje
t 
hoose the type asso
iated to the sele
ted name.42



�(x) = �� ` x : � (AZ-T-Var) xi : 
� i2Ii `C C : 
� 8i 2 I;� ` Ei : 
�i� ` C[xi i2I7! Ei℄ : 
� (AZ-T-Core)` [Xi : � i2Ii ;Xj : � j2Jj ℄ 8j 2 J [K;� + xi : � i2I[Ki ` Ej : �j� ` [xi i2I7! Xi;Xj j2J7! Ej ;xk k2K7! Ek ℄ : [Xi : � i2Ii ;Xj : � j2Jj ℄ (AZ-T-Basi
)` [��1 +��2; �o1 +�o2℄�o1 ? �o2 � ` E1 : [��1; �o1℄ � ` E2 : [��2; �o2℄� ` E1 +E2 : [��1 +��2; �o1 +�o2℄ (AZ-T-Sum)� ` E : [��; �o℄ �� : �� ! ��0 �o : ��0 ! �o� ` ��jEj�o : [��0; �o0℄ (AZ-T-Redu
t)� ` E : [�f +��; �o℄ �f : �f ! �o �f ? ��� ` freeze�f (E) : [��; �o℄ (AZ-T-Freeze)� ` E : [;Xi : � i2Ii ℄ k 2 I� ` E:Xk : �k (AZ-T-Sele
t)
Figure 2.11: Typing CMS2.4.3 Expressiveness and in
onvenientsEn
odings In [6℄, An
ona and Zu

a present en
odings for the untyped �-
al
ulus, whi
h a
-
ounts for an en
oding of ML-style module systems, an en
oding of Abadi and Cardelli's ACC
al
ulus of obje
ts [1℄. This a

ounts for the 
omputational power of the 
al
ulus. We informallypresent the two en
odings.The �-
al
ulus is easily en
oded by using the abstra
tion fa
ility provided by mixin modules: 
hoosetwo reserved names ARG and RES , and en
ode any fun
tion �x:e, as [x 7! ARG ;RES 7! JeK; ℄(where J�K denotes the en
oding fun
tion). Fun
tion appli
ation e1e2 
an then be expressed as(freezeARG 7!ARG(Je1K+ [;ARG 7! Je2K; ℄)):RES :During appli
ation, the ARG �eld is �lled with the translation of the argument, and then frozen.Computation is then triggered by sele
tion of the RES �eld from the result. The usual � 
onversionand � redu
tion are modeled by this en
oding.En
oding Abadi and Cardelli's ACC 
al
ulus of obje
ts is more diÆ
ult, so we do not detail it here.Basi
ally, the SELF parameter is modeled as a deferred 
omponent, and ea
h method is de�ned asan output 
omponent. Overriding is trivial to implement with the left preferential sum of se
tion2.4.1. For method 
alls, the SELF input has to be �lled with a de�nition. The adopted solution,introdu
ed in [1℄ already, 
onsists in �lling it with the obje
t itself. The result 
an then be frozenand the needed method sele
ted. A method 
all e:l is then en
oded as (freezeSELF 7!SELF (JeK +[;SELF 7! JeK; ℄)):l.CMS as an implementation language and other operators Also, CMS is further used as animplementation language for DCMS , a typed surfa
e language with mixin modules. The interest43



is that the power of CMS is used to en
ode more usual operators. The fundamental di�eren
ebetween CMS and DCMS is that mixin module types are divided into deferred, virtual, and frozen
omponents. Virtual 
omponents 
orrespond to CMS 
omponents present both as inputs and asoutputs, whereas frozen 
omponents are those that are only outputs. This allows for a re�nedoverriding poli
y: frozen 
omponents 
annot be deleted in DCMS , whereas virtual ones 
an. Thispoli
y is only enfor
ed by typing, sin
e the dynami
 semanti
s of DCMS is given by translation toCMS .Additionally, the operators are not exa
tly the same as in CMS . For instan
e, the redu
t operator issplit into more atomi
 operators. For instan
e, restri
tion allows to delete some virtual de�nitions,and freezing only allows to map input 
omponents to virtual 
omponents of the same name. Infa
t, renaming is not possible at all anymore. We think that it should have been maintained,maybe as a separate operator. Hiding takes some virtual and frozen 
omponents, freezes the notalready frozen ones, and deletes them from the result. Thus, other de�nitions will 
ontinue usingthe hidden de�nitions even if at some point the 
orresponding names are de�ned again, di�erently.Finally, sele
tion allows to sele
t a 
omponent from a mixin module that still has some virtual
omponents (whi
h semanti
ally 
orresponds to �rst freezing those 
omponents before to performthe sele
tion).The type system of DCMS does not guarantee that frozen de�nitions of a mixin module will remainthe same whatever use 
an be made of it, as is the 
ase for �nal 
lass methods in Java [48℄. Itdoes not seem too far from it though: probably, only the hiding operator breaks this property.A

ording to the authors 1, frozen 
omponents are 
loser to stati
 methods in Java than to �nalmethods. However, it should not be diÆ
ult to en
ode �nal methods with a re�ned typing poli
y.CMS is 
all-by-name In 
all-by-name or lazy programming languages su
h as Haskell [?℄, mod-ules are basi
ally �nite sets of de�nitions, i.e. unevaluated 
ode. In that sense, CMS 
on
retemixin modules are rather similar to modules. The operational semanti
s given by An
ona andZu

a does not model the sharing taking pla
e with the lazy strategy for instan
e, but it is rathera matter of level of abstra
tion or of presentation than a semanti
 inadequa
y. Moreover, 
ompu-tational aspe
ts of modules, espe
ially with respe
t to monads, 
an be easily introdu
ed in CMS ,as shown by An
ona et al. [4℄.On the 
ontrary, in 
all-by-value languages, a module is rather a pie
e of 
ode at �rst, whi
h isevaluated, and results in a set of values. The de�nitions 
ontained by a module are thus evaluatedprior to be used by other parts of the program. As an example, 
onsider the very simple module(in OCaml-style syntax)stru
tlet f x = x + 1let res = f 0endIntuitively, this module should be represented in CMS as [f 7! F; res 7! RES ;F 7! �x:x +1;RES 7! f0; ℄. However, there is no hope that this mixin module redu
es to the expe
ted value,i.e. [f 7! F; res 7! RES ;F 7! �x:x + 1;RES 7! 1; ℄. Indeed, in CMS modules, one de�nitionis never allowed to use de�nitions of the same mixin module. And this is 
oherent with the latebinding semanti
s: if we override F above, the de�nition of RES must use the new de�nition. Asa 
onsequen
e, in our quest for a 
all-by-value language with mixin modules, we need a me
hanismfor triggering module evaluation, reminis
ent of Duggan and Sourelis' 
los() operator, and of Flatt'sinstantiation operator. In the following, we 
all this operation 
lose. Mixin modules have to 
ontainunevaluated 
ode, be
ause of the late binding semanti
s, but they must be mapped somehow tothe usual 
all-by-value notion of modules, by evaluating their de�nitions.1Elena Zu

a, personal 
ommuni
ation, 2003 44



x; y; z 2 Vars VariableX;Y; Z 2 Names NameL ::= X j LabelB ::= e j � Bodyd ::= L . x = B De�nitionb ::= d1 : : : dn Binding (n � 0)e; f ::= x Variablej hbi Mixin modulej e� f Linkingj e:�X Hidingj e:X Sele
tionj let re
 b in e Let re
Figure 2.12: Syntax of the m-
al
ulusHint 1 (Close operator) In a 
all-by-value setting, mixin modules should 
ontain unevaluated
ode, and the language must feature a 
lose operator for triggering this 
ode, thereby transforming
on
rete any mixin module into a module, the de�nitions of whi
h 
an then be sele
ted by the restof the program.Types, re
ursion, and 
all-by-value In 
all-by-value languages, it is usual to restri
t re
ursivede�nitions to synta
ti
 fun
tions [58℄, possibly with some extensions [55℄. Su
h restri
tions ruleout some ill-founded re
ursive de�nitions, and that they allow more eÆ
ient 
ompilation.Nevertheless, with respe
t to re
ursive de�nitions, mixin modules go farther than 
onservativity.Indeed, arbitrary re
ursive de�nitions 
an appear at runtime, as we saw in se
tion 1.2.4. It isundesirable that mixin modules for
e language designers to restart writing their 
ompilers froms
rat
h, or to forget about their useful optimizations.Therefore, it is important to �nd a way of stati
ally ruling out forbidden re
ursive de�nitions,whi
h the type system of CMS does not provide.2.5 The m-
alulusIn [76, 75℄, Wells and Vestergaard present the m-
al
ulus. It is presented as a 
al
ulus for linking,but a

ording to de�nition 2, it features mixin modules. We des
ribe it brie
y in this se
tion.2.5.1 Syntax and semanti
sSyntax The syntax of them-
al
ulus is presented in �gure 2.12. Synta
ti
 
onventions are similarto those 
hosen for CMS : variables x; y; z 2 Vars are distinguished from names X;Y; Z 2 Names.A mixin module hbi in m 
onsists of binding b. A binding is a list hd1 : : : dni of de�nitions di. Ade�nition d = (L . x = B) binds a label L and a variable x to a de�nition body B. A label iseither a name X or the anonymous label , whi
h allows to write lo
al de�nitions. A body is eitheran expression e or the empty body �, whi
h allows to write input de�nitions. An expression 
anbe a variable x, a module hbi, the linking of two expressions e � f , the hiding of a name in anexpression e:�X , the sele
tion of a name in an expression e:X , and the mutually re
ursive bindingof expressions in another one, let re
 b in e. 45



Synta
ti
 
orre
tness Some 
onditions are required for synta
ti
 
orre
tness.� First, bindings should not bind the same name or variable twi
e.� Se
ond, bindings in let re
 should be anonymous and non-empty, i.e. of the shape . x = e.� There are no unnamed, empty de�nitions.Contrarily to CMS , input, output, and lo
al de�nitions are here mixed in the same binding. Were
over the same stru
ture though: inputs are named, empty de�nitions, outputs are named, non-empty de�nitions, and lo
als are unnamed, non-empty de�nitions. Bindings 
an be seen as �nitemaps from pairs of a label and a variable to bodies. We will use standard operations on �nite mapson them, su
h as the union +. By slight abuse of notation, we denote by bjN (where N is a set ofnames) the restri
tion of the �nite map b to de�nitions named with an element of N . Similarly, wedenote by bnN the restri
tion of the �nite map b to anonymous de�nitions and de�nitions namedwith an element out of N . We do the same abuse of notation for variables, in parti
ular, fordesigning the de�nition asso
iated to a variable x in a binding b, we write b(x).Stru
tural equivalen
e Variables in mixin modules and let re
 are �-
onvertible, as usual.Moreover, expressions are 
onsidered equivalent modulo 
ommutation of the arguments to a linking,and modulo the order of de�nitions in a binding.Dynami
 semanti
s The dynami
 semanti
s of m is de�ned as the least 
ontextually 
losedrelation respe
ting the rules in �gure 2.13.The main and most 
ompli
ated rule is the WV-Link for linking two mixin modules hbi and hb0i.First, the de�nitions bound by the same names in the two bindings are isolated, the other onesbeing 
opied straightfowardly into the result mixin module. The notation DN(b) denotes the set ofnames de�ned by a binding, so N = DN(b)\DN(b0) is the set of names de�ned in 
ommon by thetwo mixin modules. Let those 
ommon de�nitions be bjN = (X1 . x1 = B1 : : :Xn . xn = Bn) andb0j N = (X1 . x1 = B01 : : :Xn . xn = B0n). Then, for ea
h pair of similarly named de�nitions, thefun
tion Pi
kBody 
hoose the non-empty body if any, and otherwise denotes �: Pi
kBody(e; �) =Pi
kBody(�; e) = e and Pi
kBody(�; �) = �. In the 
ase of two non-empty bodies, Pi
kBody isunde�ned, and thus if the rule applies, it implies that no su
h 
on
i
t o

urs. Noti
e that 
ontrarilyto CMS , variables binding the same names in the two bindings are assumed to be equal here. It
an be rea
hed by stru
tural equivalen
e, of 
ourse, exa
tly as the 
ondition imposed by CMS .Rule WV-ISubst (for internal substitution) des
ribes the use of a de�nition to evaluate anotherde�nition in the same binding. If a de�nition is of the shape L1 .x1 = C [x2℄, and x2 binds anotherde�nition L2 . x2 = e, it is allowed to 
opy e into C [x2℄, provided no 
apture o

urs and these
ond de�nition does not risk to depend on the �rst one. This is formalized by 
onsidering thedependen
y graph !hbi of our binding b. This graph has the variables de�ned by the binding asnodes, and its edges are built as follows. If the body of a de�nition L1 . x1 = e1 is non-emptyand has x2 as a free variable, then there is an edge x2 !hbi x1. Moreover, an input de�nition (ade�nition with an empty body) potentially depends on all the named de�nitions of the binding,so there are edges from ea
h of the variables binding named de�nitions to all empty de�nitions.We say that a de�nition d1 depends on a de�nition d2 if the re
exive, transitive 
losure of thedependen
y graph has and edge from the variable binding d2 to the one binding d1. To sum up,rule WV-ISubst allows substitution outside of dependen
y 
y
les. The reason for this restri
tionis that 
on
uen
e would be lost otherwise, as noti
ed by Ariola and Klop in [8℄. Noti
e that ruleWV-ISubst applies as well in mixin modules as in let re
.In let re
, however, the values de�ned in the binding 
an also be used in the body of the let re
, asstated by rule WV-ESubst. The side-
ondition just ensures that no variable 
apture o

urs, andthat the o

uren
e of x in the body of the let re
 a
tually refers to the 
onsidered binding of x.46



N = DN(b) \ DN(b0) bjN = (X1 . x1 = B1 : : :Xn . xn = Bn)b0jN = (X1 . x1 = B01 : : : Xn . xn = B0n)b00 = (X1 . x1 = B001 : : : Xn . xn = B00n) 81 � i � n;B00i = Pi
kBody(Bi; B0i)hbi � hb0i �! hbnN + bnN + b00i (WV-Link)b = (L1 . x1 = C [x2℄; L2 . x2 = e; b0)Capt2(C ) ? (fx2g [ FV(e)) x1 9�hbi x2b�! (L1 . x1 = C [e℄; L2 . x2 = e; b0) (WV-ISubst)Capt2(C ) ? fxg [ FV(b(x))let re
 b in C [x℄�! let re
 b in C [b(x)℄ (WV-ESubst)DN(b0) = ; DV(b0) ? FV(b) b0 6= �hb+ b0i �! hbi (WV-GC-Module)DV(b0) ? (FV(b) [ FV(e)) b0 6= �let re
 b+ b0 in e�! let re
 b in e (WV-GC-Letre
)let re
 � in e�! e (WV-Empty-Letre
)b0 6= � DV(b) ? (DV(b0) [ FV(b0))let re
 b0 in hbi �! hb0 + bi (WV-Closure) X =2 DN(b)hbi:�X �! hbi (WV-Hide-Absent)hX . x = B + bi:�X �! h . x = B + bi (WV-Hide-Present)Figure 2.13: Redu
tion rules for mThe WV-GC-Module rule des
ribes the garbage 
olle
tion of a non-empty set of unused lo
alde�nitions, and similarly, the WV-GC-Letre
 rule des
ribes the garbage 
olle
tion of a non-empty set of unused de�nitions in a let re
.The rule WV-Closure des
ribes the elimination of let re
s. What happens when an argument ofa linking operation turns out to evaluate to an expression of the shape let re
 b in hb0i? The ruleWV-Link does not apply dire
tly. Contrarily to Ariola et al. [8, 7℄, who lift the let re
s to the topof the expression, Wells and Vestergaard 
hoose to merge the let re
s into the mixin module, asformalized by theWV-Closure rule. The expression above redu
es to hb+ b0i. This treatment oflet re
 resembles expli
it substitutions [2℄, and is possible be
ause all stri
t operators expe
t mixinmodules as arguments.Finally, rules WV-Hide-Absent and WV-Hide-Present de�ne the semanti
s of de�nition hid-ing. By rule WV-Hide-Absent, hiding an absent de�nition does nothing, whereas by rule WV-Hide-Present, hiding a present de�nition repla
es its name with the anonymous label.Properties of the redu
tion relation The redu
tion relation is 
on
uent, and enjoys thestrong �nite developments property [75℄. Roughly, this means that redu
ing all the redexes presentin an expression and their residuals in any order leads to a unique normal form.47



2.5.2 Expressiveness and in
onvenientsWells and Vestergaard [75℄ show en
odings for even more features than An
ona and Zu

a. Besidesre
ord operations, �rst-
lass fun
tions, and Abadi and Cardelli's obje
t 
al
ulus (ACC), Wells andVestergaard show en
odings for C-style modules, pa
kages (Haskell style), higher-order ML stylemodules, at least of their type-free aspe
ts. Finally, they 
ompare the expressiveness of m withother 
al
uli for linking, in
luding �rst-
lass 
ontexts [44℄, �rst-
lass environments [68, 67℄, andCMS . An en
oding of CMS is given, whi
h is not exa
tly a simulation, but is 
onje
tured topreserve observable behaviour. This en
oding is interesting be
ause m initially features neitherde�nition renaming nor late binding, and the en
oding shows that they are in fa
t present in the
al
ulus, in a quite intuitive way.Late binding The set of names 
an be partitioned into input names { written here with thesupers
ript i, as in X i { and output names { written here with the supers
ript o.A virtual de�nition of CMS named X , i.e. a 
ouple of an input x 7! X and an output X 7! e
an then be represented by a 
ouple of an input de�nition X i . x = � and an output de�nitionXo . y = e. The variable y must not be used by any de�nition. This way, the WV-ISubst neverapplies for virtual de�nitions, thus preserving the late binding semanti
s. Overriding 
an then beimplemented by �rst hiding the de�nition of Xo, then garbage-
olle
ting it (sin
e y is unused), and�nally linking with a mixin module de�ning Xo again.De�nition renaming A positive atomi
 renaming in m is a pair of names, written X +:= Y . Itis used for renaming output de�nitions, and applied to an expression e by(e� hX . x = �; Y . y = xi):�X :The e�e
t is that the de�nition provided by e is bound to x and re-exported as Y . When X isthen hidden, Y still exports the right de�nition, and has semanti
ally repla
ed X in the interfa
eof the mixin module.A negative atomi
 renaming X �:= Y allows to rename input de�nitions, by a dual me
hanism. Itis applied to an expression e by applying the inverse positive atomi
 renaming, i.e. X +:= Y .A more 
ompli
ated notion of simultaneous renaming is given, whi
h follows the same idea, but isslightly more powerful sin
e it allows to dupli
ate output 
omponents and to merge input 
ompo-nents.Additionally (atomi
) renaming has an a
tion that re
alls freezing. If an input name is renamedto an output name, this has the e�e
t of resolving the input with the output, as shown by thefollowing example redu
tion.hX . x = �; Y . y = ei[X �:= Y ℄= (hX . x = �; Y . y = ei � hY . y =; X . x = yi):�X�!hX . x = y; Y . y = ei:�X�!h . x = y; Y . y = eiThe result mixin module is observationally equivalent to h . x = e; Y . y = ei, whi
h 
orrespondsto the result of freezing X as Y .Thus,m and CMS o�er similar features, from the standpoint of dynami
 semanti
s. It is interestingto list the di�eren
es, and re
ord what they bring to the theoreti
al study of mixin modules.48



2.5.3 Comparison with CMSShape of the basi
 mixin modules and subtyping Basi
 mixin modules in the m-
al
ulusare very 
lose to an a

eptable 
on
rete syntax, be
ause deferred, lo
al, and exported de�nitions
an be interleaved. Furthermore, this gives an intuition about a possible order of evaluation of thede�nitions. However, the shape of CMS basi
 mixin modules provides more information about thestatus of de�nitions. In parti
ular, in CMS , a de�nition 
an be exported without being imported(i.e. without being bound by a variable). In the m-
al
ulus, this information is hidden in the fa
tthat the variable binding the observed de�nition is unused.This has 
onsequen
es on typing, espe
ially in the presen
e of depth subtyping, whi
h will probablyappear more natural in CMS . Depth subtyping is likely to work well with mixin modules, be
ausethe inputs are 
ontravariant, whereas the outputs are 
ovariant, and the distin
tion appears intypes. (Width subtyping for mixin modules has to do with extensible re
ords subtyping [42, 63, 11℄,and is not 
on
erned here.) With CMS -like basi
 modules, it is intuitive to spe
ify the importtype of a virtual 
omponent X , even if it is di�erent from the type of the de�nition. For instan
e,a typed mixin module like [x 7! X : T ;X 7! e; ℄ would have a type like [X : T ;X : T 0℄, where T 0is the type of e. The 
onstraint is that T 0 must be a subtype of T . It is then possible to delete X ,and repla
e it with a de�nition of type T 00, as long as it is also a subtype of T . In the m-
al
ulus,the shape of basi
 mixin modules suggests that an exported de�nition will only be spe
i�ed by onetype, whi
h 
ompromises this kind of feature. Of 
ourse, this is just syntax, and a distin
tion oninput and output 
an be made for types, even if it does not appear in expressions.We 
onje
ture that this form of subtyping allows for a great simpli�
ation of a paper by Bono et al.on subtyping mixins in a mobile setting [10℄. Indeed, in their framework, the subtyping points are
learly lo
ated at re
eive time, whi
h allows for automati
 
oer
ion insertion, with width subtyping.More pre
isely, for width subtyping, a mixin module E of type [��; �o℄ 
an be 
oer
ed to the type[��0; �o0℄, provided the following in
lusions hold: �� � ��0, �o0 � �o. The 
oer
ion is ��jEj�o ,where �� and �o are the 
anoni
al inje
tions from dom(��) to dom(��0) and from dom(�o0) todom(�o), respe
tively.Independen
e with respe
t to the 
ore language The most obvious semanti
 di�eren
ebetween both 
al
uli is that CMS features se
ond-
lass mixin modules, expli
itely abstra
ting overan almost arbitrary 
ore language. The standpoint of m is rather to have �rst-
lass mixin modules,and rely on the expressiveness of the mixin module language to a

ount for other 
ore languagefeatures.Partly be
ause of the parameterization over the 
ore language, CMS seems more diÆ
ult toadapt to a 
all-by-value setting. In CMS , when the evaluation of a 
ore expression uses are
ursive de�nition, it 
an be represented by sele
ting a 
omponent out of a mixin module,and storing it in a 
losure. Consider the following example, where the 
ore language is as-sumed to in
lude integers, arithmeti
 operators, and an if : : : then : : : else : : : operator. LetC =def �x:if x = 0 then 1 else fa
t(x� 1), and E0 =def C[fa
t 7! fa
t ℄, whi
h inje
ts C into themixin module language. Then, the mixin module E1 =def [;FACT 7! E0; fa
t 7! E0℄ exports afun
tion FACT that 
omputes the fa
torial of an integer argument. Suppose now that we want to
ompute the fa
torial of 0.Here is how the redu
tion pro
eeds(fa
t 0)[fa
t 7! E1:FACT ℄�! (fa
t 0)[fa
t 7! (E0ffa
t 7! E1:FACTg)℄ (by rule AZ-Sele
t)� (fa
t 0)[fa
t 7! (C[fa
t 7! E1:FACT ℄)℄�! (fa
t 0)ffa
t 7! Cg[fa
t 7! E1:FACT ℄ (by rule AZ-Sub)� (C 0)[fa
t 7! E1:FACT ℄�! 1[fa
t 7! E1:FACT ℄ 49



In CMS , the obtained expression is not a value and loops, trying to evaluate the 
losure. However,one 
ould imagine a garbage 
olle
tion rule for unused bindings in 
losures. Unfortunately, in a 
all-by-value setting, the redu
tion would evaluate the E1:FACT in the 
losure �rst, and unfortunatelythis would not terminate, sin
e the same expression appears again after one redu
tion step. In thisthesis, we will 
hoose the m way, and rely on the mixin module language to express usual 
orelanguage features.From 
on
rete mixin modules to modules In m, a mixin module without input de�nitionsand without dependen
y problems 
an be evaluated, thanks to theWV-ISubst rule. What we 
alla dependen
y problem is a 
ase where one or more de�nitions would need to 
opy the value of ea
hother in order to evaluate. For instan
e, an expression su
h as hX . x = x� xi has a dependen
yproblem. Nevertheless, all the 
ommon re
ursive de�nitions behave well in the m-
al
ulus. Are
ursive de�nition of fun
tions, for instan
e, is perfe
tly evaluated and 
an be further used byother de�nitions, in the same binding. In this respe
t, m is not as 
all-by-name as CMS . In CMS ,a 
on
rete mixin module (see de�nition 3) with unevaluated de�nitions never further evaluates.This fa
t leads to the 
on
lusion that m is 
lose to a language of 
all-by-value mixin modules.Indeed, if mixin modules are represented as explained by the en
oding of se
tion 2.5.2, we have seenthat the late binding semanti
s is preserved. Call-by-value mixin modules 
ould then be de�nedby restri
ting the redu
tion relation to a 
all-by-value strategy. Roughly, this 
ould be done asfollows.� Re�ne the notion of value. Open mixin modules are values (do not evaluate inside open mixinmodules). Only fully evaluated 
on
rete mixin modules are values.� Restri
t both substitution rules WV-ISubst and WV-ESubst to 
opy only values,� Restri
t sele
tion to value 
on
rete mixin modules.� (Maybe this 
ould also require to modify the handling of let re
 bindings.)The obtained 
al
ulus respe
ts hint 1, by distinguishing open mixin modules from 
on
rete ones,only allowing evaluation inside the latter, and sele
ting 
omponents only from evaluated 
on
retemixin modules. The 
lose operator is not dire
tly in the language, but its role 
an be played byfreezing. If we 
all virtually 
on
rete mixin modules the ones su
h that all input names 
orrespondto an output name, 
losing a virtually 
on
rete mixin module 
an be done by freezing all its
omponents.The obtained language still remains unsatisfa
tory though, in at least two aspe
ts.� First, there is a need for a polymorphi
 
lose operator. Indeed, the above solution onlyen
odes 
lose lo
ally, for a mixin module whose shape is known.� Se
ond, on
e a virtually 
on
rete mixin module has been 
losed (by freezing all its input
omponents), evaluation remains undeterministi
 (as the evaluation of let re
 is).The �rst point is not too hard to solve: 
losing a virtually 
on
rete mixin module 
onsists inrepla
ing the input variables with the 
orresponding output variables, and removing the inputde
larations, thus making the mixin module 
on
rete and ready for evaluation.The se
ond point is more problemati
 however. Making evaluation deterministi
 turns out diÆ
ult.Indeed, in m, bindings are 
onsidered equivalent modulo reordering of de�nitions. But given abinding, evaluation has to �nd a unique 
orre
t order of evaluation for de�nitions, that does notviolate dependen
ies. The uniqueness 
omes from the requirement that in a 
all-by-value language,side-e�e
ts must appear in a predi
table order. In usual 
all-by-value module systems, the order of50



evaluation is given synta
ti
ally, but here, in some 
ases, it does not exist. For instan
e, 
onsiderthe binding . x = 1 + 2; . y = 2 � 1. There are two possible orders of evaluation.A �rst idea to solve the problem is to stop 
onsidering bindings equivalent modulo the order ofde�nitions, and spe
ify an order of evaluation inside them, say from left to right. However, thisbreaks the de�nition of linking. As an example, 
onsider the two mixin modules e1 =def hX . x =�; Y . y = x+ 1i and e2 =def hX . x = 0i. A

ording to the semanti
s of m, e1 � e2 
an be eitherhX .x = 0; Y .y = x+1i or hY .y = x+1; X .x = 0i, alternatively. Assume that we de�ne linkingto remove empty de�nitions when a non-empty one is provided, so that non-empty de�nitions donot 
hange their relative positions. (A semanti
s remains to be given for the 
ase where two emptyde�nitions meet, but this informal dis
ussion does not spe
ify it.) The above linking then resultsin hY . y = x+ 1; X . x = 0i, whose evaluation fails, be
ause the value of x is needed to evaluatex+ 1, and X . x = 0 is to the right of Y . y = x+ 1.in many 
ases, this will appear too rigid.

51



52



Part IIDynami
 and stati
 semanti
sof 
all-by-value mixin modules
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Chapter 3Dynami
 semanti
s: the MMlanguage
3.1 SyntaxThe syntax of MM is de�ned in �gure 3.1. The meta-variables X and x range over names andvariables, respe
tively. Variables are used as binders, as usual. Names are used for a

essing tode�nitions in mixin modules, as an external interfa
e to other parts of the expression. Figure 3.2re
apitulates the meta-variables and notations we introdu
e in the remainder of this se
tion.Expressions in
lude variables x, re
ords (labeled by names) fX1 = e1 : : : Xn = eng, and re
ordsele
tion e:X , whi
h are standard.MM features mutually re
ursive bindings of the shape let re
 b in e (where b is a list of de�nitionsx1 = e1 : : : xn = en). Note that there is no restri
tion to binding only value forms.Expressions also in
lude stru
tures. A stru
ture is a pair of an input � of the shapeX1.x1 : : : Xn.xn,and of an output o of the shape d1 : : : dm. � maps external names imported by the stru
ture tointernal variables (used in o). o is a list (the order matters) of de�nitions d. A de�nition is of theshape L[x1 : : : xn℄.x = e, where the label L may be either a name X or the anonymous label ande is the body of the de�nition. The possibly empty �nite set of names x1 : : : xn is the set of fakedependen
ies of this de�nition on other de�nitions of the stru
ture. (This allows the programmerto for
e an order of evaluation.)Finally, MM follows the literature about mixin modules [16, 6, 45℄ in its set of operators, in
luding
omposition e1+ e2, 
losure 
lose e, freezing e !X , proje
tion ejX1:::Xn , deletion ej�X1:::Xn , showinge:X1:::Xn , hiding e:�X1:::Xn , and renaming e[X1 7! Y1 : : : Xn 7! Yn℄. There is a new operator 
alledsplitting eX�Y . We let op range over the set of operators (see �gure 3.2), and denote by op[e℄ theappli
ation of op to the expression e.Synta
ti
 
orre
tness Renamings r = (X1 7! Y1 : : : Xn 7! Yn), inputs � = (X1 .x1 : : : Xn .xn),re
ords s = (X1 = e1 : : : Xn = en), bindings b = (x1 = e1 : : : xn = en), are required to be �nitemaps: a renaming is a �nite map from names to names, an input is a �nite map from namesto variables, a re
ord is a �nite map from names to expressions, and a binding is a �nite mapfrom variables to expressions. Requiring them to be �nite maps means that they should not bindthe same variable or name twi
e. Renamings and inputs are required to be inje
tive. Outputso = (d1 : : : dn) are required not to de�ne the same name twi
e, and not to de�ne the same variabletwi
e. Stru
tures are required not to de�ne the same name twi
e and not to de�ne the samevariable twi
e. Fake dependen
ies in a de�nition must be bound in the same stru
ture.55



x 2 Vars VariableX 2 Names NameExpression: e ::= x Variablej fX1 = e1 : : : Xn = eng Re
ordj e:X Re
ord sele
tionj let re
 x1 = e1 : : : xn = en in e let re
j hX1 . x1 : : :Xn . xn; d1 : : : dmi Stru
turej e1 + e2 j 
lose e j e !X Composition, 
losure, freezingj ejX1:::Xn j ej�X1:::Xn Proje
tion, deletionj e:X1:::Xn j e:�X1:::Xn Showing, hidingj e[X1 7! Y1 : : :Xn 7! Yn℄ Renamingj eX�Y SplittingDe�nition: d ::= X [x1 : : : xn℄ . x = e Named de�nitionj [x1 : : : xn℄ . x = e Anonymous de�nition
Figure 3.1: Syntax of MM

s ::= X1 = e1 : : : Xn = en Re
ordb ::= x1 = e1 : : : xn = en Binding� ::= X1 . x1 : : : Xn . xn Input (inje
tive)o ::= d1 : : : d2 Outputr ::= X1 7! Y1 : : : Xn 7! Yn Renaming (inje
tive)op[e℄ ::= e:X Re
ord sele
tionj 
lose e j e !X Closure, freezingj ejX1:::Xn j ej�X1:::Xn Proje
tion, deletionj e:X1:::Xn j e:�X1:::Xn Showing, hidingj e[X1 7! Y1 : : :Xn 7! Yn℄ Renamingj eX�Y SplittingFor a �nite map f , and a set of variables P ,dom(f) is its domain, 
od(f) is its 
odomainfjP is its restri
tion to P , and fnP is its restri
tion to Vars nP .Figure 3.2: Meta-variables and notations
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Value: v ::= x j fsvgj hX1 . x1 : : :Xn . xn; d1 : : : dniAnswer: a ::= v j let re
 bv in vValue sequen
e: sv ::= X1 = v1 : : : X1 = v1bv ::= x1 = v1 : : : xn = vnFigure 3.3: Values in MMh�1; o1i m h�2; o2i means � h�1; o1i l h�2; o2i andh�2; o2i l h�1; o1i:h�1; o1i l h�2; o2i means that for all (L . x) 2 dom(h�1; o1i),x 2 FV(o2) [ Variables(h�2; o2i)) (L . x) 2 dom(h�2; o2i) and L 2 Names :Figure 3.4: De�nition of mIn a let re
 binding b = (x1 = e1 : : : xn = en), when for some 1 � i � j � n, xj 2 FV(ei), we saythat there is a forward referen
e from xi to xj . Forward referen
es in bindings are synta
ti
allyforbidden, ex
ept when they point to a 
ertain 
lass of expressions, the 
lass of expressions witha predi
table shape. We approximate that the shape of an expression is predi
table if it is astru
ture, a re
ord, or a binding followed by an expression of predi
table shape. Formally e# 2Predi
table ::= fog j h�; oi j let re
 b in e#.Sequen
es Outputs may be viewed as �nite maps from pairs of a label and a variable (L; x)to pairs of a �nite set of variables (x1 : : : xn) and an expression e. Renamings, inputs, re
ords,bindings, and outputs are often 
onsidered as �nite maps in the sequel. We refer to them 
olle
tivelyas sequen
es, and use the usual notions on �nite maps, su
h as the domain dom, the 
odomain
od, the restri
tion �jP to a set P , or the 
o-restri
tion �nP outside of a set P . Noti
e that the
odomain of an output o, restri
ted to pairs of a name and a variable (no anonymous label), mayin turn be viewed as an input, sin
e it is an inje
tive �nite map. We denote it by Input(o).Stru
tural equivalen
e We 
onsider the expressions equivalent up to alpha-
onversion of bind-ing variables in stru
tures and let re
 expressions. In the following, we assume that no unduevariable 
apture o

urs.3.2 Semanti
sThe semanti
s of MM is de�ned in two steps: a 
ontra
tion relation des
ribes the a
tion of theoperators, and a redu
tion relation extends it properly to any expression.Values As de�ned in �gure 3.3, anMM value is either a variable x, or an evaluated re
ord fX1 =v1 : : : X1 = v1g, or a stru
ture h�; oi. A valid result of the evaluation of anMM expression is a value,possibly surrounded by an evaluated binding. It thus has the shape let re
 x1 = v1 : : : xn = vn in v.The meta-variables sv and bv respe
tively range over evaluated re
ord sequen
es and bindings.57



dom(b) ? FV(L )L [let re
 b in e℄ 
 let re
 b in L [e℄ (Lift) fX1 = v1 : : : Xn = vng:Xi 
 vi (Sele
t)h�; oij�X1 :::Xn  
 h�; Input(o)j fX1:::Xng; onfX1:::Xngi (Delete)h�; oijX1:::Xn  
 h�; Input(o)nfX1:::Xng; oj f ;X1:::Xngi (Proje
t)h�; oi:X1 :::Xn  
 h�; Show(o; fX1 : : :Xng)i (Show)h�; oi:�X1 :::Xn  
 h�; Show(o;Names nfX1 : : : Xng)i (Hide)h�; o1; X [y�℄ . x = e; o2i !X  
 h�; o1; [y�℄ . x = e; o2; X . = xi (Freeze)Names(h�; oi) ? (
od(r) n dom(r))h�; oi[r℄ 
 h�frg; ofrgi (Rename)h�; o1; X [z�℄ . x = e; o2iX�Y  
 h�;X . x; o1; Y [z�℄ . = e; o2i (Split)h�1; o1i m h�2; o2i Names(o1) ? Names(o2)h�1; o1i+ h�2; o2i 
 h(�1 [ �2) n Input(o1; o2); o1; o2i (Sum)Bind(o) is 
orre
t
loseh;; oi 
 let re
Bind(o) inRe
ord(o) (Close)Figure 3.5: Computational 
ontra
tion relation
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The 
ontra
tion relation The 
ontra
tion relation is de�ned by the rules in �gure 3.5, wherefor any sets P1 : : : Pn, P1 ? : : : ? Pn means that the Pi's are pairwise disjoint.The �rst rule Lift des
ribes how let re
 bindings are lifted up to the top of the term. When theevaluation of a sub-expression results in a let re
 binding, MM lifts it one level up, as follows. Lift
ontexts L are de�ned as L ::= fSg j op[2℄ j 2+ e j v +2S ::= sv ; X = 2; s:Rule Lift states that an expression of the shape L [let re
 b in e℄ evaluates tolet re
 b in L [e℄, provided no variable 
apture o

urs.The re
ord sele
tion rule Sele
t straightforwardly des
ribes the sele
tion of a re
ord �eld.The rules for mixin deletion Delete and proje
tion Proje
t are dual. Rule Delete des
ribeshow MM deletes a �nite set of names X1 : : :Xn from a stru
ture h�; oi. First, o is restri
ted tothe other de�nitions, to obtain onfX1:::Xng (whi
h is shorthand for onfX1:::Xng�Vars). Se
ond, theremoved de�nitions remain bound as inputs, by adding the 
orresponding inputs to �.Rule Proje
t des
ribes how MM proje
ts a mixin to some �nite set of names X1 : : :Xn froma stru
ture h�; oi. First, o is restri
ted to the 
orresponding de�nitions and to the lo
al ones, toobtain oj f ;X1:::Xng (whi
h is a shorthand for oj f ;X1:::Xng�Vars). Then, the removed de�nitionsremain bound as inputs, by adding the 
orresponding inputs to �.Rules Show and Hide are dual. Rule Show allows to hide all the exported names of a stru
ture,ex
ept the given ones. It pro
eeds by making the other de�nitions lo
al, as de�ned byShow(L[y�℄ . x = e;N ) = � L[y�℄ . x = e if L 2 N[y�℄ . x = e otherwise.Rule Hide symmetri
ally hides the given names in a stru
ture. It pro
eeds by showing the otherones.Rule Freeze des
ribes how a name X is frozen in a stru
ture h�; oi. First, the 
orrespondingde�nition X [y�℄.x = e is made lo
al, by repla
ing X with the lo
al label . Then, a new de�nitionis added at the end of the output. It is named X , is bound to a fresh variable (denoted by in therule by abuse of notation), and is de�ned by referring to x.Renaming of a stru
ture h�; oi by a renaming r, de�ned by rule Rename, repla
es the names in� and o with the new ones. Formally, for N � Names, we de�ne rN by r [ id jNndom(r) and fora �nite map f with dom(f) � Names, we de�ne ffrg by f Æ (rdom(f))�1. The �nite map ffrg iswell-de�ned provided rdom(f) is inje
tive, whi
h holds as soon as 
od(r) \ dom(f) � dom(r) or inother words dom(f) ? (
od(r) ndom(r)). By the side-
ondition Names(h�; oi) ? (
od(r) ndom(r)),this is the 
ase for �frg. (We denote by Names(h�; oi) the set of names bound by the stru
ture, i.e.dom(�) [ dom(Input(o)).) Finally, we de�ne ofrg by o Æ (rNames(o); idVars)�1, with the order keptfrom o, and where (f1; f2)(x1; x2) = (f1(x1); f2(x2)). Noti
e that when 
omposing two fun
tionsf Æ g, we 
onsider a fun
tion whose domain is g�1(dom(f)) and on this domain is f(g(x)). In therule, ofrg is well-de�ned, thanks to the side-
ondition. Synta
ti
 
orre
tness is preserved, sin
erNames(h�;oi) is inje
tive. So, after renaming, no name is de�ned twi
e.The Split rule introdu
es a new operator \split". If there is a de�nition X [z�℄.x = e for the nameX in h�; oi, the split operator h�; oiX�Y splits it into an input X . x and a de�nition Y [z�℄ . y = e(with a fresh y). Referen
es to x 
ontinue referen
ing it as an input, but the former de�nition eremains exported as Y . The operation is di�erent from renaming X to Y or deleting X .The Sum rule de�nes the 
omposition of two stru
tures h�1; o1i and h�2; o2i. The result is a stru
tureh�; oi, de�ned as follows. � is the union of �1 and �2, where names de�ned in o1 or o2 are removed. ois de�ned as the 
on
atenation of o1 and o2. The side 
ondition h�1; o1i m h�2; o2i 
he
ks that bothstru
tures agree on bound variables, and that no free variable is 
aptured. It is de�ned in �gure59



Evaluation 
ontext:E ::= F j let re
 bv in F j let re
 B [F ℄ in eLift 
ontext:L ::= fSg j op[2℄ j 2+ e j v +2 Multiple lift 
ontext:F ::= 2 j L [F ℄Binding 
ontext:B ::= bv; x = 2; bRe
ord 
ontext:S ::= sv; X = 2; sFigure 3.6: Evaluation 
ontexts(let re
 bv in F )(x) = bv(x) (EA) (let re
 bv; y = F ; b in e)(x) = bv(x) (IA)Figure 3.7: A

ess in evaluation 
ontexts3.4, where dom(h�; oi) = � [ dom(o), and Variables(h�; oi) denotes 
od(�) [ fx j (L; x) 2 dom(o)g.Lastly, o1 and o2 are required not to de�ne the same names.Eventually, the Close rule des
ribes the instantiation of a stru
ture h�; oi. � must be empty. Theinstantiation is in three steps. First, o is reordered to o, a

ording to its dependen
ies, to its fakedependen
ies, and to its default ordering. Se
ond, a binding Bind(o) is generated, de�ning, forea
h de�nition d = L[y�℄ . x = e in o, the de�nition x = e, in the same order as in o. Third, thenamed de�nitions of o are put in a re
ord Re
ord(o), with, for ea
h named de�nition X [y�℄.x = e,a �eld X = x, and this re
ord is the result of the instantiation. The side 
ondition ensures that thegenerated binding is synta
ti
ally 
orre
t, espe
ially that there is no forward referen
e to bindingsof unpredi
table shapes.The redu
tion relation The redu
tion relation is de�ned by the rules in �gure 3.8, using notionsde�ned in �gures 3.6 and 3.7.Rule Context extends the 
ontra
tion relation to any evaluation 
ontext. Evaluation 
ontextsare de�ned in �gure 3.6. We 
all a multiple lift 
ontext F a series of nested lift 
ontexts. Anevaluation 
ontext E is a multiple lift 
ontext, possibly inside a partially evaluated binding, orunder a fully evaluated binding. This unusual formulation of evaluation 
ontexts is intended toenfor
e determinism of the redu
tion relation. The idea is that evaluation never takes pla
e insideor under a let re
, ex
ept the topmost one. Other bindings inside the expression �rst have to belifted to the top by rule Lift, and then merged with the topmost let re
 if any, by rules EM andIM. In the 
ase where the topmost binding is of the shape bv; x = (let re
 b1 in e); b2, rule IMallows to merge b1 with the 
urrent binding. When an inner binding has been lifted to the top, ife 
 e0E [e℄ 9 9 K
 E [e0℄ (Context) E [N ℄(x) = vE [N [x℄℄ 9 9 K
 E [N [v℄℄ (Subst)dom(b1) ? fxg [ dom(bv ; b2) [ FV(bv; b2) [ FV(f)let re
 bv; x = (let re
 b1 in e); b2 in f  
 let re
 bv; b1; x = e; b2 in f (IM)dom(b) ? (dom(bv) [ FV(bv))let re
 bv in let re
 b in e 9 9 K
 let re
 bv; b in e (EM)Figure 3.8: Redu
tion relation60



there is already a topmost binding, then the two bindings are merged together by rule EM. As aresult, when the evaluation en
ounters a binding, it is always possible to lift it up to the top andthen merge it with the topmost binding if any.Eventually, rule Subst des
ribes the use of bound values when needed. The notion of a neededvalue is formalized by need 
ontexts, whi
h are de�ned byN ::= op[2℄ j 2+ v1 j v2 +2 (v2 is not a variable).In MM the value of a variable is 
opied only when needed for the appli
ation of an operator, orfor 
omposition. The value of a variable x is found in the 
urrent evaluation 
ontext, by lookingfor the �rst binding of x above the 
alling site, as formalized by the notion of a

ess in evaluation
ontexts in �gure 3.7. There are two kinds of a

esses.� In the 
ase of a 
ontext of the shape let re
 bv in F , if the 
alled variable x is bound in thetopmost binding bv, then bv(x) is the requested value, provided the two 
apture 
onditionsare respe
ted. First, no variable free in bv(x) should be 
aptured by F . Se
ond, x should notbe 
aptured by F either, be
ause this would mean that another binding is 
on
erned, insideF .� In the 
ase of a 
ontext of the shape E [let re
 bv; y = F ; b in e℄, if the 
alled variable xis bound in the binding bv, then bv(x) is the requested value, provided the two 
apture
onditions are respe
ted. First, no variable free in bv(x) should be 
aptured by F . Se
ond,x should not be 
aptured by F either, be
ause this would mean that another binding is
on
erned, inside F .In �gure 3.7, the 
apture 
onditions are formalized with the Capt fun
tion. Capt2(E ) is the set ofbound variables above 2 in E . If 2 is �lled with another variable, then it is free in the obtainedexpression.Instantiation The Close rule makes use of a reordering operation on outputs o, whi
h wede�ne in this se
tion. This operation takes four aspe
ts of its argument into a

ount: its internaldependen
ies, its fake dependen
ies, the shapes of its de�nitions, and its original ordering. Internaldependen
ies and fake dependen
ies are 
onsidered imperative requirements on the �nal ordering: ifa de�nition dmight 
all another de�nition d0, then d0 must be put before d in the �nal ordering. Theshapes of the de�nitions are examined in order not to generate a binding with forward referen
es tode�nitions of unpredi
table shape. The original ordering is only used as a hint, in the 
ase whereno 
onstraint for
es one de�nition to be put before the other.Remark 1 (Warning) The 
riterion on bindings mentioned in se
tion ??, forbidding forwarddependen
y paths starting with a stri
t edge, will look reversed here. Indeed, when a de�nition d1
alls another de�nition d2, it is also possible to see it as a 
onstraint on their ordering, su
h as\the de�nition d2 must be put before the de�nition d1". As we will use this relation on de�nitionsas an ordering for generating a binding, the se
ond way is more intuitive. A 
onsequen
e is thatthe 
riterium now forbids ba
kward dependen
y paths ending with a stri
t edge.More formally, the dependen
y graph of an output is de�ned in �gure 3.9. For ea
h pair ofde�nitions L[y�℄ . x = e and L0[z�℄ . x0 = e0 in o, there may be two kinds of edges.� If x0 is free in e, then an edge is drawn from x0 to x. This edge is labeled with a degree� 2 f,;/g. � is determined by Degree(x0; e), where the Degree fun
tion is de�ned forx 2 FV(e) by Degree(x; h�; oi) = ,Degree(x; fsvg) = ,Degree(x; e) = / otherwise.The Degree fun
tion is simple, and 
ould be extended as in [12, 45℄.61



(L[y�℄ . x = e) 2 o (L0[z�℄ . x0 = e0) 2 o � = Degree(x0; e)x0 ��!o x(L[x1 : : : xn℄ . x = e) 2 o (L0[z�℄ . xi = e0) 2 oxi /�!o xFigure 3.9: Dependen
ies in an outputx �1�!+ z z �2�! yx �2�!+ y x ��! yx ��!+ yFigure 3.10: Transitive 
losure of !� If x0 is mentioned in y�, then an edge from x0 to x is drawn, with degree/. Fake dependen
iesa
t as real stri
t dependen
ies.The transitive 
losure of this relation is de�ned in �gure 3.10, by de�ning the degree of a path as thedegree of its last edge. The relation /�!+o gives a 
onservative approximation of whi
h de�nitionneeds the value of whi
h other one in Bind(o). Reordering o a

ording to �!o it is not enoughthough, be
ause the generated binding might be synta
ti
ally in
orre
t. Indeed, it is forbiddento make forward referen
es to de�nitions of unpredi
table shape inside a binding. Stri
t forwardreferen
es to de�nitions of unpredi
table shape already 
orrespond to edges labeled / in �!o, andare therefore taken into a

ount when reordering a

ording to /�!+o . Weak forward referen
esto de�nitions of unpredi
table shape 
orrespond to edges labeled , in �!o, and are therefore nottaken into a

ount when reordering a

ording to /�!+o . Let �o= f(x1; x2) j x1 ,�! x2; o(x1) =2Predi
tableg. This relation exa
tly puts weak referen
es to de�nitions of unpredi
table shape inthe right order.We de�ne the binary relation mo by the lexi
al ordering mo = �( /�!+o [ �o)+; >o�, where >o isthe initial ordering in o. If mo 
ontains no 
y
le, o is said 
orre
t. This is written ` o. In this 
ase,o denotes o reordered by mo.
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Chapter 4Stati
 semanti
s
4.1 Type systemIn this se
tion, we present a type system for MM.Types are de�ned in �gure 4.1. There are only two kinds of types, re
ord types fOg and mixintypes hI ;O;Gi, where I and O range over �nite maps from names to types and G is a �nite graphover names, labeled by degrees. Su
h a graph is 
alled an abstra
t dependen
y graph. (Rememberthat dependen
y graphs over the whole set of nodes are 
alled 
on
rete.) An environment � isa �nite map from variables to types. We write �h�0i for the map where the bindings of �0 haveoverridden the ones from �.Remark 2 Graphs are 
onsidered equal modulo removal of isolated nodes, and modulo the follow-ing rewriting rule: N1 �1 **�2 44 N2 //___ N1 �1^�2 // N2 (4.1)where ^ gives the most dangerous of two degrees:�1 ^ �2 = , if �1 = �2 = ,�1 ^ �2 = / otherwiseIn �gure 4.2, the type system is de�ned by means of a set of inferen
e rules.The �rst rule T-Stru
t 
on
erns the typing of basi
 stru
tures h�; oi. Given an input I (whi
h isarbitrary here, we do not 
onsider type inferen
e or type-
he
king issues) 
orresponding to �, anda type environment �o 
orreponding to o, it 
he
ks that the de�nitions in o indeed have the typesmentioned in �o. M 2 Types ::= fOg j hI ;O;GiI; O 2 Names Fin��! TypesG �Fin fX ��! Y j X;Y 2 Names; � 2 Degreesg� 2 Vars Fin��! TypesFigure 4.1: Types63



Expressions:dom(�) = dom(I) ` I ` �o ` �!h�;oi �hI Æ ��1 ℄ �oi ` o : �o� ` h�; oi : hI ; �o Æ Input(o); b�!h�;oi
i (T-Stru
t)I1 ℄ O1 m I2 ℄ O2 ` G1 [G2 � ` e1 : hI1;O1;G1i � ` e2 : hI2;O2;G2i� ` e1 + e2 : h(I1 [ I2) n (O1 [ O2);O1 ℄ O2;G1 [G2i (T-Sum)� ` e : hI ;O;Gi X 2 dom(O)� ` e !X : hI ;O; bG !X
i (T-Freeze) � ` e : h;;O;Gi� ` 
lose e : fOg (T-Close)� ` e : hI ;O;Gi� ` ejX1:::Xn : hI ℄ OnfX1:::Xng;Oj fX1:::Xng;GjfX1:::Xngi (T-Proje
t)� ` e : hI ;O;Gi� ` ej�X1:::Xn : hI ℄Oj fX1:::Xng;OnfX1:::Xng;Gj�fX1:::Xngi (T-Delete)� ` e : hI ;O;Gi fX1 : : : Xng � dom(O)� ` e:�X1:::Xn : hI ;OnfX1:::Xng; bG:�fX1:::Xng
i (T-Hide)� ` e : hI ;O;Gi fX1 : : : Xng � dom(O)� ` e:X1:::Xn : hI ;Oj fX1:::Xng; bG:fX1:::Xng
i (T-Show)� ` e : hI ;O;Gi (
od(r) n dom(r)) ? (dom(I) [ dom(O))� ` e[r℄ : hIfrg;O Æ frg;Gfrgi (T-Rename)� ` e : hI ;O;Gi Y =2 dom(I) [ dom(O)� ` eX�Y : hI ℄ fX : O(X)g;OfX 7! Y g;GX�Y i (T-Split)8i 2 f1 : : : ng;� ` ei :Mi� ` fX1 = e1 : : : Xn = eng : fX1 :M1 : : :Xn :Mng (T-Re
ord)� ` e : fOg� ` e:X : O(X) (T-Rsele
t)` b ` �b �h�bi ` b : �b �h�bi ` e :M� ` let re
 b in e :M (T-LetRe
) x 2 dom(�)� ` x : �(x) (T-Variable)Sequen
es:� ` � : ; � ` e :M � ` o : �o� ` (L[x�℄ . x = e; o) : fx :Mg ℄ �o � ` e :M � ` b : �b� ` (x = e; b) : fx :Mg ℄ �bFigure 4.2: Type system
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LiftTransitive 
losure through lo
al 
omponentsN1 �1�! x x �2�!2 N2N1 �1^�2����!2 N2 N1 ��! N2N1 ��!2 N2Lift b!
 = !2jNames�NamesSum G1 +G2 = G1 [G2Freeze G !X = GfX � xg [ fx /�! Xg (x not mentioned in G)Proje
t GjN = GjNames�N�DegreesDelete Gj�N = GnNames�N�DegreesHide G:�X1:::Xn = GfX1 7! x1 : : : Xn 7! xng (x1 : : : xn fresh)Show G:X1:::Xn = G:�Targets(G)nfX1:::XmgRename Gfrg = f(N1frg; N2frg; �) j (N1; N2; �) 2 GgSplit GX�Y = (G nGjf:�Xg) [ f(Z; Y; �) j (Z;X; �) 2 GgFigure 4.3: Graph operations

� = Degree(x0; e) (L0; x0) 2 dom(h�; oi) (L[z�℄ . x = e) 2 oNode(L0; x0) ��!h�;oi Node(L; x)(Li; xi) 2 dom(h�; oi) (L[x1 : : : xn℄ . x = e) 2 oNode(Li; xi) /�!h�;oi Node(L; x)Figure 4.4: Dependen
ies in a stru
ture
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` I ` O dom(I) ? dom(O) Targets(G) � dom(O) ` G` hI ;O;Gi ` O` fOg8X 2 dom(I) ` I(X)` IFigure 4.5: Well-formed typesThe 
ondition ` �!h�;oi requires some explanation. We saw in se
tion 3.2 that dependen
ies inan output are represented by its dependen
y graph �!o. For stru
tures (whi
h are in
ompleteoutputs), the 
orresponding notion is the 
on
rete dependen
y graph. A 
on
rete dependen
ygraph is a graph over nodes. A node N is an element of Nodes = Vars[Names. The dependen
ygraph of a stru
ture is de�ned in �gure 4.4. It re
ords dependen
ies in the stru
ture (as wasdone for outputs), but takes external names into a

ount, when possible. Named de�nitions arerepresented by a name, and lo
al de�nitions are represented by their variables. In order for typesnot to mention lo
al 
omponents, we introdu
e a lift operation b�!h�;oi
, whi
h, as des
ribed in�gure 4.3, �rst ensures to keep tra
k of lo
al 
omponents by shifting their dependen
ies to the nextexported 
omponents, and then erases them. The result is an abstra
t dependen
y graph.Finally, the rule 
he
ks that the imported types are well-formed, whi
h would otherwise not befor
ed, with the following notion of well-formedness.De�nition 4 (Corre
t graphs) A graph ! is 
orre
t i� /�!+ is an ordering on its nodes(written `!).De�nition 5 (Well-formed types) Figure 4.5 de�nes the sets of well-formed types an inputs(or outputs), as the least relation respe
ting the rules. A mixin type hI ;O;Gi must import andde�ne disjoint sets of names, the targets of G must be de�ned, and G must be 
orre
t.The se
ond rule T-Sum types the sum of two expressions. It veri�es that names are bound tothe same types in both expressions (relation m overloaded to types), that the union of the twodependen
y graphs is still 
orre
t, and that two names are not de�ned twi
e (i.e. are not in thetwo outputs). The result type shares the inputs, where de�ned names have been removed, andtakes the union of the outputs and of the dependen
y graphs.The third rule T-Freeze introdu
es a new operation G!X . x on abstra
t graphs, whi
h is againde�ned in �gure 4.3. To freeze a name X , it �rst repla
es X with a fresh lo
al variable x, makingthe graph temporarily non-abstra
t. Then, it adds a stri
t link from x to X . This follows 
loselythe semanti
s of freezing from �gure 3.5, �rst making all other 
omponents 
all the lo
al 
omponentx instead of X , and then re-exporting X as x exa
tly. The link is for
ed to be a stri
t one byhypothesis 2.The T-Close rule transforms a mixin type with no input into a re
ord type. It looks very simple,but to prove it 
orre
t, we must show that well-ordered outputs yield well-ordered bindings by
ontra
tion rule Close.The mixin proje
tion rule T-Proje
t, exa
tly as the 
orresponding 
ontra
tion rule, keeps in theoutput types only the sele
ted ones, reporting the other ones in the input types. The abstra
tgraph is modi�ed a

ordingly by the operation GjfX1:::Xng, whi
h removes the edges leading tounsele
ted 
omponents. The T-Delete rule is its dual again.The T-Hide removes the given names from the output. Additionally, it a
ts on the abstra
t graphG as des
ribed in �gure 4.3. It �rst repla
es the given names by fresh variables, and then lifts theresult, in order to obtain an abstra
t graph. Rule T-Show is its dual, as expe
ted.66



Rule T-Rename, given a mixin e of type hI ;O;Gi, dedu
es that e renamed by r has the sametype, with input I and output O redire
ted to use the new names (
od(r)). As the 
ontra
tionrule Rename, it makes use of the rN fun
tion, 
omposed with I and O. The abstra
t graph isrenamed as well.Given an expression e of type hI ;O;Gi, a

ording to rule T-Split, the type of eX�Y is as follows.X is added to the input, with the type it had in O. X is renamed to Y in the output. The graphG is modi�ed a

ording to �gure 4.3. Gjf:�Xg is the set of edges leading to X in G. Basi
ally,these edges are redire
ted to Y .The T-Rsele
t and T-Re
ord rules for typing re
ord 
onstru
tion and sele
tion are standard.The T-LetRe
 for typing bindings let re
 b in e is almost standard, ex
ept for its side-
ondition:the binding must be well-ordered with respe
t to its dependen
ies. The dependen
y graph of abinding b is de�ned via the dependen
y graph of the equivalent output Output(b) = Output(x1 =e1 : : : xn = en) = ( [ ℄ . x1 = e1 : : : [ ℄ . xn = en). We de�ne mb by mOutput(b). A binding b is said
orre
t with respe
t to an ordering > (written >` b) if >b (the de�nition order in b) respe
ts >(in other words >�>b). We abbreviate mb ` b with ` b.Eventually, the typing of outputs and bindings is straightforward, sin
e it 
onsists in su

essivelytyping their de�nitions.4.2 A theory of dependen
y graphs and degreesFor proving the soundness of MM, we will have to prove some properties of the operations we useon dependen
y graphs. Su
h operations will be used later in this thesis, so we abstra
t over the
urrent de�nitions in order to make the proofs valid for further use.We begin with a 
hara
terization of the properties needed for degrees.De�nition 6 (Degrees) A set Degrees has a stru
ture of degrees i� it is a 
omplete latti
e, andits elements are divided into positive and negative elements, 
ompatible with the ordering.We �x an arbitrary stru
ture of degrees Degrees for this se
tion, whose elements are denoted by �,ordering is denoted by �, greatest lower bound operation is denoted by ^. We denote by Positiveand Negative the sets of positive and negative degrees, respe
tively. The 
ompatibility 
onditionmeans that for all �1 2 Positive and �2 2 Negative, we have �1 � �2.De�nition 7 (Dependen
y graph) A dependen
y graph is a �nite, oriented graph, labeled withdegrees.The nodes of dependen
y graphs are not relevant to the properties we want to establish, so we donot 
onstrain them at all. We denote them by N , and denote �nite sets of them by N . We denotethe set of nodes of a graph ! by Nodes(gD).De�nition 8 (Transitive 
losure) We de�ne the transitive 
losure on dependen
y graphs asthe �xed-point of the operation that adds an edge N1 �2�!N3 for ea
h pair of edges N1 �1�!N2 andN2 �2�!N3 in its argument !.This �xed-point is always well-de�ned, sin
e the 
onsidered operation does not introdu
e anydegree, so the number of edges of the generated graphs is bounded. The transitive 
losure of agraph ! is written !+. Its re
exive transitive 
losure is written !�.Some notions on paths are de�ned as follows. 67



De�nition 9 (Paths) A path of the dependen
y graph ! is a possibly empty list of 
onse
utiveedges. Its length is its number of edges. If its length is stri
tly positive, then its degree is de�nedas the degree of its last edge. A 
y
le is a non-empty path whose the sour
e and target nodes arethe same.We denote paths by Æ. The 
on
atenation of two 
onse
utive paths is written Æ1; Æ2. For a de-penden
y graph !, a path is also an edge of !�. The degree of a non-empty path is de�ned asthe degree of its last edge. We write N1 ��!+ N2 for a non-empty path of degree �. Also, the
on
atenation of a non-empty path N1 �1�!+ N2 and a possibly empty path Æ from N2 to N3 iswritten N1 �1�!+ N2;N2 �2�!� , where �2 is �1 if Æ is empty, and the degree of Æ otherwise. Finally,when the two ends of su

essive paths or edges are synta
ti
ally the same, we merge them. Forinstan
e, the 
on
atenation above 
ould have been written N1 �1�!+ N2 �2�!� .Let us introdu
e two notions of 
orre
tness for dependen
y graphs. It relies on the notion of a safe
y
le: a 
y
le is safe if all its edges are labeled with positive degrees. Otherwise, the 
y
le is saidunsafe.De�nition 10 (Corre
tness) A dependen
y graph ! is said 
orre
t if its transitive 
losure doesnot 
ontain any unsafe 
y
le. We write it `!.This notion is related to the following notion of ordered 
orre
tness, whi
h relies on an order onnodes. Orders on nodes are denoted by the symbol D. Their stri
t versions are denoted by B. Forany dependen
y graph!, let Negative! be the set of edges of! that are labeled with negative edges.De�nition 11 (Ordered 
orre
tness) A dependen
y graph ! is 
orre
t with respe
t to the or-der D, or respe
ts the order D, if Negative!+ is 
ompatible with B. We write it ` (!;D) (or ` (!;B)).We have the following equivalen
e.Property 1 `! i� there exists an ordering D on Nodes(!) su
h that ` (!;D).For proving it, we introdu
e the notion of a ba
kward edge and a ba
kward path.De�nition 12 (Ba
kward edges and paths) Given a dependen
y graph ! and an order D onnodes, a edge N1 ��!N2, or a path N1 ��!� is said ba
kward if N2 D N1.Proof� If ` (!;D), then `!. By 
ontrapositive. Assume ! has a 
y
le with an edge of degree� 2 Negative. Let N be the target of this edge. Then, the transitive 
losure !+ of ! hasan edge N ��!+ N whi
h is ba
kward, so Negative!+ is not 
ompatible with B, and therefore` (!;D) does not hold.� If `!, then any topologi
al sort of ! gives an order su
h that the only ba
kward paths arein 
y
les, but as ! is assumed 
orre
t, these paths all have positive degrees, so Negative!+ is
ompatible with B.2Now, we prove two properties that we will dire
tly use later in soundness proofs. Their names arerelated to the redu
tion rules they 
orrespond to. Ea
h of them is asso
iated with a pi
ture thatis supposed to help the reader understand them.Property 2 (External merge) 68



4.3 Graph soundnessIn se
tion 3, we presented MM with 
on
rete, simple instan
es of IsDe�nedSize() and Degree. Wenow axiomatize the minimum 
onditions that they must satisfy.Hypothesis 1 (Shape)� x =2 Predi
table.� h�; oi 2 Predi
table and fsvg 2 Predi
table.� Let � be a variable renaming. ef�g 2 Predi
table i� e 2 Predi
table.� If E [x℄ 2 Predi
table, then E [v℄ 2 Predi
table, for all v.� If e�! e0 and e 2 Predi
table, then e0 2 Predi
table.� If e 2 Predi
table and e0 2 Predi
table, then for any 
ontext E ,E [e℄ 2 Predi
table i� E [e0℄ 2 Predi
table.We require the degree fun
tion to meet the following 
ondition.Hypothesis 2 (Degree fun
tion)� If Degree(x; e) = ,, then e 2 Predi
table.� If e�! e0 and Degree(x; e) 6= /, then Degree(x; e0) 6= /.� If x 2 FV(e) nCapt2(E [N ℄), then Degree(x; E [N [e℄℄) = /.� If y =2 FV(v) nCapt2(F ), then Degree(y; F [v℄) = Degree(y; F ).� If for all x 2 FV(e), Degree(x; e0) � Degree(x; e), then for any 
ontext E , for any x 2FV(E [e℄), Degree(x; E [e0℄) � Degree(x; E [e℄).� 8x =2 dom(b); X 6= Y;8� 2 f� j X ��!hX.x;oi N; o = (Output(b); Y . = e)g;Degree(x; let re
 b in e) � �:4.3.1 Modeling the redu
tion with graphsDe�nition 13 (Mixin redex) Mixin redexes e" are de�ned bye" ::= h�1; o1i+ h�2; o2i j op[h�; oi℄:The graph operations on abstra
t graphs de�ned in �gure 4.3 are trivially generalized to 
on
retegraphs. These operations are used to guess the 
on
rete graph of a mixin redex.De�nition 14 (Graph of a mixin redex)�!h�1;o1i+h�2;o2i = �!h�1;o1i +�!h�2;o2i�!op[h�;oi℄ = op(�!h�;oi)Proposition 1 (Graphs operations model 
ontra
tion) If e" 
 e, then �!e" = �!e.Proof By 
ase analysis on the redu
tion. 69



Sum. We have e" = h�1; o1i+ h�2; o2i and e = h�; o1; o2i, with � = (�1[ �2)n Input(o1; o2). Trivially,�!e" = �!h�1;o1i [ �!h�2;o2i = �!h�;o1i [ �!h�;o2i by h�1; o1i m h�2; o2i. Then, �!h�;o1i [ �!h�;o2i =�!h�;o1;o2i.Freeze. Let e" = h�; o1; X [y�℄ . x = f; o2i ! X , and e = h�; o1; [y�℄ . x = f; o2; X . = xi. First
onsider the stru
ture e0 = h�; o1; [y�℄.x = f; o2i. Its graph is exa
tly the same as the one ofe ex
ept that instead of the node X , we �nd the node Node( . x), whi
h is x. Then, appendthe 
omponent X . y = x with a fresh y. This adds a stri
t dependen
y from X to x, so theresult is exa
tly �!e" .Other 
ases similar.24.3.2 Subje
t 
ontra
tion for graphsThe goal of this se
tion is to ensure that abstra
t graphs dete
t all errors in the underlying 
on
retegraphs. We write Æ for paths in graphs. The minimum degree of a path Æ = X �1�!N1 : : :Nn�1 �n��!Yis � = ^1�i�n�i.Proposition 2 (Lift preserve paths between names) Let Æ be a path for the! relation, start-ing with name X, ending with name Y , and having minimum degree �. Let G = b!
. There existsa path from X to Y in G, with the same minimum degree.Proof Let Æ = N0 �1�!N1 : : : Nn�1 �n��!Nn. We pro
eed by indu
tion on the number of names inthe path.Base. Two names, Æ = X �1�! x1 : : : xn�1 �n��! Y . An easy indu
tion on n proves that X ��!2 Y ,and therefore (X;Y; �) 2 G.Indu
tion. By indu
tion hypothesis.2Corollary 1 If /�!+ has a 
y
le with at least one name, then b!
/+ also has one.On the other hand, lifting 
ommutes with the other operations on graphs.Proposition 3 (Lift 
ommutes with operators) Let!1, !2, and ! be 
on
rete dependen
ygraphs (i.e. graphs over Nodes).� If the variables from!1 and the ones from !2 are disjoint, then b!1 [ !2
 = b!1
[b!2
.� bop[!℄
 = op[b!
℄, for op 2 f!X;j�N ; jN ; [r℄; :�N ; :N ;X�Y g (with 
od(r) ? Nodes(!)).ProofSum. It is obvious that b!1
 [ b!2
 � b!1 [ !2
, sin
e !1�!1 [ !2 and lift is monotone.Now, an edge between namesX and Y in b!1 [ !2
, implies the existen
e of a path betweenX and Y through variables only, in !1 [ !2, but as variables 
annot intera
t, this path isentirely in either one of the two subgraphs.70



Freeze. Let x be a fresh variable. By de�nition, we have to prove that b! !X .x
 = bb!
!X .x
.Let!1 = ! !X . x!01 = b!1
 and !2 = b!
!02 = !2 !X . x!002 = b!02
First, noti
e that both in !01 and !002 , no edge starts from X , and edges arriving to X 
omefrom paths to X through x with degree / in !1 and !02, respe
tively, so they have degree/.� !002�!01.{ Let Y ��! 002 X , with X 6= Y . Ne
essarily, � = /.This implies that there exists a path of !02 of the shapeY �0�! 02 x �1�! 02 x : : : �n��! 02 x /�! 02 X;be
ause x is the only variable in !02.n 
ould be zero, in whi
h 
ase we would have Y /�! 02 X .But this means that we have Y �0�!2X �1�!2X : : : �n��!2X:So by de�nition of b
, we have Y �0�!2X �1�!2X : : : �n��!2X:So, we have Y �0�!21 x �1�!21 x : : : �n��!21 x /�!1X;and therefore Y /�! 01 X .{ Let Y ��! 002 Z, with Y and Z di�erent from X . ThenY �0�! 02 x �1�! 02 x : : : x �n��! 02 Z;be
ause x is the only variable in !02.We have � = ^0�i�n�i. n 
ould possibly be 0, in whi
h 
ase the path would ratherlook like Y �0�! 02 Z:We 
an dedu
e Y �0�!2 X �1�!2 X : : :X �n��!2 Z;so Y �0�!2 X �1�!2 X : : :X �n��!2 Z;and therefore Y �0�!21 x �1�!21 x : : : x �n��!21 Z:So we have Y ��! 01 Z.� !01�!002 .{ Let Y ��!01 X , with Y 6= X . We haveY �0�!21 x �1�!21 x : : : x �n��!21 x /�!1 X;where for all i, �i�!21 does not go through x.As above, we have � = / and n 
ould possibly be 0, in whi
h 
ase the path wouldrather look like Y �0�!21 x /�!1 X:This implies that Y �0�!2 X �1�!2 X : : :X �n��!2 X:Therefore, Y �0�!2 X �1�!2 X : : :X �n��!2 X:So, Y �0�! 02 x �1�! 02 x : : : x �n��! 02 x /�! 02 X;and so Y /�! 002 X:{ Let Y ��! 01 Z, with Y and Z di�erent from X .We dedu
e Y �0�!21 x �1�!21 x : : : x �n��!21 Z;where for all i, �i�!21 does not go through x.As above, we have � = ^0�i�n�i and n 
ould possibly be 0, in whi
h 
ase the pathwould rather look like Y �0�!21 Z:71



Then, Y �0�!2 X �1�!2 X : : :X �n��!2 Z;and so Y �0�!2 X �1�!2 X : : :X �n��!2 Z;whi
h leads to Y �0�! 02 x �1�! 02 x : : : x �n��! 02 Z;and so Y ��! 002 Z.Other 
ases. Easy.2Corollary 2 If `!, then ` op(!). If `!1, `!2, Variables(!1) ? Variables(!2), and ` b!1
 [ b!2
, then `!1 [ !2.ProofFreeze. Assume op = !X .x. This operation �rst repla
es X by x in!, whi
h does not introdu
eany 
y
le, and then adds one-way edges to X , whi
h 
annot 
reate any 
y
le.Sum. Let!=!1 [ !2. Assume there is a 
y
le in /�!+. First noti
e that if there were no namednode in it, as variables from both graphs do not intera
t, the 
y
le would 
ome entirely fromone of the two graphs, whi
h are supposed 
orre
t, therefore 
ontradi
ting the hypothesis.Otherwise, by lemma 3, b!
 = b!1
 [ b!2
. Moreover, there is at least one named node Xin our 
y
le, so by lemma 2, our 
y
le is a path from X to X , so it appears in b!
 with thesame valuation, whi
h 
ontradi
ts its 
orre
tness.Other 
ases. Easy, sin
e they do not add any edge to the dependen
ies.2Proposition 4 If � ` e" : hI ;O;Gi, then G = b�!e"
.As a 
onsequen
e, if a mixin redex is well-typed, then the stru
ture(s) in it have a 
orre
t graph,and by typing the redex also has a 
orre
t graph.Corollary 3 If � ` e" :M , then ` �!e" .Lemma 1 If � ` e" : hI ;O;Gi and e" 
 e, then e is a stru
ture and ` �!e and G = b�!e
.We have proven that stru
tures obtained by redu
tion are 
orre
t, whi
h means that their depen-den
ies do not have stri
t 
y
les. It is now ne
essary to prove that this property is enough for astru
ture without inputs to be 
losed. In other words, it is ne
essary for our type system to besound that an output with a 
orre
t dependen
y graph generate 
an be reordered.Lemma 2 (Typing is enough for 
lose) If ` �!o, then ` o.Proof Assume there is a 
y
le in mo = (�o [ /�!+o )+. This 
y
le 
annot 
ontain only �o edges,sin
e for all nodes N1; N2; N3 su
h that N1 �o N2 �o N3, by de�nition N1 ,�!o N2 ,�!o N3, witho(N1) =2 Predi
table and o(N2) =2 Predi
table, and by de�nition of �o and hypothesis 2, we haveo(N2) 2 Predi
table, whi
h is a 
ontradi
tion.So there is at least one /�!+o edge in our 
y
le. But �o is in
luded in ,�!o , so this is a 
y
le for/�!+o too. 2 72



4.3.3 Manipulation of re
ursive bindingsDe�nition 15 (Graph 
omparison) We de�ne !1<!2 by� for all N1 /�!2 N2, there exists N1 /�!+1 N2� for all N1 ,�!2 N2, there exists N1 ��!1 N2.In parti
ular, if !2�!1, then !1<!2 ; and if for all edge in !2 there exists an edge with thesame ends and an inferior degree in !1, then !1<!2. Noti
e that this relation is transitive.De�nition 16 (Binding 
omparison) A binding b1 is more restri
tive than a binding b2 (writ-ten b1 < b2) i� they have the same domains (dom(b1) = dom(b2)), they de�ne variables in thesame order (>b=>b0), the dependen
ies and shapes of b1 are more restri
tive than those of b2(�!b1 < �!b2 , and for all x 2 dom(b2), if b2(x) =2 Predi
table, then b1(x) =2 Predi
table).The desired property is that if a binding is well-ordered for the ordering indu
ed by a more restri
-tive binding, then it is well-ordered.Lemma 3 (Relax) If b0 < b and mb0 ` b, then ` b.Proof We pro
eed by 
ontrapositive. First noti
e that mb0 ` b implies mb0 ` b0, sin
e they de�nevariables in the same order. If mb ` b does not hold, it implies that there is a right-to-left edge in(�Output(b) [ /�!+b )+. So, there exists x = e and y = f de�ned in b in this order, su
h that eithery �Output(b) x or y /�!+b x.� If y �Output(b) x, then y ,�!b x and b(y) =2 Predi
table. By de�nition of b0 < b, this impliesthat b0(y) =2 Predi
table and y ��!b0 x. Whatever � is, it is a right-to-left edge in mb0 , whi
h
ontradi
ts ` b0.� If y /�!+b x, by de�nition of b0 < b, this implies that y /�!+b0 x, so it is a right-to-left edge inmb0 , whi
h 
ontradi
ts ` b0.2Lemma 4 If ` �!h�;oi, then ` Bind(o).Proof Bind(o) is in the same order as o, and its graph does not take fake dependen
ies intoa

ount. Lemma 3 allows to 
on
lude. 2Our 
omputational redu
tion relation manipulates let re
 
onstru
ts as blo
ks of data, not worryingtoo mu
h about dependen
ies issues. The soundness proof requires some properties to be veri�ed,espe
ially 
on
erning the IM rule, whi
h merges two nested bindings. We want to be sure thatmerging two well-orderd internally nested bindings { i.e. the se
ond binding appears in one of thede�nitions of the �rst one { yield a well-ordered new binding (
orollary 4).De�nition 17 (Paths) For a path Æ = (N0 �1�! : : : �n��!Nn), we de�ne the degree of Æ as �n, andwe write Æ� for a path of degree �, and Æ �! if Æ is a path of !.Eventually, we write edges as triples (sour
e, target, degree), and paths as lists of paths su
h thatthe target of one is the sour
e of the next one, separated by 
ommas, as in Æ�11 ; (x; y; �); Æ�22 .73



Proposition 5 (Let re
 internal dependen
ies)For all y, for all x 2 FV(e) n dom(b), Degree(x; let re
 b in e) � Degree(x; e).For all y, for all x 2 FV(b(y)) n dom(b), Degree(x; let re
 b in e) � Degree(x; b(y)).ProofLet X 6= Y , b = (x1 = e1 : : : xn = en), and o = (Output(b); Y . = e).� For the �rst point, as x 2 FV(e), there is an edge X ��!hX.x;oi Y , where � = Degree(x; e).By hypothesis 2, Degree(x; let re
 b in e) � �.� The se
ond point is similar. Suppose y = xi0 and f = b(y). There is an edge X ��!hX.x;oi xi0 ,where � = Degree(x; f). By hypothesis 2, Degree(x; let re
 b in e) � �.2Proposition 6 (Merging nested bindings)Let b = (b1; x = let re
 b2 in e; b3), b0 = (b1; b2; x = e; b3), with ` b and dom(b2) ? dom(b) [FV(b1; b3).Let Æ a path of �!b0 , from x1 to x2, of degree �.1. If x1; x2 2 dom(b), then x1 �0�!+b x2, with �0 � �.2. If x1 2 dom(b); x2 2 dom(b2), then x1 �0�!+b x, with �0 � �.3. If x1 2 dom(b2); x2 2 dom(b), then if � = /, then x2 2 (fxg [ dom(b3)).4. If x1; x2 2 dom(b2), then either Æ � �!b2or x �0�!+b x for some �0 � �.Proof By indu
tion on the length of Æ.Base Æ is an edge.1. x1; x2 2 dom(b). If x2 6= x, � = Degree(x1; b0(x2)) = Degree(x1; b(x2)), so x1 ��!b x2.Otherwise, � = Degree(x1; e).But as x1 =2 dom(b2), by lemma 5, Degree(x1; let re
 b2 in e) � Degree(x1; e), so wehave an edge x1 �0�!b x, with �0 � �.2. x1 2 dom(b); x2 2 dom(b2). Let b2(x2) = f . We have � = Degree(x1; f), so similarly bylemma 5, �0 = Degree(x1; let re
 b2 in e) � Degree(x1; f), so we have an edge x1 �0�!b x,with �0 � �.3. x1 2 dom(b2); x2 2 dom(b). We have x1 2 FV(b0(x2)) and x2 2 dom(b), so x2 = x, sox2 2 (fxg [ dom(b3)).4. x1; x2 2 dom(b2), we have of 
ourse Æ � �!b2 .Indu
tion step Æ is of length n > 1.1. x1; x2 2 dom(b). 74



� If Æ only has nodes in dom(b), let (x3; x2; �) be its last edge. By indu
tion hypothesisthere is a path Æ�01 from x3 to x2 with �0 � � in �!b, and a path Æ�002 from x1 to x3,so Æ�001 ; Æ�02 � �!b, with degree �0 � �.� Otherwise, let x5 be the last node of Æ in dom(b2). The next node is ne
essarily x.Let x3 be the last node of Æ in dom(b) before x5. Let x4 be the next node. (It is indom(b2).) We have Æ = Æ�11 ; (x3; x4; �4); Æ�22 ; (x5; x; �5); Æ�33 ;with Æ�22 � �!b2 . Let now o = (Output(b2); Y . = e) and 
onsider the stru
-ture hX . x3; oi. Its 
on
rete dependen
y graph is �!hX.x3;oi and 
ontains a path(X; x4; �4); Æ�22 ; (x5; Y; �5).So by hypothesis 2, we have �05 = Degree(x3; let re
 b2 in e) � �5, so there is andedge x3 �05�!b x.Then, applying the indu
tion hypothesis to Æ1 and Æ3 if not empty, we obtain twopaths Æ01�01 and Æ03�03 of �!b, and so Æ01�01 ; (x3; x; �05); Æ03�03 is a path of �!b, with adegree �05 � �5 if Æ3 is empty, and a degree �03 � �3 otherwise.2. x1 2 dom(b); x2 2 dom(b2). Let x3 be the last node of Æ in dom(b), and x4 the nextone. Æ is of the shape Æ�11 ; (x3; x4; �3); Æ�22 , with the nodes of Æ2 in dom(b2). Æ1 and Æ2
ould be empty. As above, by lemma 5, we have �03 = Degree(x3; let re
 b2 in e) �Degree(x3; b2(x4)) = �3, so we have an edge x3 �03�!b x.� If Æ2 is empty, n > 1, so Æ1 is non-empty, and applying indu
tion hypothesis to Æ1,we obtain Æ01�01 with same ends, and therefore obtain a path in �!b with same endsas Æ, and with degree �03 � �3 = �.� Otherwise, Æ2�2 � �!b2 . Let X 6= Y , � = X . x3, and o = Output(b2); Y . = e.We obtain a path (x3; x4; �3); Æ2�2 in �!h�;oi with same ends as Æ, and with degree�2 = �. So, if Æ1 is empty, we have in both 
ases a path from x3 to x in b, withdegree �02 � �. Otherwise, by indu
tion hypothesis, we obtain Æ01�01 with �01 � �1,and reason exa
tly as above.3. x1 2 dom(b2); x2 2 dom(b). Assume � = /. The �rst node of Æ not in dom(b2) isne
essarily x. Let x3 be the node just before it. Æ has the shape Æ�11 ; (x3; x; �3); Æ�22 .If Æ2 is empty, we have x2 = x whi
h is 
learly in fxg [ dom(b3). Otherwise, applyindu
tion hypothesis to obtain a path Æ02�02 with the same ends as Æ2 and �02 � �2. Buthere � = �2 = / so �02 = /. As Gb ` b, x2 must be de�ned after x in b, so it must bein dom(b3).4. x1; x2 2 dom(b2). If all the nodes are in dom(b2), then Æ � �!b2 dire
tly. Otherwise,the �rst node not in dom(b2) in Æ is ne
essarily x. Let x3 be the node just beforeit. Æ has to 
ontinue after x, be
ause it has to go ba
k to a node in dom(b2), byhypothesis. Let x4 be the node just after the �rst o

uren
e of x. Æ has the shapeÆ�11 ; (x3; x; �3); (x; x4; �4); Æ�22 .� If Æ2 is empty, then as Degree(x; b2(x4)) = �4, by lemma 5 there exists an edgex �04�!b x, with �04 � �4. But here �4 = �, so we are in the se
ond 
ase andx �04�!+b x with �04 � �.� Otherwise, by indu
tion hypothesis on (x; x4; �4); Æ�22 , we obtain a path Æ02�02 � �!b,from x to x and �02 � �2, whi
h means that x �02�!+b x, and that is enough.2Corollary 4 (Corre
t internal merge)If b = (b1; x = let re
 b2 in e; b3), ` b, ` b2, dom(b2) ? dom(b) [ FV(b1; b3), and b0 = b1; b2; x =e; b3, then ` b0. 75



Proof We want to prove that if x1 /�!+b0 x2, then x1 >b0 x2 (x1 is de�ned before x2 in b0).� If x1; x2 2 dom(b), by lemma 6, there is a path x1 /�!+b x2, and as ` b, x1 >b x2, so x1 >b0 x2.� If x1 2 dom(b); x2 2 dom(b2), by lemma 6, there is a path x1 /�!+b x, so x1 >b x and thereforex1 >b0 x2.� If x1 2 dom(b2); x2 2 dom(b), by lemma 6, then x2 2 fxg [ dom(b3), so x1 >b0 x2.� If x1; x2 2 dom(b2), by lemma 6, we are in one of the following two 
ases.{ There exists a path x1 /�!+b2 x2, and as ` b2, x1 >b2 x2, so x1 >b0 x2.{ There exists a path x /�!+b x, whi
h is impossible, sin
e ` b.2There is a similar property for merging two externally nested bindings { i.e. the se
ond one appearsright under the �rst one.Lemma 5 (Corre
t external merge)If dom(b2) ? (dom(b1) [ FV(b1)), ` b and ` b2, then with b = b1; b2 ` b.Proof Let Æ/ be a path of �!b. We prove that it goes from left to right in b.� If it is a path of �!b1 , then by hypothesis, it goes from left to right.� If it is a path of �!b2 , then by hypothesis it goes from left to right.� If it goes from a node de�ned in b1 to a node de�ned in b2, ok, it goes from left to right.� It 
annot go from node de�ned in b2 to a node de�ned in b1, be
ause dom(b2) ? FV(b1).24.4 SoundnessWe �rst state the two traditional type well-formedness and weakening lemmas.Proposition 7 (Types well-formed) If the types in � are well-formed, and � ` e :M , then Mis well-formed.Proof By indu
tion on the typing derivation.Stru
t. e = h�; oi and M = hI ;O;Gi. By synta
ti
 
orre
tness, dom(�) ? Names(o), so dom(I) ?dom(O). Moreover, the targets of G, by 
onstru
tion of �!h�;oi, and �!2h�;oi, are in dom(O),and by typing ` Gh�;oi, so ` G. Eventually, ` I is given by the typing rule, and ` O isobtained by indu
tion hypothesis.Sum. Assume e = e1 + e2, � ` e1 : hI1;O1;G1i, � ` e2 : hI2;O2;G2i, ` G1 [G2, andM = h(I1 [ I2) n (O1 ℄ O2); (O1 ℄ O2);G1 [G2i. By indu
tion hypothesis the types of e1and e2 are well-formed, so I1 [ I2 and O1 ℄ O2 are as well. By 
onstru
tion, the inputs aredisjoint from the outputs, the graph is 
orre
t, and its targets are in dom(O1 ℄ O2).76



Freeze. e = e0 !X , � ` e0 : hI ;O;Gi, and M = hI ;O;G !Xi. The only diÆ
ulty is to show thatthe targets of G ! X are in dom(O), but the ones of G are by indu
tion hypothesis, so it isthe same for the ones of G!X . x, and therefore for the ones of G.Close. Simple by indu
tion hypothesis.Proje
t and delete. Easy by indu
tion hypothesis. For proje
tion for example, everything istrivial, ex
ept maybe that Targets(GjN ) � dom(Oj N ), but by indu
tion hypothesisTargets(G) � dom(O), and as Targets(GjN ) = Targets(G) \ N , we have Targets(GjN ) �dom(O) \ N = dom(Oj N ).Show and hide. Assume � ` e : hI ;O;Gi, and by rule T-Show,� ` e:X1:::Xn : hI ;OjX1:::Xn ;G:X1:::Xni. By indu
tion hypothesis, hI ;O;Gi is well-formed,so ` I , ` O, ` G, dom(I) ? dom(O), and Targets(G) � dom(O). We 
an dedu
e thathI ;OjX1:::Xn ;G:X1:::Xni is well-formed, sin
e Targets(G:X1 :::Xn) � fX1 : : : Xng and by typingfX1 : : :Xng � dom(O). The other 
onditions are easy, and hide is similar.Rename. e = e0[r℄, � ` e0 : hI ;O;Gi, (
od(r) n dom(r)) ? dom(I) [ dom(O) (1),and M = hIfrg;Ofrg;Gfrgi.By indu
tion hypothesis, dom(I) ? dom(O), Targets(G) � dom(O), ` I , ` O and ` G.Furthermore, Ifrg and Ofrg are well-de�ned individually, but it is not trivial that they donot de�ne the same name twi
e.To show this, �rst remark that dom(Ifrg) = (dom(I) n dom(r)) ℄ r(dom(I)) anddom(Ofrg) = (dom(O) n dom(r)) ℄ r(dom(O)).But by indu
tion hypothesis, we know that dom(I) ? dom(O), sodom(Ifrg) \ dom(Ofrg) � ((dom(I) n dom(r)) \ 
od(r))[ ((dom(O) n dom(r)) \ 
od(r))[ (r(dom(I)) \ r(dom(O))):But by (1), both (dom(I) n dom(r)) \ 
od(r) and (dom(O) n dom(r)) \ 
od(r) are empty.Finally, as r is inje
tive and dom(I) ? dom(O), we have r(dom(I)) ? r(dom(O)).Moreover, by indu
tion hypothesis, Targets(G) � dom(O), soTargets(Gfrg) � r(Targets(G))[(Targets(G)ndom(r)). But Targets(G)ndom(r) � (dom(O)ndom(r)), so Targets(Gfrg) � r(dom(O)) [ (dom(O) n dom(r)) = dom(Ofrg):Split. Assume � ` e : hI ;O;Gi, and by rule T-Split,� ` eX�Y : hI ℄ fX : O(X)g;OfX 7! Y g;GX�Y i. By indu
tion hypothesis, Targets(G) �dom(O). But Targets(GX�Y ) = Targets(G) n fXg [ fY g � dom(O)fX 7! Y g. The other
onditions are easy.Other 
ases. Easy.2Lemma 6 (Weakening) If � ` e :M and dom(�0) ? FV(e), then �h�0i ` e :M .Proof Simple indu
tion on the typing derivation. Clashes of dom(�0) with bound variables of e0are not a problem be
ause in the rules, new bindings override previous ones. 2Now, typing is preserved by the 
omputational 
ontra
tion rules.Lemma 7 (Subje
t 
ontra
tion) If e 
 e0 and � ` e :M , then � ` e0 :M .Proof By 
ase analysis on the 
ontra
tion step.77



� Sum. Assume e = h�1; o1i + h�2; o2i, and � ` e : M . By typing we have � ` h�1; o2i :hI1;O1;G1i, � ` h�2; o2i : hI2;O2;G2i, and M = hI ;O;Gi, with I = (I1 [ I2) n (O1 [ O2),O = O1 ℄O2, G = G1 [G2, and ` G. We have e0 = h�; oi, where � = (�1 [ �2) n Input(o1; o2),o = o1 �� o2, with h�1; o1i m h�2; o2i.By lemma 1, ` �!e0 and G = b�!e0
.Then we dedu
e easily that � ` e0 :M :{ dom(�) = dom(I) is trivial.{ We have seen that ` �!h�;oi.{ By typing there exist 
orre
t �1 and �2 su
h that �hI1 Æ ��11 ℄ �1i ` o1 : �1 and�hI2 Æ ��12 ℄ �2i ` o2 : �2. So it would be enough to derive �0 ` o : (�1 ℄ �2), where�0 = �hI Æ ��1 ℄ �1 ℄ �2i.First Variables(o1) ? Variables(o2), so dom(�1) ? dom(�2).Then, I = I 01 ℄ I 02, with I 01 = I1 n O2 and I 02 = I2 n (I1 [ O1) and we obtain I Æ ��1 =(I 01 Æ ��1) ℄ (I 02 Æ ��1) = (I 01 Æ ��11 ) ℄ (I 02 Æ ��12 ).Moreover, with P = 
od(�1)\Variables(o2), we have �2 = �2jP ℄�2nP , and by h�1; o1i mh�2; o2i, for all x 2 P , there is a name X 2 dom(�1) \ Names(o) su
h that (X . x) 2�1 \ Input(o2), so id jP = Input(o2) Æ ��11 , and therefore�2jP = �2 Æ (id jP )= �2 Æ Input(o2) Æ ��11= (�2 Æ Input(o2)) Æ ��11= O2 Æ ��11= O2j dom(�1) Æ ��11= (O2 \ I1) Æ ��11 :So, we obtain �2 = (O2 \ I1) Æ ��11 ℄ �2nP and so�0 = �h�1 ℄ ((I1 nO2) Æ ��11 ) ℄ (I 02 Æ ��12 ) ℄ (I1 \ O2) Æ ��11 ℄ �2nP i= �h�1 ℄ I1 Æ ��11 ℄ (I 02 Æ ��12 ) ℄ �2nP i:By 
ompatibility, this weakening does not 
on
ern free variables of o1, so we obtain bylemma 6: �0 ` o1 : �1, and by symmetry �0 ` o2 : �2, so �0 ` o : �1 ℄ �2.� Lift.Let e = L [let re
 b in e1℄, and � ` e :M , dom(b) ? FV(L ), and e0 = let re
 b in L [e1℄. By
ase on L . For example L = 2+ e2, we have a derivation of the shape` �b ` b ...�h�bi ` b : �b ...�h�bi ` e1 :M1� ` let re
 b in e1 :M1 ...� ` e2 :M2 I1 ℄ O1 m I2 ℄ O2` G1 [G2� ` (let re
 b in e1) + e2 : Mwhere M1 = hI1;O1;G1i, M2 = hI2;O2;G2i,and M = h(I1 [ I2) n (O1 [ O2);O1 ℄ O2;G1 [G2i.By hypothesis, dom(�b) = dom(b) ? FV(e2), so by lemma 6, we have �h�bi ` e2 : M2, andwe 
an re
onstru
t the derivation as follows:` �b` b ...�h�bi ` b : �b I1 ℄ O1 m I2 ℄ O2` G1 [G2 ...�h�bi ` e1 :M1 ...�h�bi ` e2 :M2�h�bi ` e1 + e2 :M� ` let re
 b in e1 + e2 :M78



� Freeze. Assume e = h�; oi ! X and e0 = h�; o0i, with o = (o1; X [y�℄ . x = f; o2), ando0 = (o1; [y�℄ . x = f; o2; X . y = x), with a fresh y.By typing, we have a derivation of the shape` I ` �odom(�) = dom(I) ` �!h�;oi 8z 2 Variables(o);�hI Æ ��1 ℄ �oi ` o(z) : �o(z)�hI Æ ��1 ℄ �oi ` o : �o� ` h�; oi : hI ;O;Gi X 2 dom(O)� ` e : hI ;O; bG !X
iwith O = �o Æ Input(o) and G = b�!h�;oi
.Let �o0 = �ohy 7! �o(x)i. By weakening, we 
an derive8z 2 Variables(o0) n fx; yg;�hI Æ ��1 ℄ �0oi ` o0(z) : �0o(z):For x and y, we easily derive too that�hI Æ ��1 ℄ �0oi ` f : �0o(x)�hI Æ ��1 ℄ �0oi ` x : �0o(y):So we have 8z 2 Variables(o0);�hI Æ ��1 ℄ �0oi ` o0(z) : �0o(z):Moreover, by lemma 1, we have ` �!e0 and b�!e0
 = bG !X
, so we 
an derive` I ` �0odom(�) = dom(I) ` �!e0 8z 2 Variables(o0);�hI Æ ��1 ℄ �0oi ` o0(z) : �0o(z)�hI Æ ��1 ℄ �0oi ` o0 : �0o� ` h�; o0i : hI ;O; bG !X
i� Delete. Let e = h�; oij�X1:::Xn , with N = fX1 : : : Xng, we havedom(�) = dom(I) ` I ` �o ` �!h�;oi �hI Æ ��1 ℄ �oi ` o : �o� ` h�; oi : hI ;O;Gi� ` e :Mwith M = hI 0;O0;G0i = hI ℄ Oj N ;OnN ;Gj�N i and G = b�!h�;oi
. But ne
essarily, we havee0 = h�0; o0i = h�; Input(o)jN ; onN i.So, I Æ ��1℄�o = �(I ℄Oj N )Æ(�; Input(o)jN )�1�℄�0o, with �0o = �onN , and so �h�(I ℄Oj N )Æ(�; Input(o)jN )�1� ℄ �0oi ` onN : �0o.Moreover, we have by lemma 1, ` �!e0 and G0 = b�!e0
, so we 
an derivedom(�0) = dom(I 0) ` I 0 ` �0o ` �!h�0;o0i �hI 0 Æ �0�1 ℄ �0oi ` o0 : �0o� ` e0 : hI 0;O0;G0i� Proje
t. Let e = h�; oijX1 :::Xn . Let N = fX1 : : :Xng, N 0 = Names(o) n N , and e00 =h�; oij�N 0 . We have in fa
t that e00 
 e0, be
ause of the duality of delete and proje
t.So if we show that � ` e00 : M , we 
an reprodu
e exa
tly the delete 
ase as above.By typing, we have � ` h�; oi : hI ;O;Gi, and M = hI 0;O0;G0i, with I 0 = I [OnN , O0 = OjN ,and G0 = GjN .But we 
an derive � ` e00 : hI 00;O00;G00i, with I 00 = I [ OjN 0 = I [ OnN = I 0, O00 = OnN 0 =Oj N = O0, and G00 = Gj�N 0 = GjN = G0, so we derive � ` e00 : M , and may apply the samepro
ess as above to dedu
e � ` e0 :M . 79



� Rename. Let e = h�; oi[r℄. We have e0 = h�frg; ofrgi, and by typing:` I ` �o` �!h�;oi dom(I) = dom(�) �hI Æ ��1 ℄ �oi ` o : �o� ` h�; oi : hI ;O;Gi(
od(r) n dom(r)) ? (dom(I) [ dom(O))� ` e :Mwith M = hI 0;O0;G0i = hIfrg;Ofrg;Gfrgi, G = b�!h�;oi
,and O = �o Æ Input(o).We may write e0 as h�0; o0i = h�frg; ofrgi, and Input(o0) = Input(o) Æ r�1Names(o), so�o Æ Input(o0) = �o Æ Input(o) Æ r�1Names(o)= O Æ r�1Names(o)= O Æ r�1dom(O)= O0:For inputs, we have I 0 Æ �0�1 = Ifrg Æ (�frg)�1 = I Æ r�1dom(I) Æ rdom(�) Æ ��1 = I Æ ��1, so�hI 0 Æ �0�1 ℄ �oi ` o0 : �o.Moreover, it is easily seen that dom(I 0) = dom(�0), ` I 0, and by lemma 1, we have, with` �!h�0;o0i and G0 = b�!h�0;o0i
, so we 
an derive` I 0 ` �o` �!h�0;o0i dom(�0) = dom(I 0) �hI 0 Æ �0�1 ℄ �oi ` o0 : �o� ` h�0; o0i : hI 0;O0;G0i� Close. Let e = 
loseh�; oi. We have e0 = let re
 Bind(o) in Re
ord(o), and ` Bind(o), andby typing ` �o �!h�;oi �h�oi ` o : �o� ` h�; oi : h;;O;Gi� ` e :Mwith M = fOg, G = b�!h�;oi
, and O = �o Æ Input(o).Let o = d1 : : : dndi = Li[xi1 : : : xini ℄ . xi = eib = Bind(o) = (x1 = e1 : : : xn = en)s = Re
ord(o) = (X1 = x�(1) : : : Xm = x�(m))where � : f1 : : :mg ! f1 : : : ng inje
tiveand for all i,Xi = L�(i):We have e0 = let re
 b in fsg and let �o = fxi :Mi j i 2 f1 : : : ngg.We have{ �h�oi ` b : �o (easy with �h�oi ` o : �o),{ ` b, by lemma 4,{ �h�oi ` fsg : fOg, sin
e for all i 2 f1 : : :mg, �h�oi ` x�(i) : �o(x�(i)), and �o(x�(i)) =O(Xi),so it is ok. 80



� Show. Assume e = e0:X1:::Xn , with e0 = h�; oi. Then, e0 = h�; o0i,and o0 = Show(o;X1 : : :Xn). Let N = fX1 : : :Xng. The typing derivation is of the shape` I ` �o` �!h�;oi dom(I) = dom(�) �hI Æ ��1 ℄ �oi ` o : �o� ` e0 : hI ;O;Gi N � dom(O)� ` e : hI ;Oj N ;G0iwith G = b�!h�;oi
, G0 = bG:N 
,and O = �o Æ Input(o).By lemma 1, we have ` �!e0 and G0 = bGe0
.The typing of o0 is exa
tly as the one for o, so we obtain that e0 has type hI ;O0;G0i, withO0 = �o Æ Input(o0). But Input(o0) = Input(o)jN , so O0 = OjN , whi
h is the expe
ted result.� Hide. As for delete and proje
t, we obtain the expe
ted result by reasoning dually to theShow 
ase.� Split. Let e0 = h�; oi and e = e0X�Y , with o = (o1; X [z�℄ . x = e1; o2). We have e0 =h�0; o0i = h�;X . x; o1; X [z�℄ . y = e1; o2i for a fesh y.The typing derivation is of the shape` I ` �o` �!h�;oi dom(I) = dom(�) �hI Æ ��1 ℄ �oi ` o : �o� ` e0 : hI ;O;Gi Y =2 dom(O) [ dom(I)� ` eX�Y : hI ℄ fX : O(X)g;OfX 7! Y g;GX�Y iwith G = b�!h�;oi
, and O = �o Æ Input(o).By lemma 1, we have ` �!h�0;o0i and b�!h�0;o0i
 = GX�Y .Moreover, the environment �o0 
orresponding to o0 is �ofx 7! yg, and it is easy to re
onstru
tthe derivation for e0 (by a weakening).2It is now possible to prove that if a well-typed expression redu
es to another expression, then thisexpression has the same type, whi
h is known as the subje
t redu
tion property.First we prove that typing is 
ompositional at the level of lift 
ontexts.Lemma 8 (Lift 
ontext) If � ` L [e℄ :M , � ` e :M 0, and � ` e0 :M 0, then � ` L [e0℄ :M .Proof By 
ase on L .� L = fSg, with S = sv; X = 2; s. We have a derivation of the form...8(Y = f) 2 (sv; s);� ` f : O(Y ) ...� ` e :M 0� ` fS[e℄g :Mwith M = fO [ fX :M 0gg.By hypothesis we have � ` e0 :M 0, so we 
an re
onstru
t the derivation...8(Y = f) 2 (sv ; s);� ` f : O(Y ) ...� ` e0 :M 0� ` fS[e℄g :M81



� L = op[2℄, for op 2 f
lose; [r℄; !X;j�X1:::Xn ; jX1:::Xng. We have a derivation of the shape� ` e :M 0 side 
onditions� ` e : op[M 0℄with M = op[M 0℄, and op dedu
ed from the typing rules. The only side 
onditions appearingin the rules are X 2 dom(O) for freezing and 
od(r) ? dom(I)[dom(O) for renaming, whi
hdo not use the shape of e, so we 
an re
onstru
t the derivation in a 
ompositional way.� L = 2+ e1. The derivation is of the formI1 ℄ O1 m I2 ℄ O2 ` G1 [G2 � ` e : hI1;O1;G1i � ` e2 : hI2;O2;G2i� ` e+ e2 : h(I1 [ I2) n (O1 [ O2);O1 ℄O2;G1 [G2iSimilarly, we 
an re
onstru
t the derivation 
ompositionally with e0.� L = v +2. Similar.2This property is true for multiple lift 
ontexts as well.Lemma 9 (Multiple lift 
ontext) If � ` F [e℄ :M , � ` e :M 0, and � ` e0 : M 0, then � ` F [e0℄ :M .Proof By trivial indu
tion on F . 2Corollary 5 (External substitution) If � ` v : �(x), and � ` F [x℄ :M , then � ` F [v℄ :M .Proof Trivial. 2For evaluation 
ontexts, typing is not exa
tly 
ompositional, sin
e in the let re
 
ase, it dependson the shapes of the bindings. However, we have this slightly less general property.Lemma 10 (Evaluation 
ontext) Assume � ` E [e℄ : M , with a sub-derivation �h�0i ` e : M 0in pla
e of the hole. Assume also that �h�0i ` e0 : M 0, that e 2 Predi
table and e0 2 Predi
table,and that for all x 2 FV(e0), x 2 FV(e) and Degree(x; e) � Degree(x; e0).Then � ` E [e0℄ :M .Proof By indu
tion on E .� E = F . By lemma 9.� E = let re
 bv in F . The derivation has shape` bv ...�h�bv i ` bv : �bv ...�h�bv i ` F [e℄ :M� ` let re
 bv in F [e℄ :MBy lemma 9, we have � ` F [e0℄ :M , so we 
an re
onstru
t the derivation 
ompositionally.82



� E = let re
 B [F [e℄℄ in f , with B = bv; x = 2; b. The derivation has the shape...8y 6= x 2 dom(B );�h�bi ` B (y) : �b(y) ...�h�bi ` F [e℄ : �b(x)�h�bi ` B [F [e℄℄ : �b ...�h�bi ` f :M ` b� ` E [e℄ :Mwhere b = B [F [e℄℄.By indu
tion hypothesis, we derive �h�bi ` F [e0℄ : �b(x).Let b0 = B [F [e0℄℄. There only remains to prove that ` b0.As ` b, we have mb ` b0, sin
e they de�ne the same variables in the same order.Obviously, we have >b=>b0 .By hypothesis and hypothesis 1, we have F [e℄ 2 Predi
table i� F [e0℄ 2 Predi
table, so b andb0 are equivalent with respe
t to shapes.For dependen
ies, we know that the edges with a target di�erent from x in �!b stay the samein �!b0 . For the edges towards x, we know that FV(F [e0℄) � FV(F [e℄). Let y 2 FV(F [e0℄) \dom(B ). By hypothesis and hypothesis 2, we have Degree(y; F [e℄) � Degree(y; F [e0℄), so thatif y /�!+b0 z, then y /�!+b z. Therefore, the 
onstraints imposed on the ordering are weakerthan in b, and by lemma 3, the order of de�nition stays a

eptable.2Lemma 11 (Evaluation 
ontext) If e 
 e0, and � ` E [e℄ :M , then � ` E [e0℄ :M .Proof By lemma 10. 2Now that we have proven that typing is preserved by the Context rule, the last diÆ
ulty forproving subje
t redu
tion 
on
erns the Subst rule. Indeed, repla
ing a variable with its valuemight 
hange the shape of a binding. We �rst prove that if the variable is de�ned above the
urrent 
ontext, it does not 
hange the typing.Now, we 
he
k that substituting a variable with its value, de�ned in the 
urrent binding does not
hange typing either.Lemma 12 (Internal substitution preserves 
orre
t ordering) Let B = (bv ; y = 2; b1),b = B [F [N [x℄℄℄, b0 = B [F [N [v℄℄℄, bv(x) = v, and Capt2(F [N ℄) ? FV(v) [ fxg. If ` b, then` b0.Proof Assume ` b. Then, b and b0 de�ne the same variables in the same order. So, mb ` b0.By hypothesis 1, if F [N [x℄℄ 2 Predi
table, then F [N [v℄℄ 2 Predi
table, so the shapes of b0 are lessrestri
tive than in b.For this, by lemma 3, it is enough to show that �!b < �!b0 .For this we remark that�!b0 � �!b [ fz ��! y j z 2 FV(F [N [v℄℄); � = Degree(z; F [N [v℄℄)gBut by hypothesis 2, among the variables z 2 FV(F [N [v℄℄), we 
an distinguish two 
ases.� For variables z 2 FV(v) nCapt2(F [N ℄), we have � = /.83



� For variables z =2 FV(v) nCapt2(F [N ℄), we have � = Degree(z; F [N ℄).Therefore, we have�!b0 � �!b[fz /�! y j z 2 FV(v) nCapt2(F [N ℄)g[fz ��! y j z 2 FV(F [N [v℄℄) \ (FV(v) nCapt2(F [N ℄)); � = Degree(z; F [N ℄)gLet !00 be the right member of the above equation.For ea
h edge in fz /�! y j z 2 FV(v) nCapt2(F [N ℄)g, as z 2 FV(v), there is an edge z ��!b x. Butby hypothesis 2, Degree(x; E [N [x℄℄) = /, so there is a stri
t path from z to y in �!b.For ea
h edge in fz ��! y j z 2 FV(F [N [v℄℄) \ (FV(v) n Capt2(F [N ℄)); � = Degree(z; F [N ℄)g, wehave Degree(z; F [N [x℄℄) � �. (This 
an be dedu
ed from hypothesis 2.)So, we have �!b <!00, and by transitivity of graph 
omparison, we get �!b < �!b0 .2We 
an eventually verify that redu
tion through the Subst rule preserves types.Lemma 13 (A

ess) If E [N ℄(x) = v and � ` E [N [x℄℄ :M , then � ` E [N [v℄℄ :M .Proof By indu
tion on E .� E = F , impossible.� E = let re
 bv in F . By 
orollary 5.� E = let re
 B [F ℄ in e. Let b = B [F [N [x℄℄℄, b0 = B [F [N [v℄℄℄, and B = bv; y = 2; b1.The derivation has the shape` b ...8y 2 dom(bv; b1);�h�bi ` B (y) : �(y) ...�h�bi ` F [N [x℄℄ : �(x)� ` E [N [x℄℄ :MWe have bv(x) = v, and by lemma 12, ` b0.Eventually, we have �h�bi ` v : �(x), so by 
orollary 5, we 
an derive �h�bi ` F [N [v℄℄ : �(x),and therefore ` b0 ...8y 2 dom(b0);�h�bi ` b0 : �b(y)� ` E [N [v℄℄ :M2Type preservation along the IM rule is proven.Lemma 14 (Internal merge)If e = let re
 bv; x = (let re
 b1 in e1); b2 in f e0 = let re
 bv; b1; x = e1; b2 in f , and � ` e : M ,then � ` e0 :M . 84



ProofWe have a derivation of the shape
8y 6= x ...�h�bi ` b(y) : �b(y) ` �b1` b1 ...�h�bih�b1i ` b1 : �b1 ...�h�bih�b1i ` e1 : �b(x)�h�bi ` let re
 b1 in e1 : �b(x)�h�bi ` b : �b ...�h�bi ` f :M ` �b` b� ` let re
 bv; x = (let re
 b1 in e1); b2 in f :Mwhere b = bv; x = (let re
 b1 in e1); b2.Let b0 = bv; b1; x = e1; b2. By 
orollary 4, we have ` b0.Moreover, by weakening, we have 8y 6= x ...�h�bih�b1 i ` b(y) : �b(y)and with �b0 = �b ℄ �b1 , ...�h�b0i : f :Mand we have 8y 2 dom(b0) ...�h�b0i ` b0(y) : �b0(y) ...�h�b0i : f :M ` �b0` b0� ` let re
 b0 in f :M2Next, rule EM is examined.Lemma 15 (External merge)If dom(b) ? (dom(bv) [ FV(bv));e0 = let re
 bv in let re
 b in e;e00 = let re
 bv; b in e; and� ` e0 :M; then � ` e00 :M .

Proof The typing derivation for e0 has the shape` bv ...�h�1i ` bv : �1 ` b ...�h�1ih�2i ` b : �2 ...�h�1ih�2i ` e : �2�h�1i ` let re
 b in e : �1� ` e0 :MBy lemma 5, we have ` bv; b.So by weakening we 
an re
onstru
t the derivation.2We 
an now state the subje
t redu
tion property.85



Lemma 16 (Subje
t redu
tion) If e�! e0 and � ` e :M , then � ` e0 :M .Proof By immediate indu
tion, with lemmas 7, 11, 13, and 15. 2Eventually, we prove that if a term is well-typed and is not a result, then either it redu
es toanother term, or it is stu
k on a free variable. This is known as the progress property.Lemma 17 (Progress) If � ` e : M and e is not a result, then either e = E [N [x℄℄ with x =2Capt2(E [N ℄), or there exists e0 su
h that e�! e0.Proof By indu
tion on e.1. If e is of the shape L [e0℄, and e0 is not a value. If e0 = let re
 b in f , then the Lift applies.Else, by indu
tion hypothesis we are in one of the following 
ases.� e0 = E [N [x℄℄ with x =2 Capt2(E [N ℄), and e is stu
k on x too, i.e. e = L [E [N [x℄℄℄.� Otherwise, if e0 �! e00, we reason by 
ase analysis on the applied redu
tion rule.{ EM. Then the Lift rule applies for e.{ Subst or Context. Then e0 = E [f ℄ and e00 = E [f 0℄. By 
ase analysis again, onE :� If E = 2 or E = F , then e redu
es by the same rule, sin
e L [E ℄ is an evaluation
ontext.� If E = let re
 bv in F 0 or E = let re
 B [F ℄ in g, then the Lift rule appliesfor e.2. If e is of the shape N [x℄, there is nothing to show (x is ne
essarily free in N [x℄).3. e = let re
 b in f .(a) Else, if b is evaluated. b = bv. If f is a result, it has the shape let re
 bv 0 in v (or ewould be one), and rule EM applies.Otherwise, by indu
tion hypothesis, we are in one of the two following 
ases.� f �! f 0. By 
ase analysis on the redu
tion:{ EM. Then rule EM applies for e as well.{ Subst or Context.We have f = E [g℄ and f 0 = E [g0℄. If E = let re
 bv 0 in F 0 or E = let re
 B [F ℄ in g,then ruleEM applies, and otherwise, the same rule applies for e sin
e let re
 bv in Eis an evaluation 
ontext.� f = E [N [x℄℄, with x =2 Capt2(E [N ℄).If E = let re
 bv 0 in F or E = let re
 B [F ℄ in g, then rule EM applies, andotherwise, E is of the shape F and f = F [N [x℄℄, e = let re
 bv in F [N [x℄℄. If x 2dom(bv), then rule Subst applies, and otherwise e = E 0[N [x℄℄ with x =2 Capt2(E 0).(b) Otherwise, b is not evaluated, so b is of the shape bv; y = g; b1, where g is not a value.� If g is a result, then it is of the shape let re
 bv 0 in v, and by internal merge,e�! let re
 bv; bv 0; y = v; b1 in f .� Otherwise, by indu
tion hypothesis:{ If g �! g0, by 
ase on the redu
tion.� EM: then rule IM applies for e.� Context or Subst: then g = E [g0℄ and g0 = E [g00℄. If E is of the shapelet re
 bv 0 in F or let re
 B [F ℄ in g00, then rule IM applies for e, and other-wise, the global 
ontext is an evaluation 
ontext and the same rule Contextor Subst applies for e. 86



{ If g = E [N [x℄℄ with x =2 Capt2(E [N ℄). By 
ase on E . First noti
e that we knowthat x =2 dom(y = g; b1), sin
e by typing ` b and therefore if x /�!+b y, then x isde�ned before y in b, and g = E [N [x℄℄ implies the existen
e of an edge x /�!b yby hypothesis 2.� If E = let re
 bv 0 in F or let re
 B [F ℄ in g00, then rule IM applies.� Else, if x 2 dom(bv), then rule Subst applies, sin
e the global 
ontext is anevaluation 
ontext.� Else, if x =2 dom(bv; y = g; b1), then e is of the shape E 0[N [x℄℄ with x =2Capt2(E 0).4. e = e1 + e2.We treated the 
ase where either e1 or e2 is not a value above. So we may assume that bothare values. The typing derivation must be of the shape` �!h�1;o1i` I1 ` �1dom(�1) = dom(I1) ...�hI1 Æ ��11 ℄ �1i ` o1 : �1� ` e1 : hI1;O1;G1i ` �!h�2;o2i` I2 ` �2dom(�2) = dom(I2) ...�hI2 Æ ��12 ℄ �2i ` o2 : �2� ` e2 : hI2;O2;G2i� ` e :Mwith ` G1 [G2 and I1 ℄ O1 m I2 ℄ O2 as side-
onditions andG1 = �!h�1;o1iG2 = �!h�2;o2iO1 = �1 Æ Input(o1)O2 = �2 Æ Input(o2) and M = hI ;O;GiI = (I1 [ I2) n (O1 [ O2)O = O1 ℄O2G = G1 [G2:But values with mixin types may only be of two kinds: either variables or stru
tures. Ifeither one of the two is a variable, we have treated the 
ase as well in the beginning (ande = E [N [x℄℄ with x =2 Capt2(E )).So we may assume that e1 = h�1; o1i, e2 = h�2; o2i, and that bound variables of the twostru
tures meet only on the 
ommon names, i.e. e1 m e2. This 
an be rea
hed via �-
onversion.Moreover, typing imposes that Names(O1) ? Names(O2), so Names(o1) ? Names(o2), andrule Sum applies.5. Close. e = 
lose e0, and e0 is a value, not a variable (these 
ases have been treated above).By typing, e0 = h�; oi and we have` �o ` �!h�;oi ...�h�oi ` o : �o� ` e0 : h;;O;Gi� ` e : fOgSo we have e�! let re
 Bind(o) in Re
ord(o), providedo is de�ned and Bind(o) is synta
ti
ally 
orre
t.By lemma 2, o is de�ned and ` Bind(o).For any forward referen
e from x to y in Bind(o), there is an edge from y to x in �!o, and if itpoints to a 
omponent of unpredi
table shape, then either its degree is / or we have y �o x,so y is de�ned before x in o and therefore, in both 
ases, x is de�ned before y in Bind(o).6. Other operators trivial. 87



2Eventually, we 
an prove a standard soundness theorem.Theorem 2 (Soundness) The evaluation of a well-typed expression may either not terminate,or rea
h a result, or get stu
k on a free variable.As free variables 
annot appear during redu
tion, we have the following more standard 
orollary.Corollary 6 (Soundness) The evaluation of a 
losed well-typed expression may either not ter-minate or rea
h a result.
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Chapter 5Re�ned stati
 semanti
s: type
omponentsIn this 
hapter, we extend the MM language with type de�nitions and abstra
t types. Our formal-ization is strongly inspired by Leroy's module systems [51, 52, 53, 54℄, but the theoreti
al designalso bases on type theory for re
ursive modules [27, 29℄, and the work of Duggan and Sourelis [31℄and Flatt and Felleisen [36, 35℄. It does not solve any of the issues related to these systems, su
h asunde
idability, la
k of prin
ipal signatures, or even problems for synta
ti
ally represent signatures[56, 65℄. It should rather be seen as an experiment on the expressive power of mixin modules withtype 
omponents.5.1 The MML languageOur language of mixin modules with type 
omponents is presented in �gure 5.1. Names S 2 Namesare distinguished from variables s 2 Vars. Expression variables x 2 MVars � Vars are distinguishedfrom type names t 2 TVars � Vars. Expression names X 2 MNames � Names are distinguishedfrom type names T 2 TNames � Names. Variables are used as binders, as usual. Names areused for a

essing to de�nitions in mixin modules, as an external interfa
e to other parts of theexpression. A label L 
an be either a name or the anonymous label .The syntax 
omprises two main synta
ti
 
lasses, expressions, whi
h represent 
omputational in-stru
tions, and types, whi
h 
ontain stati
 information, roughly.De�nitions Expressions build on de�nitions d, and outputs o = (d1 : : : dn), whi
h are lists ofde�nitions. A de�nition d 
an have two shapes. If d = (T .t =M), it binds a type expressionM toboth a type name T and a type variable t. It is then 
alled a type de�nition. If d = (L.x[y�℄ = e),then it binds an expression e (the body of the de�nition) and a �nite set of variables y� to a labelL and an expression variable. It is then 
alled a value de�nition. The name X or T is used byother parts of the program to refer to the bound obje
t. Conversely, the variable x or t is usedby other de�nitions under the s
ope of the de�nition to refer to the bound obje
t. If the label isthe anonymous label, the bound obje
t remains una

essible to other parts of the program. Theatta
hed set of variables represents fake dependen
ies that help the programmer spe
ify the orderof evaluation, exa
tly as for MM in 
hapter 3: when a mixin module is instantiated to a module,by the 
lose operator, de�nitions are reordered, taking a
tual and fake dependen
ies into a

ount.Module expressions Intuitively, expressions are divided into three parts. A basi
 module fovgis a list ov of pairs S . s of a name and a variable. For homogeneity, we 
onsider these pairs as89



Lexi
al 
onventions: Expression Type BothVariable x t sName X T SLabels L 2 Names℄f gPath: p ::= x j p:XExpression: e ::= p Pathj fovg Modulej let re
 o in e let re
j hI ; oi Stru
turej e1 + e2 j 
lose e Composition, 
losurej (e :M) Type 
onstrainto ::= d1 : : : dn Outputd ::= L . x[y�℄ = e j T . t =M De�nitionType: M ::= ? New typej t j p:T Type pathj fOg Module typej hI ;O;!;_i Mixin module typeI; O ::= D1 : : :Dn SignatureD ::= L . s :M De
laration! �Fin fX ��! Y j X;Y 2 Names; � 2 Degreesg Dynami
 graph_ �Fin Names�Names Stati
 graphDegrees = f,;/g Figure 5.1: Syntax of MMde�nitions, su
h that the body of ea
h value de�nition is a variable, not bound by the 
urrentmodule. This way, basi
 module expressions are always values. Modules are required not to bindthe same name or the same variable twi
e. Moreover, be
ause there is no reordering on modulede�nitions, fake dependen
ies do not make any sense so we do not write them. Module sele
tion isperformed by the sele
tion operator, but it is restri
ted to paths p = x:X1: : : : :Xn. The rationalefor restri
ting sele
tion to paths has to do with phase distin
tion [41℄. Roughly, by avoiding
omputational expressions in types, we avoid fully dependent types, and the asso
iated diÆ
ulties,su
h as the unde
idability of type equivalen
e.Mixin module expressions Basi
 mixin modules, 
alled stru
tures, are pairs hI ; oi of an inputI (also 
alled a signature) and an output o. An input is a �nite set I = (D1 : : : Dn) of de
larations.A de
laration D is the spe
i�
ation of a de�nition, that the mixin module expe
ts as an input. It
an either be of the shape X . x :M , and give the type of a value de�nition, or give the type of atype de�nition. The point is that a type de�nition T . t =M 
an be a 
on
rete (or manifest) oneT .t :M , but 
an also be abstra
ted over. The type t provided as an input to the mixin module 
anthen be any type. The 
orresponding de
laration is T .t : ?. We 
all it an abstra
t de
laration. Thes
ope of binding variables in I is the whole stru
ture, whereas the s
ope of the binding variablesin o is restri
ted to o. The input is required not to bind the same name or the same variable twi
e,as well as the output. Moreover, although the input and the output are allowed to de�ne somenames in 
ommon, they must not de�ne variables in 
ommon. Fake dependen
ies in de�nitionsare requested to refer to variables de�ned in the same stru
ture. Mixin module expressions 
omewith a minimal set of operators: 
omposition + and instantiation 
lose. Other usual mixin moduleoperators are left for the moment, sin
e they would 
ompli
ate the presentation. They are used inexamples in se
tion 5.4. 90



Types Type expressions in MML in
lude the unknown type ?, type variables t, a

ess to typede�nitions in modules p:T , module types fOg, and mixin module types hI ;O;!;_i. Both I and Orange over �nite sets of de
larations. They are 
alled the input and output signatures, respe
tively.In module or mixin module types, signatures should not de�ne the same name twi
e, and not de�nethe same variable twi
e either. In mixin module types, I and O should not de�ne any variable in
ommon, but are allowed to de�ne some names in 
ommon. In module types, abstra
t de
larationsmake the implementation of the de
lared type hidden to outer parts of the program. In mixinmodule types, an abstra
t input de
laration does not have the same meaning: it spe
i�es that no
onstraint is put on the input type ; any type is a

epted. The graph ! is a �nite graph overexpression names, labeled by degrees � 2 f,;/g. It represents the dynami
 dependen
ies of the
onsidered mixin module, and is therefore 
alled a dynami
 graph. It is used to dete
t ill-foundedre
ursive value de�nitions. The graph_ is an unlabeled graph over names. It represents the stati
dependen
ies of the 
onsidered mixin modules, and is therefore 
alled a stati
 graph. It is used todete
t 
y
li
 type de�nitions.Re
ursive de�nitions and type 
onstraints As usual, let re
 binds variables to their values.It is required not to bind the same variable twi
e. For homogeneity, we 
onsider these bindingsas de�nitions. Moreover, names and fake dependen
ies are irrelevant in let re
 so we do not writethem. Any expression is allowed as a let re
 de�nition, ex
ept that forward referen
es must pointto expressions of predi
table shape, exa
tly as for MM in 
hapter 3. Expressions of predi
tableshape are de�ned by e# 2 Predi
table ::= fog j hI ; oi j let re
 b in e#:The language allows to 
onstrain the type of an expression e by writing (e : M). Noti
e that thisoperator is stati
, and is therefore only able to make some type de
larations abstra
t, not to forget
omponents.Operations on sequen
es Lists and �nite sets of de�nitions or de
larations 
an be seen as �nitemaps from pairs of a label and a variable to di�erent kinds of 
odomains. For instan
e, signaturesare maps to types, outputs are maps to pairs of a set of fake dependen
ies and an expression. Forea
h su
h map f , we denote by DN(f) the set of names de�ned by f , fS j 9s; (S; s) 2 dom(f)g,and DV(f) the set of variables de�ned by f , fs j 9s; (S; s) 2 dom(f)g.Stru
tural equivalen
e We 
onsider the expressions equivalent up to alpha-
onversion of bind-ing variables in stru
tures, signatures and let re
 expressions. In the following, we assume that noundue variable 
apture o

urs.Dynami
 semanti
s The dynami
 semanti
s is de�ned exa
tly as the semanti
s of MM in
hapter 3, after removing all type indi
ations.5.2 Type systemThe type system 
onsists in four mutually dependent groups of relations: type well-formedness,mat
hing and equivalen
e, and typing. Ea
h of this group has a 
omponent for types, signatures,et
. . . They rely on the notion of environment �, referring to �nite maps from variables to types.Environment bindings are de�ned as �nite maps from pairs of a label and a variable to types. Thisway, a signature 
an be extra
ted from an environment, by removing all the anonymous bindings.Environment extension + denotes the union of �nite maps, without overriding. Therefore, � + �0implies DV(�) ? DV(�0). A signature 
an be seen as an environment by forgetting labels. Thiswill be done impli
itely in the following. 91



5.2.1 Well-formednessThe de�nition of well-formedness uses a new notion, the one of stati
 dependen
y graph, whi
h weintrodu
e now.Stati
 dependen
y graph The stati
 dependen
y graph_(O;!) of a set of de
larations O withdynami
 dependen
y graph! is de�ned in �gure 5.2. The arrow! denotes any 
on
rete dynami
graph: it is a graph over nodes , whi
h are elements of Vars[Names, labeled by degrees. Further, Ois any set of de
larations, not ne
essarily de�ning distin
t names or variables. The de�nition of _uses the fun
tion Nodes, whi
h asso
iates to a pair (L; s) of a label and a variable either s, if L = ,or L if L is a name. (By abuse of notation, we overload this fun
tion to a
t on de
larations aswell.) Roughly, this graph 
onne
ts manifest type de�nitions referring to other type de�nitions inthe same signature. It 
onne
ts them by name when possible, and by variable otherwise. Formally,a de
laration D2 stati
ally depends on another de
laration D1 if the type of D2 
ontains a typede
laration S . t :M , su
h that the variable s de�ned by D1 is free in M .Stati
 graphs will often be required to be a
y
li
, whi
h is written `_(O;!). This 
ondition avoidsthe diÆ
ulty of type-
he
king and type equivalen
e in the presen
e of equi-re
ursive, higher-ordertype 
onstru
tors [29, 38℄. Noti
e that the stati
 graph is 
losed under dynami
 dependen
y. Thisis ne
essary to rule out re
ursive types, as shown by the following example.Consider e =def 
loseh;T . t = y:U;X . x = h;;U . u = ti; Y . y = 
losexi. The edges Y _ Tand T _ X in the stru
ture are obvious, but without the rules for prolongation with dynami
dependen
ies, there would not be any edge T _ Y . The expression redu
es tolet re
 T . t = y:U;X . x = h;;U . u = ti;Y . y = let re
U . u = tin fU . u0 = ugin fT . t0 = t;X . x0 = x; Y . y0 = yg and then let re
 T . t = y:U;X . x = h;;U . u = ti;U . u = t;Y . y = fU . u0 = ugin fT . t0 = t;X . x0 = x; Y . y0 = ygwhi
h would have the re
ursive type fT . t : y:U;X . x : h: : :i; Y . y : fU . u : tgg.Well-formedness predi
ate Well-formedness of types, signatures, and de
larations is de�nedas the least relation respe
ting the rules in �gure 5.4, using �gures 5.2 and 5.3. Noti
e that itdepends on the typing relation.A type variable t is a well-formed type, provided it is de�ned by the environment (ruleWf-Var). Ifthe path p has a module type exporting the type T , then p:T is a well-formed type (ruleWf-Path).A module type is well-formed, provided the set of its de
larations is well-formed in the environ-ment extended with themselves (ruleWf-Module), and provided that dependen
ies between typede�nitions (in
luding the nested ones) are not 
y
li
. Formally, its stati
 dependen
y graph _(O;;)is required to be a
y
li
. By rule Wf-Mixin, a mixin module type hI ;O;!;_i is well-formed,provided the set I is well-formed in the environment � + I , and the set of its output de
larationsis well-formed in the environment � + I + O. Moreover, it is required that the union of the stati
graphs of I and O is a
y
li
, and that the dynami
 graph ! is 
orre
t. A dynami
 graph is said
orre
t if its transitive 
losure is a partial ordering. The transitive 
losure of a dynami
 graph! isde�ned in �gure 5.3, as the set of paths of!, labeled with the last edge of the path. This notion ofgraph 
orre
tness has been proven in 
hapter 4 to be a 
orre
t 
riterium for 
he
king dependen
iesin mixin modules.A well-formed signature is a signature 
ontaining only 
orre
t de
larations. A de
laration S .s : Mis 
orre
t, providedM is (ruleWf-Manifest), but the abstra
t type ? is not a well-formed type byitself. RuleWf-Abstr allows a de
laration to use the abstra
t type, but only for type de
larations.Noti
e that the abstra
t type ? is not the type of any value de�nition. In fa
t, the abstra
t type
an be seen as a synta
ti
 artefa
t to in
lude abstra
t and manifest type de
larations into a singlesynta
ti
 
lass. The notion of well-formed environments is derived from the one for signatures.92



Stati
 free variablesSFV(?) = ;SFV(t) = ;SFV(x:p:T ) = ;SFV(fOg) = [D2O SFV(D) nDV(O)SFV(hI ;O;!;_i) = [D2I SFV(D) nDV(I) [[D2O SFV(D) nDV(I; O)
SFV(T . t : M) = FV(M)SFV(X . x :M) = SFV(M)

Stati
 dependen
y graphNode(Di1)_(fD1;D2:::Dng;!) Node(Di2) Node(Di2)! Node(Di3)Node(Di1)_(fD1;D2:::Dng;!) Node(Di3)Node(Di1)! Node(Di2) Node(Di2)_(fD1;D2:::Dng;!) Node(Di3)Node(Di1)_(fD1;D2:::Dng;!) Node(Di3)s 2 SFV(Di2) s = DV(Di1)Node(Di1)_(fD1;D2:::Dng;!) Node(Di2)Figure 5.2: Stati
 dependen
ies in a signature

X �1�!+ Z Z �2�! YX �2�!+ Y X ��! YX ��!+ YFigure 5.3: Transitive 
losure of !
93



Types t 2 DV(�)� ` t (Wf-Var) � ` p : fOg T 2 DN(O)� ` p:T (Wf-Path)� +O ` O `_(O;;)� ` fOg (Wf-Module)� + I ` I � + I +O ` O DV(I) ? DV(O) `_(I[O;;) `!� ` hI ;O;!;_i (Wf-Mixin)De
larations and signatures� ` T . t : ? (Wf-Abstr) � `M� ` S . s :M (Wf-Manifest)8D 2 O;� ` D8D;D0 2 O(DN(D) = DN(D0) _ DV(D) = DV(D0)) =) D = D0� ` O (Wf-Sig)Figure 5.4: Well-formednessfD1 : : :Dng=p = fD1=p : : :Dn=pgM=p = M (otherwise)(T . t : ?)=p = T . t : p:T(T . t :M)=p = T . t :M (otherwise)(X . x :M)=p = X . x : (M=p:X)Figure 5.5: Type strengthening5.2.2 TypingThe typing rules are in �gure 5.9, and they use �gures 5.5 to 5.8 .Rule TT-Var gives a variable the typeM proposed by the environment, strengthened as explainedin �gure 5.5. Type strengthening [51℄, sometimes also 
alled sel��
ation [40℄, 
onsists, when using amodule type bound to a variable x in the environment, in keeping tra
k of where its abstra
t types
ome from. The way it is done is by repla
ing abstra
t types with manifest types indi
ating thatthey 
ome from x. For instan
e, if x is bound in the environment to the module type fT . t : ?g,then x has type fT . t : x:Tg. Be
ause of nested modules, the operation more generally 
onsists inpre�xing the abstra
t type names with x, followed by the a

ess path inside the module.Rule TT-A

ess explains how a 
omputational 
omponent is a

essed in a module. Assume xhas type fT . u : M;Y . y : ug. The type of x:Y 
annot simply be u, be
ause the type variable uwould es
ape its s
ope. The system has to �nd a type equivalent to u. It is done by a

essing thepath to u, i.e. giving x:Y the type x:T . Formally, this is done by an operation 
alled extra
tion,and de�ned as the substitutiondO 7! p:Oe = fs 7! p:S j (S; s) 2 dom(O)g:94



Dynami
 free variablesDFV(x) = fxgDFV(x:p:X) = fxgDFV(fovg) = [d2ov DFV(d) nDV(ov)DFV(let re
 o in e) = �[d2oDFV(d) [ DFV(e)� nDV(o)DFV(hI ; oi) = �[d2oDFV(d)� nDV(o) nDV(I)DFV(e1 + e2) = DFV(e1) [ DFV(e2)DFV(
lose e) = DFV(e)DFV((e :M)) = DFV(e)Dynami
 dependen
y graph� = Degree(x0; e) (L0; x0) 2 dom(I) [ dom(o) (L[z�℄ . x = e) 2 oNode(L0; x0) ��!hI;oi Node(L; x)(Li; xi) 2 dom(I) [ dom(o) (L[x1 : : : xn℄ . x = e) 2 oNode(Li; xi) /�!hI;oi Node(L; x)Figure 5.6: Dynami
 dependen
ies in a stru
tureRule TT-Stru
t allows to type stru
tures hI ; oi. A type has to be guessed for ea
h de�nition,and these types are grouped together in an environment �o, where the names have been kept fromo. This environment is 
he
ked well-formed. The type of the stru
ture is obtained by forgettingthe anonymous de
larations in �o, yielding a signature Oo. But Oo still might depend on theanonymous de�nitions. The type system thus has to �nd a super signature O of Oo, that preventsvariables from es
aping their s
opes. Intuitively, eliminating a referen
e to a lo
al type de�nitionis done as follows. For a referen
e to a type abbreviation, it 
onsists in expanding it re
ursively(a
y
li
ity guarantees termination). For a referen
e to an abstra
t type, if an exported abbreviationto it has already been made, then refer to this abbreviation, and otherwise return the abstra
t type.The involved signatures and environment are 
he
ked well-formed; the stati
 dependen
y graph_(I[�o;�!hI;oi) is 
he
ked a
y
li
; and the 
on
rete dependen
y graph of hI ; oi, denoted by �!hI;oi,is 
he
ked 
orre
t, and lifted, as explained below.The 
on
rete dependen
y graph of a stru
ture is de�ned in �gure 5.6. It is a graph over nodes ,whi
h are elements of Vars[Names. Edges may be de�ned in two ways. First, a de�nitiond = (L . x[x1 : : : xn℄ = e) spe
i�es a fake dependen
y on ea
h xi, so for ea
h i, if (Li; xi) 2dom(o) [ dom(I), then there is an edge Node(Li; xi) /�! Node(L; x). Se
ond, if the body e of ade�nition d = (L . x[z1 : : : zn℄ = e) dynami
ally depends on a variable x0, su
h that (L0; x0) 2dom(I) [ dom(o), then there is an edge from Node(L0; x0) to Node(L; x). The notion of dynami
dependen
e is de�ned in �gure 5.6, and roughly 
orresponds to forgetting type 
onstraints. Thedegree of the edge is Degree(x0; e), where the Degree fun
tion is de�ned for x 2 DFV(e) byDegree(x; hI ; oi) = ,Degree(x; fovg) = ,Degree(x; e) = / otherwise.When this 
on
rete dependen
y graph has been 
he
ked 
orre
t, in the sense that its transitive
losure restri
ted to stri
t edges is a partial ordering, it 
an be lifted to an abstra
t dependen
ygraph. This operation 
onsists in prolonging edges to lo
al de�nitions until they rea
h an exportedone, and then forgetting the edges involving lo
al de�nitions. It is des
ribed in �gure 5.7.95



LiftTransitive 
losure through lo
al 
omponentsN1 �1�! x x �2�!2 N2N1 �1^�2����!2 N2 N1 ��! N2N1 ��!2 N2Lift b!
 = !2jNames�NamesFigure 5.7: Lifting 
on
rete dependen
y graphs(I1; O1) m (I2; O2) means � I1 <O2 I2 andI2 <O1 I1:I1 <O I2 means that for all (L; s) 2 dom(I1),x 2 FV(I2; O) [DV(I2; O)) (L; s) 2 dom(I2) and L 2 Names :Figure 5.8: CompatibilityRule TT-Module types basi
 modules fovg, as if it were a mixin with no input de
laration, ex
eptthat given the restri
ted form of de�nitions allowed, it is simpler.The rule TT-Letre
 is as the TT-Stru
t for mixin modules without input de
larations, for thebinding part at least. The �nal expression is then typed in the 
ontext extended with the mostpre
ise signature available for the bindings, and the obtained type must not allow variables toes
ape their s
opes.Rule TT-Composition types the 
omposition of two mixin modules of type hIi;Oi;!i;_ii, fori = 1; 2. The two mixin module types are �rst 
he
ked 
ompatible, as de�ned in �gure 5.8. Roughly,it ensures that variables are not 
aptured during 
omposition. Then, the unions of the two stati
and dynami
 dependen
y graphs must be 
orre
t. They will be the dependen
y graphs of the �naltype. Its output signature is the disjoint union of the two output signatures O1 and O2, in thesense that they must not de�ne the same name twi
e. The input signature of the �nal type is anew signature I , whi
h must be a sub signature of both I1 and I2. This way, the requirementsmade on inputs in the 
omposition are stronger than in ea
h argument, thus preserving type safety.The signature I 
ould introdu
e edges in the stati
 dependen
y graph, so the �nal graph is 
he
keda
y
li
.Rule TT-Constraint de�nes type 
onstraints. For typing (e :M), assuming e has type M 0, it is
he
ked that M 0 is a subtype of M , and if so, the type of (e :M) is M .Finally, theTT-Close rule types mixin module instantiation. A mixin module of type hI ;O;!;_iis instantiated as follows. Semanti
ally, the variables de�ned by O must repla
e the input variablesof I . This is done by the substitution �, and we obtain two signatures I 0 and O0. It is then 
he
kedthat in the environment extended by O0, the signature O0 mat
hes the signature I 0.5.2.3 SubtypingIt is easy to see that forgetting some output �elds in mixin modules would be dangerous: the well-known problems with width subtyping of extensible re
ords (see e.g. [42℄) 
an be en
oded withmixin modules. The �rst of these problems happens with 
omposition +, putting two 
omponentswith the same name in 
on
i
t. For example, the expression h;;X . x = fgi + (h;;X . x = fgi :h;; ;; ;; ;i) is stu
k. The se
ond problem arises with the overriding operator of se
tion [?℄, whenone �eld is overridden with a �eld with the same name, but a di�erent type, as in96



�(x) =M� ` x :M=x (TT-Var) � ` p : fOg� ` p:X : O(X)dO 7! p:Oe (TT-A

ess)� + I ` I � + I +O ` O ` �!hI;oi `_(I[�o;�!hI;oi)� + I + �o ` �o � + I + �o ` o : �o � + I + �o ` �ojNames � O� ` hI ; oi : hI ;O; b�!hI;oi
; (_(I[�o;�!hI;oi))+jNamesi (TT-Stru
t)� ` ov : �o � +O ` �ojNames � O � +O ` O `_(O;;)� ` fovg : fOg (TT-Module)� + �o ` �o � `M � + �o ` o : �o` �!h;;oi `_(�o;�!h;;oi) � + �o ` e :M 0 � + �o `M 0 �M� ` let re
 o in e : M (TT-Letre
)� ` e1 : hI1;O2;!1;_1i � ` e2 : hI2;O2;!2;_2i(I1; O1) m (I2; O2) ` (!1 [ !2) � + I ` I� + I ` I � I1 � + I ` I � I2 ` (_1 [_2 [_(I;(!1[!2)))� ` e1 + e2 : hI ;O1 +O2;!1 [ !2;_1 [_2 [_(I;(!1[!2))i (TT-Composition)� ` e :M 0 � `M � `M 0 �M� ` (e :M) :M (TT-Constraint)� ` e : hI ;O;!;_i � = fs 7! s0 j (S; s) 2 dom(I); (S; s0) 2 dom(O)gI 0 = If�g O0 = Of�g � +O0 ` fO0g � fI 0g� ` 
lose e : fO0g (TT-Close)81 � i � n;� ` di : Di� ` (d1 : : : dn) : (D1 : : : Dn) (TT-Output) � ` e :M� ` (X . x[y�℄ = e) : (X . x :M) (TT-Expr)� `M� ` (T . t :M) : (T . t :M) (TT-Type)Figure 5.9: Typing rules
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Types � `M1 �=M2� `M1 �M2 (ST-Equiv) � +O1 +O01 ` O1 � O2� ` fO1 +O01g � fO2g (ST-Module)� + I2 + I 02 ` I2 � I1� + I2 + I 02 +O1 ` O1 � O2 !1�!2 _1 �_2� ` hI1;O1;!1;_1i � hI2 + I 02;O2;!2;_2i (ST-Mixin)Signatures 81 � i � n;� ` Di � D0i� ` D1 : : :Dn � D01 : : :D0n (ST-Sig)De
larations� `M1 �M2� ` (X . x :M1) � (X . x : M2) (ST-Val) � ` (T . t :M) � (T . t : ?) (ST-Con-Abs)� ` t �=M� ` (T . t : ?) � (T . t : M) (ST-Abs-Con) � ` (T . t : ?) � (T . t : ?) (ST-Abs-Abs)� `M1 �=M2� ` (T . t :M1) � (T . t :M2) (ST-Con-Con)Figure 5.10: Subtyping and signature mat
hing(h;; X . x = fY . y = x0g;. z = x:Y i : h;; ;; ;; ;i) � h;;X . x = fgiwhi
h redu
es to the ill-typed h;;X . x = fg; . z = x:Y iSubtyping is the least transitive relation respe
ting the rules in �gure 5.10. For output 
omponentsof mixin modules, this relation 
orresponds to depth subtyping: it allows some type de
larationsto be made abstra
t, and some value de
larations to be made less pre
ise, but no de
laration 
anbe forgotten. In input signatures, it is possibly to add some deferred 
omponents. This appearsespe
ially in rule ST-Sig, where de
larations must be in a one-to-one 
orresponden
e. For modules,however, it is allowed to forget some output 
omponents.Subtyping is re
exive modulo type equivalen
e by rule ST-Equiv. Rule ST-Module allowed to
hange its signature for a less pre
ise one. By rule ST-Mixin, a mixin module is more pre
ise if itsinput signature is less pre
ise, i.e. it puts less requirements on inputs, and its output signature ismore pre
ise, i.e. it provides more 
apabilities. Also, by de�nition, the notion of graph subtypingallows to add edges in the graph, and to 
hange , labels into / ones.Signature 
omparison, is made de
laration by de
laration. A value de
laration may be repla
edwith a value de
laration of less pre
ise type (rule ST-Val). Any type de
laration 
an be madeabstra
t (rules ST-Con-Abs and ST-Abs-Abs) A manifest type de
laration 
an be repla
ed withan equivalent manifest type de
laration. An abstra
t type de
laration T .t : ? 
an be repla
ed witha manifest type de
laration T . t : M , provided the type t is provably equivalent to M . This 
anhappen for example, when 
omparing two equivalent but di�erently ordered module types, su
h asfT . t : ?; U . u : tg and fU . u : ?; T . t : ug. This leads to 
omparing the de
larations T . t : ? andT . t : u in the environment T . t : ?; U . u : t, where u is provably equal to t.98



Types M 6= ? � `M� `M �=M (TE-Refl) �(t) 6= ?� ` t �= �(t) (TE-Var)� ` p : fOg O(T ) 6= ?� ` p:T �= O(T )dO 7! p:Oe (TE-A

) � +O1 ` O1 �= O2� ` fO1g �= fO2g (TE-Module)� + I2 ` I2 �= I1 � + I2 ` O1 �= O2 !1=!2 _1 =_2� ` hI1;O1;!1;_1i �= hI2;O2;!2;_2i (TE-Mixin)Signatures 81 � i � n;� ` Di �= D0i� ` fD1 : : : Dng �= fD01 : : :D0ng (TE-Sig)De
larations � `M1 �=M2� ` (S . s :M1) �= (S . s :M2) (TE-Comp)Figure 5.11: Type equivalen
e5.2.4 Type equivalen
eType equivalen
e is the least symmetri
 and transitive relation respe
ting the rules in �gure 5.11. Itis not re
exive, be
ause the abstra
t type is not equal to itself (fortunately for type soundness), but
alling determinate types the types di�erent from it, type equivalen
e is re
exive on determinatetypes.A type variable is equivalent to the type it has been assigned by the environment (rule TE-Var).If a path p has a module type exporting a type de
laration T . t : M , then by the typing ruleTT-Var, this module type has been strengthened, so M is determinate, and p:T is equivalent tothe extra
tion of M .Then, module and mixin module types are de�ned straightforwardly through the notion of signatureequivalen
e, whi
h 
he
ks the equivalen
e of the types asso
iated to de
larations, in a one-to-one
orresponden
e.5.2.5 Dire
tions for a proof of soundnessThe problem In MML, as in any type system with type abstra
tion, type soundness is hard toprove be
ause type abstra
tion invalidates type preservation. The problem is easy to see. Assumea module A has been de�ned, in an OCaml-like syntax, bymodule A = (stru
ttype t = intlet x = 1end : sigtype tval x : tend) 99



(Here, the 
onstru
tion (module : module-type) denotes the 
oer
ion of a module to a moduletype.)The module A is bound in the typing environment with the typesigtype tval x : tendNow, if further in the program we use A.x, then its type is simply A.t, not int. Indeed, in thetype of A, no de�nition is provided for t. Until now, no diÆ
ulty arose, but if we try to evaluateour program, then A.x evaluates to 1, whi
h is of type int, but not of type A.t: type preservationdoes not hold.Lillibridge's solution Lillibridge [56℄ de�nes a kernel module system 
alled the translu
ent sumsformalism, apparently 
lose to the manifest types formalism, but whi
h enjoys the type preservationproperty. We illustrate the subtle di�eren
es leading to this result, and their 
onsequen
es.Let m =def stru
ttype t = intlet x = 1end and S =def sigtype tval x : tendThe 
ounter-example program showing that type preservation does not hold in the manifest typesapproa
h is module A = (m : S), let res = A.x. Re
all that in the manifest types approa
h,this expression is well-typed, and res has type A.t. The problem is that during evaluation its type
hanges. In the translu
ent sums approa
h, there is no primitive let binding, so one has to en
odethe program as a fun
tor appli
ation, taking advantage of the fa
t that the prin
ipal type of (m: S) is known to be S: (fun
tor (A : S) = stru
t let res = A.x end) m.In Lillibridge's system, this expression is well-typed. Indeed, m has type sig type t = int val x: int end. Moreover, the fun
tor has type fun
tor (A : sig type t val x : t end) -> sigval res : A.t end as a prin
ipal type. This type is a subtype of fun
tor (A : sig type t= int val x : int end) -> sig val res : int end. Therefore, by subsumption, the fun
tor
an be given this type. As it is a non-dependent fun
tor type, the whole program has type int.Therefore, when sele
tion is performed, this type is preserved.However, one 
ould obje
t that we 
heated a bit here, by forgetting that m was initially 
oer
edto S. And indeed, if we repla
e m with m : S in our en
oding, we obtain an ill-typed expression.Indeed, the prin
ipal type of the argument to the fun
tor, m : S, is S, whi
h is not transparent.The 
onsequen
e is that the fun
tor 
annot be spe
ialized, as above, to a non-dependent type, andtherefore the program is ill-typed.Related approa
hes In [31℄, Duggan and Sourelis prove the soundness of their 
al
ulus of mixinmodules by showing the soundness of the 
al
ulus without type abstra
tion by expli
it 
oer
ion,and remarking that ea
h well-typed term in the presen
e of abstra
tion is well-typed without typeabstra
tion. The restri
ted 
al
ulus strongly resembles Lillibridge's kernel system. The only typeabstra
tion lies in fun
tor abstra
tion. Lillibridge's system retains expli
it 
oer
ion, but its use islimited by the type system. Courant [23, 24℄ adds type equalities to the type theory of its module
al
ulus in order to retain type preservation. 100



Synta
ti
 type abstra
tion A drawba
k of these approa
hes is that while retaining the im-portant property of type preservation, it is diÆ
ult to prove that abstra
tion is preserved duringevaluation. For instan
e, on
e the argument module is passed to a fun
tor, the type system forgetsthat it possibly had some abstra
t types. Su
h abstra
tion properties as representation indepen-den
e have been proven by Mit
hell [59℄, from a denotational semanti
s standpoint, but they arereported by Grossman et al. [39℄ to extend with diÆ
ulty to new language features. Instead,Grossman et al. propose a new, synta
ti
 te
hnique for proving abstra
tion properties of systems,whi
h s
ales well to new language features. It is based on embeddings for exporting abstra
t val-ues outside of the s
ope of abstra
tion. The authors noti
e as an interesting future work that thiste
hnique might apply to module systems.5.2.6 Unde
idability, prin
ipal types, synta
ti
 typesConje
ture of unde
idability We 
onje
ture that the typing MML is unde
idable, based onLillibridge's result that typing the OCaml module system is [56℄.Conje
ture 1 (Unde
idability) Signature mat
hing is unde
idable in MML.The following example in OCaml syntax gives an idea why the intuitive algorithm fails for modules.It is easy to en
ode this example with fun
tors. We refer to Lillibridge's thesis for more details.module type I = sigmodule type Amodule F : fun
tor(X : sigmodule type A = Amodule F : fun
tor(X : A) -> sig endend) -> sig endend ;;module type J = sigmodule type A = Imodule F : fun
tor(X : I) -> sig endend ;;module Loop(X : J) = (X : I) ;;The intuitive algorithm fails, be
ause for mat
hing J against I, it puts the 
omponents of J inthe environment, thus making the module type 
omponent A in I equal to I itself. Thus, when
ontravariantly mat
hing the arguments of the fun
tor 
omponents F of ea
h module type, it infa
t mat
hes J against I, on
e again.Prin
ipal types A type system has prin
ipal types if given an environment and an expression,there exists a minimal type su
h that the expression has this type in the given environment. Wedo not know whether MML has prin
ipal types.Synta
ti
 types For separate 
ompilation, it is desirable for the programmer to be able toexpress any signature of the language, synta
ti
ally. Indeed, it allows to put as mu
h informationas needed in interfa
es. Several known module systems do not have synta
ti
 signatures, e.g. theones of Russo [65℄, Dreyer et al. [28℄, or the one of OCaml. For example, in OCaml, externalnames are not distinguished from internal variables. It is thus impossible to express the typef typeT . t : ?;valX . x : f typeT . t0 = tg g101



without 
hanging the names of some 
omponents.A 
on
rete system implementingMML would probably make the same 
hoi
e of identifying externalnames and internal variables, and would thus la
k synta
ti
 types.5.3 Polymorphism and datatypesThe formalism already en
odes expli
it polymorphism [37℄ and is easily extended with datatypesin the style of ML [58℄.5.3.1 PolymorphismAs in [40℄, polymorphism is en
oded by our formalism, although it is only expli
it polymorphism.We use the following synta
ti
 sugar 
onventions, where ARG;RES 2 MNames, arg ; res 2 MVars,TARG 2 TNames, and targ 2 TVars. The variables arg , targ and res are not allowed to o

ur freeanywhere, and the names ARG , TARG and RES are reserved.Notation DenotationFun
tion �x : M:e hARG . x : M ;RES . res = eiAppli
ation e1e2 let re
 res = 
lose(e1 + h;;ARG . arg = e2i)in res :RESFun
tion type M1 !M2 h ARG . arg :M1;RES . res :M2; fARG /�! RESg;fARG_ RESg iType fun
tion �t:e hTARG . t : ?;RES . res = eiType appli
ation e[M ℄ let re
 res = 
lose(e1 + h;;TARG . targ =Mi)in res :RESType fun
tion type 8t:M hTARG . t : ?;RES . res :M ; ;; fTARG_ RESgi5.3.2 DatatypesIt is not too diÆ
ult to add ML-like datatypes to MML. ML datatypes are user-de�ned abstra
ttypes, a

ompanied with a �nite list of 
onstru
tors , whi
h allow to build values of that type.Ba
kground In [26℄, Crary et al. study the interpretation of Standard ML datatypes in typetheory. They propose two possible interpretations, the opaque and the transparent interpretations.Inuitively, the opaque interpretation is the one of Standard ML: a datatype is interpreted as a newtype, and values of that type 
an only be 
reated by appli
ation of the asso
iated 
onstru
tors.For example, the OCaml signatureS1 =def sigtype u = A of u * u | B of inttype t = u * uendis interpreted asSopaque1 =def sigtype utype t = u * uval u in : (u * u + int) -> uval u out : u -> (u * u + int)end 102



This interpretation is used in [43℄, whi
h gives a formal interpretation of Standard ML into typetheory. Nevertheless, Crary et al. reje
t it be
ause ea
h datatype 
onstru
tion or pattern-mat
hing
orresponds to the run-time 
ost a fun
tion 
all. Instead, they propose to use the transparentinterpretation, in whi
h a datatype is rather interpreted as a re
ursive sum type. The signatureS1 is interpreted asStransparent1 =def sigtype u = � u . (u * u) + inttype t = u * uendNoti
e that there is no need for introdu
ing spe
ial 
onstru
tors, as u in and u out in the opaqueinterpretation, sin
e one 
an rely on the sum type inje
tions to produ
e values of type u. Fur-thermore, the re
ursive type 
onstru
tor � is diÆ
ult to deal with. In their papers on re
ursivemodules [27, 29℄, Harper et al. study two possible type theoreti
 
onstru
tions implementing �,distinguishing equi-re
ursive types from iso-re
ursive types.In the equi-re
ursive approa
h, the type � = � u . (u * u) + int above is equivalent to itsunrolling (� * �) + int. To 
onstru
t a value of type � , 
onstru
t a value of type int or int* � , and just inje
t it into the sum type, thanks to the left and right inje
tions injl and injr,respe
tively. For example, e =def injr 1 has type � . Su
h expressions are de
omposed by theproje
tion operations of sum types, projl and projr, so one 
an re
over the integer from e by projr e.In the iso-re
ursive approa
h, � is only isomorphi
 to its unrolling (� * �) + int. Con
retely,it means that given some term e0 of type (� * �) + int, there is a rolling operation roll that
oer
es e0 to � : roll e0 is of type � . Conversely, to use a value of type � , one has to apply the unrolloperation �rst, whi
h 
oer
es it to (� � �) + int). For instan
e, to 
onstru
t a value of type � , onewrites e =def roll(injr 1), and its �rst element is a

essed through (unroll(projr e)).The tension lies between the expressivity of the equi-re
ursive approa
h and the fa
t that it makestype equivalen
e possibly unde
idable. Conversely, the iso-re
ursive approa
h is a bit less 
exible,but retains de
idability. In [26℄, Crary et al. 
hoose the iso-re
ursive approa
h. However, thetransparent, iso-re
ursive interpretation of datatypes is not 
ompatible with Standard ML, asshown by the following example. In Standard ML, the signature S1 is a subsignature of S2, de�nedas follows:S2 =def sigtype ttype u = A of t | B of intendIn the transparent, iso-re
ursive interpretation, it is not the 
ase. Indeed, in order to prove it,one has to prove that, assuming u = � and t = u * u, the type � is equivalent to t + int. It ispossible, by repla
ing u with its value, to prove that t is equivalent to � u . (� * �) + int, butthis type is not equivalent to � . In order to solve the problem, Crary et al. enri
h the type systemwith Shao's equation: ��:� = ��:(�f� 7! (��:�)g) (Shao)This allows to re
over Standard ML datatypes.We 
hoose yet another approa
h, 
loser to indu
tive types than to re
ursive types [77℄. A datatypede�nition is initially not 
onsidered equal to any type. It is rather de�ned by a list of 
onstru
tors ,as the smallest type su
h that the only way to 
onstru
t values of this type is to apply one of the
onstru
tors. This method in fa
t 
losely 
orresponds to ML datatypes, and was added by Werner[77℄ to the 
al
ulus of 
onstru
tions [22℄ for making the extra
tion of programs from proofs moreeÆ
ient. Thus, it 
an be 
onsidered as a perfe
tly type theoreti
al 
onstru
tion.103



Formalization Figure 5.12 extendsMML with datatypes (with an approa
h inspired by [31, 66℄).Assume given an in�nite, denumerable set of 
onstru
tor names C 2 ConNames. The notions itde�nes are mutually re
ursive with the ones of �gure 5.14. Type paths pt are either type variablesor type names pre�xed by a module path. Expressions are extended with 
onstru
tor appli
ationsC pt [e1 : : : en℄, 
onsisting in a 
onstru
tor name, applied to a list of expressions, and annotated bythe type path the 
onstru
tor 
omes from. The list of arguments must mat
h the arity of the
onstru
tor exa
tly, as will be enfor
ed by the type system. Su
h an appli
ation is valid onlywhen the 
onstru
tor has been previously introdu
ed by a new form of de�nition, 
alled datatypede�nition, whi
h has the shape T .t = �. Expressions are also extended with a family of operatorsfor pattern-mat
hing. The family is denoted by mat
hpt� . It is indexed by a type path pt , and adatatype �. Indexing the pattern-mat
hing operators with datatypes allows to easily de�ne theirdynami
 semanti
s. Indexing them over type paths is useful during typing, for 
he
king that thedatatype has been de
lared as indi
ated by �. A datatype � = �1 : : : �n is a list of 
onstru
torde�nitions, synta
ti
ally required not to bind the same 
onstru
tor name twi
e, and a 
onstru
torde�nition � = C[M1 : : :Mn℄ is a pair of the name of the new 
onstru
tor, plus the list of itsargument types. When the 
onstru
tor is applied, its arguments are required by the type systemto have these types. Noti
e that both the order of the 
onstru
tors in a datatype de�nition andthe order of the types in a 
onstru
tor de�nition matter. At the level of types, de
larations areenri
hed to take datatype de�nitions into a

ount. A datatype de�nition T . t = � 
orrespondsto two de
larations: one de�nes the new abstra
t type T . t = ?, while the other spe
i�es its
onstru
tors t � �.The set of expressions of synta
ti
ally predi
table shape is extended with 
onstru
tor appli
ationsC pt [e1 : : : en℄, as shown in �gure 5.12. A 
onstru
tor de
laration has no stati
 free variables, sin
eit does not de�ne any type. It is well formed, provided the types it mentions are and it doesnot de�ne the same 
onstru
tor twi
e. The well-formedness 
ondition on signatures now 
he
ksthat only one unfolding (t � �) is de�ned for ea
h t. Moreover, su
h t must be de�ned in thesame signature, either as abstra
t types, or as types that unfold (see below) to an equivalent (seebelow) datatype. This 
exibility is ne
essary, sin
e by type strengthening abstra
t types are soonrepla
ed with type paths. Type strengthening has no e�e
t on an unfolding spe
i�
ation, ratheron the asso
iated type de�nition. Finally, the degree of a variable in a 
onstru
tor appli
ation 
anbe ,, if it is , in all arguments.Dynami
 semanti
s Extending the dynami
 semanti
s to handle 
onstru
tors and pattern-mat
hing is des
ribed by �gure 5.13. First, values are extended with 
onstru
ted values , that is, a
onstru
tor applied to values, and with partial mat
hings . The mat
hing operator mat
hpt� expe
tsthe argument to the mat
hing, plus j � j fun
tions for dealing with ea
h of the 
onstru
tors de�nedby �. When the �nal argument has not been provided, and the �rst arguments are evaluated,the expression is 
alled a partial mat
hing, and 
onsidered a value. As soon as the �nal argumentis given, rule Mat
h performs the mat
hing. If the mat
hing operator is mat
hpt� , and the �rstargument to the mat
hing is Ci pt 0 [v01 : : : v0ni ℄, a

ording to the index of Ci in �, the rule appliesone of the mat
hing fun
tions v1 : : : vn to the arguments v01 : : : v0ni .Stati
 semanti
s As shown by �gure 5.14, the stati
 semanti
s of MML is extended to a

ountfor datatypes. A new judgment, type unfolding �, is introdu
ed, for retrieving the datatype
orresponding to a type path. If it is simply a type variable t, then an unfolding de
laration(t � �) must be in the environment. Otherwise, it is a type path p:T , then the datatype has to beextra
ted from the type of p.Typing 
onstru
tor appli
ation C pt [e1 : : : en℄ (rule TT-ConApp) 
onsists in unfolding the typepath annotation pt , to retreive the 
orresponding datatype �, and 
he
k that the argumentsmat
h the types expe
ted by �. Typing a mat
hing operator mat
hpt�0 is a bit more 
ompli
ated.There are two main 
he
ks to do: �rst, the pt annotation must unfold to a datatype �, and se
ondthe �0 annotation must be equivalent to that �. Then, the type of mat
hpt�0 is a polymorphi
type 8t:M , where M is a fun
tion expe
ting the �rst argument of type pt , plus the j � j mat
hing104



SyntaxType path: pt ::= t j p:TExpression: e ::= : : : j C pt [e1 : : : en℄ j mat
hpt�De�nition: d ::= : : : j T . t = �De
laration: D ::= : : : j t � �Datatype de�nition: � ::= �1 : : : �n� ::= C[M1 : : :Mn℄Expressions of predi
table shapee# ::= : : : j C pt [e1 : : : en℄Stati
 free variablesSFV(T � �) = ;Well-formedness8i 2 f1 : : : ng;8j 2 f1 : : : nig;� `M ij 8i; j 2 f1 : : : ng;� ` Ci 6= Cj� ` (C1[M11 : : :M1n1 ℄ : : : Cn[Mn1 : : :Mnnn ℄) (Wf-Datatype)� ` t � ` �� ` (t � �) (Wf-Unfold)8D 2 O;� ` D 8(t � �); (t � �0) 2 O;� = �08(t � �); (T . t :M) 2 O; (M � ?) _ ((� `M � �0) ^ (� ` � �= �0))8D;D0 2 O(DN(D) = DN(D0) _DV(D) = DV(D0)) =) D = D0� ` O (Wf-Sig')Type strengthening(t � �)=p = (t � �)Degree (for x 2 FV(C pt [e1 : : : en℄))Degree(x;C pt [e1 : : : en℄) = ^1�i�n;x2FV(ei)Degree(x; ei)Figure 5.12: Extension to datatypesValue: v ::= : : : j C pt [v1 : : : vn℄ Constru
ted valuej (mat
hpt� v1 : : : vn) Partial mat
hing (for n �j � j)� = (C1[M11 : : :M1n1 ℄ : : : Cn[Mn1 : : :Mnnn ℄)mat
hpt� (Ci pt0 [v01 : : : v0ni ℄)v1 : : : vn �! (viv01 : : : v0ni) (Mat
h)Figure 5.13: Extending the dynami
 semanti
s105



fun
tions, and returning a value of type t. The mat
hing fun
tion 
orresponding to the 
onstru
torC[M1 : : :Mn℄ expe
ts n arguments of types M1 : : :Mn, and returns a value of type t. It appearshere that the purpose of the pt annotation on the mat
hing operator is to represent the type of the�rst argument to the mat
hing. As synta
ti
ally, datatypes are not types, it 
ould not be easilyguessed otherwise.The typing judgment for de�nitions has to be extended, be
ause a single datatype de�nition 
or-responds to two de
larations, an abstra
t type de
laration and an unfolding. Thus, instead ofa single de
laration, the type of a de�nition is a �nite set of de
larations. To type a stru
ture,su

essively type its de�nitions and take the (disjoint) union of the obtained signatures (rule TT-Output'). Ea
h datatype de�nition T . t = � is 
he
ked 
orre
t, and its type is T . t : ?; t � �(rule TT-Datatype).By rule ST-Sig', signature mat
hing now allows to forget some datatype de
larations, only re-taining an abstra
t type. Nevertheless, if the datatype is kept, rule ST-Datatype for
es thetwo de
larations to be equivalent. Two datatypes are equivalent if they de�ne the same list of
onstru
tors, with equivalent types (rules DE-Datatype and DE-Con).5.4 ExamplesIn this se
tion, we give some example programs illustrating the use of mixin modules in some 
anon-i
al situations. The 
al
ulus makes a synta
ti
 di�eren
e between type and value names. Here, wedo not synta
ti
ally distinguish between type and value identi�ers, and prefer to pre�x de�nitionsand de
larations with keywords type and val to disambiguate them. We synta
ti
ally distinguishnames from variables, with the 
onvention that variables begin with a lower
ase letter, while namesbegin with an upper
ase letter. Moreover, we assume that the language is extended with polymor-phi
 
omparison fun
tions =; <;>, some operations for booleans, su
h as pre�x negation not andin�x and operators, and a 
onditional 
onstru
tion if then else .5.4.1 ListsWe program a simple module implementing lists in MML. If we sti
k to monomorphi
 lists, that is,the type of elements is �xed to int for example, then it is straighforward. Let � = Nil ;Cons [int ; t ℄.We de�ne the module list byolist =def typeT . t = �valHead . head = �x:mat
ht�[int ℄x error�hd�tl :hdvalTail . tail = �x:mat
ht�[t℄x error�hd�tl :tlvalMap .map = �f�x:mat
ht�[t ℄x Nil t[℄�hd�tl :Const[(f hd); (map f tl)℄and list = 
lose h;; olist i.Noti
e the use of error: we did not in
lude ex
eptions in our formalism, but for sure they remaina useful 
onstru
tion in programming, and should be in
luded in any pra
ti
al appli
ation. Theobtained module is of type fOg, whereO =def typeT . t : ?t � Nil ;Cons [int ; t ℄valHead . head : t! intvalTail . tail : t! tvalMap .map : (int ! int)! t! t106



Type path unfolding � ` pt � �(t � �) 2 �� ` t � � (TU-Var) � ` p : fOg (T . t :M); (t � �) 2 O� ` p:T � �dO 7! p:Oe (TU-Path)� ` pt �=M � `M � �� ` pt � � (TU-Eq)Expressions� ` pt � � (C[M1 : : :Mn℄) 2 � 8i 2 f1 : : : ng;� ` ei :Mi� ` C pt [e1 : : : en℄ : pt (TT-ConApp)� ` pt � � � ` � �= �0� ` mat
hpt�0 : Mat
h(pt ;�) (TT-Mat
h)De�nitions 8i 2 f1 : : : ng;� ` di : Oi� ` (d1 : : : dn) : (O1 + : : :+On) (TT-Output')� ` �� ` (T . t = �) : (T . t : ?; t � �) (TT-Datatype)De
laration mat
hing � ` � �= �0� ` (t � �) � (t � �0) (ST-Datatype)Signature mat
hing 81 � i � n;� ` Di � D0i� ` D1 : : :Dn; (t � �)� � D01 : : : D0n (ST-Sig')Datatype equivalen
e 8i 2 f1 : : : ng;� `Mi �=M 0i� ` C[M1 : : :Mn℄ �= C[M 01 : : :M 0n℄ (DE-Con)8i 2 f1 : : : ng;� ` �i �= �0i� ` (�1 : : : �n) �= (�01 : : : �0n) (DE-Datatype)Type of mat
hpt�Mat
h(pt ; �1 : : : �n) = 8t:pt ! Constr(t; �1)! : : :! Constr(t; �n)! tConstr(t; C[M1 : : :Mn℄) = (M1 ! : : :!Mn ! t)Figure 5.14: Extension of the typing judments107



Moreover, by type strengthening, at ea
h pla
e of use, the type de
laration typeT . t : ? of listbe
omes typeT . t : list :T .Parametri
 datatypes This module is usable as an ML module on lists of integers. Noti
e how-ever that the language does not feature parameterized datatypes, so it is not possible to implementdire
tly a module dealing with lists of any type. We 
an try to en
ode parameterized datatypesthough. A �rst attempt 
onsists in adding a deferred, abstra
t type elt for the elements of the list.The 
orresponding mixin module openList has the input signature I =def typeElt . elt : ? and theoutput is olist , ex
ept that in the de�nition of T , int is repla
ed with elt in the datatype. Thismixin module indeed 
an produ
e a module for lists of any type, but it will generate di�erent typesat ea
h instantiation, sin
e our datatypes are generative. Moreover, the Map fun
tion 
annot bede�ned polymorphi
ally.This is not a problem if one wants to link with the open mixin module, but as argued by Szyperskiin [74℄, and dis
ussed in se
tion 2.3.3, it is sometimes more 
onvenient to rely on a 
losed librarymodule. To solve this issue, an extension of MML similar to Leroy's [53℄ or Russo's [65℄ appli
ativefun
tors, or Shao's extended modules [71℄ seems possible although we have not formalized it. InLeroy's vein, it 
ould 
onsist in giving type paths the grammarpt ::= t j p:Tj [p1 + : : :+ pn℄:Twhere the produ
tion [p1+ : : : p2℄:T would denote the type 
omponent T in any module 
omputedby 
losing the sum p1+ : : :+pn. Then, a type M 
an be en
apsulated in a mixin module eltMix =h�;Elt .elt =Mi, and the type of lists with elements of typeM is denoted by [openList+eltMix ℄:T .The set of operations over lists 
an be extended polymorphi
ally, as shown for instan
e by thefollowing de�nition of the traditional fun
tions fold left , applying a fun
tion su

essively to all theelements of a list, and asso
, looking for the element asso
iated to a value in an asso
iation list.We denote by �List the datatype Nil ;Cons [ [openList + eltMix ℄:Elt ;[openList + eltMix ℄:T ℄ and by pt the type path[openList + eltMix ℄:T .We de�ne let re
 fold left = �t:�eltMix :�f:�init :�l:mat
hpt�List [t℄linit�hd :�tl :(fold left [t℄ eltMix f (f init hd ) tl)and let re
 asso
 = �eltMix h;; typeFst . fst : ?typeSnd . snd : ?typeElt . elt : fst � snd ; ;; ;i:�v :�l:mat
hpt�List [[eltMix ℄:Snd ℄ lerror�hd :�tl : if fst hd = vthen snd hdelse asso
 eltMix v tlNevertheless, it is still not possible to easily de�ne the polymorphi
 fun
tions inside the mixinmodule for lists. Maybe, another solution is to de�ne the parametri
 datatype as a mixin modulevalList.list = htypeElt.elt : ?; typeT.t = Nil ;Cons [elt ; t ℄i and the type list(M) is [list+mixElt ℄:T ,for mixElt a named mixin exporting the type M . It is not obvious that this works in pra
ti
e,be
ause the argument mixElt has to be named. In theory, all types 
ould be wrapped in in mixinmodules as their unique 
omponent Elt , and referred to by the name of these mixin modules. Forexample, the module for lists and the Map fun
tion would look like :108



list = 
loseh;; valList . list = h Elt . elt : ?;T . t = Nil ;Cons [elt ; t℄ivalMap .map =�mixElt : h;;Elt . elt : ?; ;; ;i:�t0:�f : [mixElt ℄:Elt ! t0:�l : [mixElt + list ℄:T :mat
h[mixElt+list ℄:TNil;Cons[[mixElt+list ℄:Elt;[mixElt+list ℄:T ℄[t0℄Nil [mixElt+list ℄:T [℄�hd :�tl :Cons [mixElt+list ℄:T [(f hd); (map mixElt [t0℄ f tl)℄ iThis example fails to type-
he
k, at least if f is given the type [mixElt ℄:Elt ! t0, sin
e its argumenthas type [mixElt+ list ℄:Elt . We made this mistake on purpose to show how subtle typing errors 
anappear with su
h en
odings. One 
ould envisage to introdu
e new type equations in the system,su
h as [p+ : : :℄:T = [p℄:T if [p℄:T is well-formed.Con
lusion On the whole, we arrive to the 
on
lusion that this is both 
umbersome and adho
, and typing these examples is not easy at all. Thus, the addition of primitive parameterizedtypes would be bene�
ial. This 
ould 
ause some diÆ
ulties, as shown by Harper et al. in [28℄:[?℄ understand why. It is basi
ally uni�
ation in the presen
e of higher-order, non-re
ursive type
onstru
tors with singleton kinds, whi
h has been proved de
idable by Chris Stone [72℄.Noti
e though that the need for appli
ative mixin modules 
ould be requested in pra
ti
e, asappli
ative modules have proved useful.In the remaining examples, for simpli
ity of the presentation, we assume that parameterizeddatatypes are primitive in the language, and that a module list has been de�ned, using them,with the following type:list : f typeT . t : �elt :list :T (elt)t[elt ℄ � Nil ;Cons [elt ; t [elt ℄℄valHead . head : 8elt :t[elt ℄! eltvalTail . tail : 8elt :t[elt ℄! t[elt ℄valFold left . fold left : 8elt :8t0:(t0 ! elt ! t0)! t0 ! t[elt ℄! t0valMem .mem : 8elt :elt ! t[elt ℄! boolvalMax .max : 8elt :(elt ! elt ! int)! t[elt ℄! eltvalAsso
 . asso
 : 8fst :8snd :fst ! t[fst � snd ℄! snd g5.4.2 Simple interpreterAs shown by Duggan and Sourelis [31℄, mixin modules fa
ilitate the modular development of
ompilers and, similarly, of interpreters. We illustrate it with a simple interpreter for a 
al
ulator [?℄with variable bindings. It takes as arguments expressions 
onsisting of operations on numbers, andpossibly bindings of expressions, and returns the result if possible. We divide the implementationinto three mixin modules.Evaluation mixin module The �rst mixin openEval is in 
harge of the basi
 operations. Itimports the type env of environments, the type binding of bindings, the type variable for expressionvariables, the fun
tion �nd in env , whi
h retrieves the value of a variable in an environment, andthe fun
tion bind , whi
h binds an expression to a variable in the environment.109



IopenEval =def typeEnv . env : ?typeBinding . binding : ?typeResult . result : inttypeVariable . variable : ?valFind in env . �nd in env : variable ! env ! resultvalBind . bind : bindings ! env ! envThe mixin openEval must the de�ne the datatype expr of expressions, the type result for resultsof evaluation (integers), and the fun
tion eval whi
h evaluates an expression in an environment.The datatype of expressions is de�ned as�Expr =def Var [variable ℄; (* Variable *)Plus [expr ; expr ℄; (* Addition *)Const [int ℄; (* Integer 
onstant *)Let [binding ; expr ℄ (* Let binding *)The output of the mixin module is as follows:oopenEval =def typeExpr . expr = �ExprtypeResult . result 0 : intvalEval . eval = �an env :�an expr :mat
hexpr�Expr [result ℄ an expr�v :�nd in env v an env�an expr1:�an expr2:(eval an env an expr1) + (eval an env an expr2)�n:n�binding :�an expr :eval (bind binding an env) an exprand we 
an de�ne openEval by openEval = hIopenEval ; oopenEval i.It has type hIopenEval ;OopenEval ;!openEval ;_openEvali, whereOopenEval =def typeExpr . expr : ?expr � �ExprtypeResult . result 0 : intvalEval . eval : env ! expr ! result!openEval =def f Eval ,�! EvalFind in env ,�! EvalBind ,�! Eval g_openEval =def ;By rule ST-Sig', the implementation �idExpr 
an be hidden, by type 
onstraint.Binding mixin module The se
ond mixin module deals with bindings. It imports the typesof environments, variables, expressions and results, and the fun
tions Eval and Add to env , whi
hadds a variable and its value to the environment. Its import signature is thusIopenBind =def typeEnv . env : ?typeVariable . variable : ?typeExpr . expr : ?typeResult . result : ?valAdd to env . add to env : variable ! result ! env ! envvalEval . eval : env ! expr ! result110



Given this, it 
an de�ne the type Binding of bindings, as asso
iation lists of variables and expres-sions, and the fun
tion bind whi
h takes a binding and an environment as arguments, evaluatesthe expressions, and binds the variables to the 
orresponding results in the environment.oopenBind =def typeBinding . binding = list :T [variable � expr ℄valBind . bind = �bindings :�an env :(list :Fold left [variable � expr ℄ [env ℄bind onean envbindings)val . bind one = �an env :�pair :(add to env (fst pair )(eval an env (snd pair ))an env)We 
an de�ne the mixin module openBind = hIopenBind ; oopenBind i. The type Binding 
an be madeabstra
t by type 
onstraint, whi
h gives openBind the typeopenBind : hIopenBind ;OopenBind ;!openBind ;_openBind i;with OopenBind =def typeBinding . binding = ?valBind . bind : bindings ! env ! env!openBind =def f Add to env ,�! BindEval ,�! Bindg_openBind =def Variable _ BindingExpr _ BindingEnvironment mixin module The last mixin module we de�ne handles environments. It hasto de�ne the type Env of environments, and the fun
tions Find in env and Add to env for �ndingand adding a variable binding in environments. It 
an be implemented by lists, as follows:openEnv = h typeVariable . variable : ?typeResult . result : ?typeEnv . env : list :T [variable � result ℄; Find in env . �nd in env = list :Asso
 [variable ℄ [result ℄Add to env . add to env = �v:�res :�an env :Consenv [(v; res); an env ℄ iOn
e again, the implementation of the type Env 
an be hidden to the outside world by type
onstraint. Finally, the interpreter module is obtained by 
lose(openEval + openBind + openEnv ).Comparisons We think [?℄ that the example 
ompiler sket
hed by Duggan and Sourelis in [31℄ isimplementable in MML quite straighforwardly. However, Duggan and Sourelis [32℄ have proposedan extension of their initial language DS with extensible datatypes and extensible 
onstru
tors,whi
h allows them to re�ne their interpreters in
rementally. This is not possible in MML be
ausedatatypes are not extensible.In [27, 29℄, Crary, Dreyer, Harper, and Puri investigate an extension of ML modules with re
ursivemodules. They fo
us both on the possible type-theoreti
 de�nitions for su
h an extension, and onsome example programs that should be en
oded smoothly by re
ursive modules. As re
ursion wasa primary 
on
ern in the design of mixin modules, MML en
odes most of their examples quitesmoothly, and our approa
h to datatypes allows to 
ompletely avoid the use of re
ursive types.Moreover, the problems re
ursive modules 
ause for separate 
ompilation do not appear with mixinmodules. 111



5.4.3 Bootstrapped data stru
turesAnother 
lass of examples Dreyer et al. use to demonstrate the expressive power of re
ursivemodules in [29℄ are bootstrapped data stru
tures, introdu
ed by Okasaki [61℄. The example they
hoose is the one of sets of sets, whi
h is easily programmed in MML.Sets of sets with mixin modules Sets of sets are built out of a mixin module openSet , imple-menting general sets. It imports the stru
ture of the elements of the set: a type elt and a fun
tionelt 
mp : elt ! elt ! int , whi
h 
ompares two elements, returning 0 if they are equal, a positiveinteger if the �rst one is greater, and a negative integer otherwise. Given these, it de�nes the typeof sets with elements of type elt (as lists), and some standard fun
tionalities over sets. The mixinmodule 
ould be 
onstrained to hide the implementation of type set .openSet = h typeElt . elt : ?valElt 
mp . elt 
mp : elt ! elt ! bool; typeSet . set = list :T [elt ℄valEmpty . empty = Nil set [℄valSingleton . singleton = �x:Consset [x;Nil set [℄℄valCmp . 
mp = �l1:�l2:mat
hsetNil;Cons[elt;set℄ [int ℄ l1(mat
hsetNil ;Cons[elt;set℄ [int ℄ l20�hd :�tl :� 1)(�hd1 :�tl1 :mat
hsetNil;Cons[elt;set℄ [int ℄ l21�hd2 :�tl2 : (elt 
mp(list :Max l1)(list :Max l2))): : : iAfter that, the mixin module for sets of sets wraps the one for sets. It de�nes the type of sets ofsets relying on the imported type of sets, and for
es the type elt to be itself.openSos = h typeElt . elt : ?typeSet . set : ?typeSos . sos : ?sos � Int [int ℄;Set [set ℄valEmpty . empty : setvalSingleton . singleton : elt ! setvalSet 
mp . set 
mp : set ! set ! int; typeSos . sos 0 : ?sos 0 � Int [int ℄;Set [set ℄typeElt . elt 0 = sosvalCmp . 
mp = �sos1 :�sos2 :[snipped 
ode℄ iFinally, the two mixin modules 
an be merged together, redire
ting the 
omparison fun
tions totheir expe
ted names in ea
h mixin module. The Cmp fun
tion of the openSet mixin module mustbe 
onne
ted to the Set 
mp input of the openSos mixin module. Conversely, the Cmp fun
tion ofthe openSos mixin module must be 
onne
ted to the Elt 
mp input of the openSet mixin module.The de�nitive 
omparison exported by the module Sos implementing sets of sets should be the onefrom openSos , so we rename Elt 
mp to Cmp in the obtained mixin module before to instantiate112



it. Thus, Sos is obtained bySos = 
lose( (openSet [Cmp 7! Set 
mp℄ +openSos [Cmp 7! Elt 
mp℄)[Elt 
mp 7! Cmp℄)Sets of sets with re
ursive modules In 
omparison, Dreyer et al. [29℄ implement re
ursivemodules by a 
ompli
ated elaboration pro
ess, transforming the original program into an expressionof the underlying type theory. This theory features singleton kinds and phase-splitting rules [41℄,that separate modules into their stati
 part and their dynami
 part.The sour
e program for sets of sets resembles the following.module type KEY = sigtype keyval 
ompare : key -> key -> orderendmodule type SET = sigtype elttype set...endfun
tor MkSet(Key : KEY) = stru
ttype elt = Key.keytype set = M...endsignature SOS = sig re
 Sos intype sos = Int of int | Set of Sos.SosSet.setmodule SosSet : SET with type elt = sosendmodule Sos = stru
t re
 Sos : SOS intype sos = Int of int | Set of Sos.SosSet.setmodule SosKey = stru
ttype key = soslet 
ompare sos1 sos2 = ...endmodule SosSet = MkSet(SosKey)endThe �rst module type KEY de�nes the signature of an ordered type: a type and a 
omparisonfun
tion. The se
ond module type SET de�nes the signature of a module implementing sets: thetype elt of elements of the set, the type set of sets, and some fun
tions over these types. Thefun
tor MkSet takes an ordered type as an argument, and returns a module, whi
h we assumeto implement sets. Formally, the fun
tor MkSet is assumed to have the signature fun
tor (Key: KEY) -> SET with type elt = Key.key, although it is not its prin
ipal signature, sin
e theimplementation of the type of sets 
ould be made manifest. The re
ursive module type SOS thende�nes the signature of a module implementing sets of sets: the type sos of sets of sets, and asub-module implementing sets whose elements are of type sos. SOS is a re
ursively dependentsignature (rds). The re
ursive module Sos implements the module type SOS in a straightforwardway. 113



This program is written in a surfa
e language, whi
h is not the 
al
ulus Dreyer et al. studied. Theprogram is therefore elaborated to this 
al
ulus, as we explain informally. SOS is elaborated intoan opaque rds, roughly a rds that prohibits the use of re
ursive types. By phase-splitting, opaquerds's redu
e to non-re
ursive signatures ; here SOS is roughly equivalent tomodule type SOS0 = sigtype sostype elt = sostype set = M f Key.key 7! elt gval Int : int -> sosval Set : set -> sosval expose : sos -> (int + set)endwhi
h is not re
ursive. (Noti
e that Dreyer et al. use the opaque interpretation of datatypes.)The elaboration of the module Sos is more 
omplex, and is done in two steps. First, the stati
part of the module is extra
ted, as a set of type de�nitions, possibly nested inside sub-modules. Itis elaborated to an opaque �xed-point , whi
h allows datatype de�nitions (see [29℄ for details). Weobtain something likemodule Stati
Sos = opaque stru
t re
 Sos : SOS intype sos = Int of int | Set of Sos.SosSet.setmodule SosKey = stru
ttype key = sosendmodule SosSet = stru
ttype set = M f Key.key 7! SosKey.key g...endendThe dynami
 part of the module is then elaborated to a transparent �xed-point , whi
h does notallow datatype de�nitions, sin
e these are opaque, but is more 
exible than the opaque �xed-point otherwise. A transparent �xed-point requires the signature of the re
ursive module variable(here Sos) to be fully transparent, so datatype de�nitions are elaborated by referring to their �rstelaboration in the Stati
Sos. We obtainmodule Sos = transparent stru
t re
 Sos : (SOS = Stati
Sos) intype sos = Stati
Sos.sosmodule SosKey = stru
ttype key = Stati
Sos.sosendmodule SosSet = MkSet(SosKey)endProblem: in the sour
e program, the type set in the result of the MkSet fun
tor 
ould be 
onstrainedto be abstra
t. In the proposed elaboration, it would then be impossible to extra
t the stati
 partof it and put it in Stati
. To prevent su
h an issue, Dreyer et al. require the sour
e re
ursivemodule not to export abstra
t types. This limitation 
omes from the 
hoi
e they make to elaboratethe dynami
 part of the re
ursive module as a transparent �xed-point. This 
hoi
e seems to bemainly guided by two fa
ts. 114



� The �rst fa
t is that opaque �xed-points more or less en
ourage all referen
es to other 
om-ponents of the module to be done through the re
ursive variable. For instan
e, 
onsider thefollowing re
ursive module.module List =opaque stru
t re
List : sig re
 List intype t = Nil | Cons of int * List.tval nthtail : List.t -> int -> List.tendintype t = Nil | Cons of int * List.tlet nthtail (l : List.t) n =if n = 0 then lelse mat
h l with| Nil -> failwith ``list too short. ''| Cons((hd : int), (tl : List.t)) -> nthtail tl (n - 1)endThe 
omponents of this module 
ontains a lot of referen
es to other 
omponents throughthe re
ursive variable List, 
alled module-re
ursive referen
es by Dreyer et al. Here, one
ould implement the type of list without any module-re
ursive referen
e. However, in the
ase of datatype de�nitions split a
ross di�erent sub-modules, module-re
ursive referen
esare needed. Thus, it is simpler to 
onsider a single datatype and to assume that the module-re
ursive referen
e in that type is needed. Then, in the body of nthtail, none of the module-re
ursive referen
es 
ould be turned into a lo
al one (by eliminating the pre�x List.): thiswould break the type-
he
king of the module. Indeed, in the pattern-mat
hing, the se
ondargument to Cons must be of type List.t, not t, so tl must have this type. Further, tl isgiven as an argument to nthtail in the re
ursive 
all, so the type of l has to be List.t too.Essentially, the problem is that it is impossible to unify t and List.t during type-
he
king.� The se
ond fa
t is that opaque �xed-points do not prevent the presen
e of equi-re
ursive type
onstru
tors. This is a problem be
ause type-
he
king is not known to be de
idable in thepresen
e of higher-order equi-re
ursive type 
onstru
tors.These remarks lead Dreyer et al. to prefer transparent �xed-points. Nevertheless, opaque �xed-points do not for
e all the type de
larations to be transparent, whi
h is sometimes 
onvenient, aswe have seen with the above example. Moreover, we think there are ways to work around thetwo problems of opaque �xed-points. For instan
e, elaborating all internal referen
es into module-re
ursive referen
es dire
tly avoids the burden to write all module-re
ursive referen
es by hand.Further, it is possible to modify the typing rule for opaque �xed-points in order to forbid equi-re
ursiveness and also to type-
he
k the dynami
 part of the module with all the information aboutthe stati
 part available. For referen
e, this leads to the following typing rule, with the notationsof [29℄: � ` S � [� : �:�1℄ sig �[s " S℄ `M � [
; e℄ � ` 
 # ��[s " [� : s(
):�1℄℄ ` e # �2 �[� : s(
)℄ ` �1 � �2[�=(Fst s)℄ type� ` �xS(s : S)M : S(We write �xS for \semi-transparent" �xed-point.) The rule forbids module-re
ursive referen
esin the stati
 part 
 of the module, thus relying on rds's for stati
 re
ursion. The dynami
 part ofthe module is type-
he
ked knowing the implementation of the stati
 part. The obtained type forthe dynami
 part is 
he
ked equivalent to the expe
ted type, knowing the implementation of thestati
 part. This a
hieves the 
exibility of transparent �xed-points, without for
ing the user to115



write a fully transparent signature. It is un
lear whether it suÆ
es for making the example of setsof sets work if MkSet returns an abstra
t type, be
ause the underlying 
al
ulus used in [29℄ doesnot feature generativity. It would be useful to try and transpose the dis
ussion to the more re
entformalism of [28℄.In MML, modules 
omponents are mutually re
ursive by default, as well as signature 
omponents.Thus, the problems due to de
oupling module-re
ursive and lo
al referen
es do not appear. Ourway to work around re
ursive types is a bit 
umbersome, as is the one for tra
king ill-foundedre
ursion: we keep stati
 dependen
ies in the types of mixin modules. Dreyer et al. do not needsu
h a ma
hinery. Instead, one 
ould argue that our way of dealing with re
ursive types is moreorthogonal to design problems than theirs. As a result, the design of MML seems more naturalthan the one of [29℄. In parti
ular, bundles of re
ursive modules are dealt with in a very ad ho
way in [29℄, while they are en
oded smoothly in MML.5.4.4 Mathemati
al data stru
turesPresentation In [15, 14℄, in the 
ontext of the Fo
 proje
t 1, Boulm�e et al. explore the imple-mentation of a library of mathemati
al data stru
tures dedi
ated to 
omputer algebra, in OCaml.Let us �rst explain how they present 
omputer algebra. Mathemati
al obje
ts su
h as 1, or thepolynomial X2 + X + 1 are 
alled entities . In mathemati
s, entities are grouped in 
olle
tions ,whi
h express a link between these entities, possibly materialized by operations 
alled methods .For example, the entities 0; 1; 2; : : : form the 
olle
tion of natural numbers. Slighlty more 
omplex:the entities 0; 1; 2; : : :, together with the distinguished element 0, the binary internal 
ompositionlaw +, and the unary internal 
omposition law �, form the group of natural numbers. Colle
tionshave a 
arrier , or representation type. For natural numbers, it is int. Mathemati
al 
olle
tionsare in turn grouped by 
ertain sets of properties, 
alled spe
ies . A spe
ies is a set of types andmethods, whi
h 
an be only de
lared, or de�ned, when 
ommon to all its 
olle
tions. For example,the spe
ies of polynomials of one variable 
ontains a default algorithm for multipli
ating polyno-mials, even if the 
arrier or the type of the 
oeÆ
ients are abstra
ted over. Spe
ies have interfa
es ,spe
ifying the set of methods they de�ne. For more details, see [15, 14, 62℄.The aim of the Fo
 proje
t is to develop a 
erti�ed library by extra
tion of OCaml programs fromCoq spe
i�
ations. [?℄ (referen
es) They have a pre
ise list of 
riteria to be met by their implemen-tation, insisting on in
remental development, type abstra
tion, and 
ode sharing. Essentially, forimplementing su
h a library, obje
ts do not o�er enough abstra
tion me
hanisms, whereas modulesare not 
exible enough with respe
t to in
remental programming. As a result, they use a smart
ombination of obje
ts and modules. A spe
ies is implemented by an abstra
t 
lass, i.e. a 
lasswhere some methods 
an be unde�ned. Interfa
es are represented by 
lass types. Colle
tions arepairs of a type t, the 
arrier, and an obje
t meth, 
ontaining the methods operating on t. Whenall methods of a spe
ies s are de�ned, it 
an be instantiated into a 
olle
tion. For this, a moduleis 
reated, whi
h 
ontains the 
orresponding 
arrier and the spe
ies s. For example, if the 
lass simplements polynomials in one variable over real 
oeÆ
ients with lists of pairs of an integer anda 
oating point number (sparse representation), then the 
orresponding 
olle
tion poly 
an be
reated bymodule Poly = (stru
ttype t = (int * float) list
lass meth = new send : sigtype t
lass meth : stend)1http://www-spi.lip6.fr/~fo
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where st is the type of s, abstra
ted over the 
arrier. This a
hieves abstra
tion over the represen-tation of the 
arrier. Extensibility and re�nement are allowed by operating on the 
lass s.MML allows a similar en
oding of mathemati
al stru
tures. Spe
ies 
an be en
oded by mixinmodules, abstra
t methods being represented by deferred 
omponents, and 
on
rete methods withde�ned 
omponents. The 
arrier is represented by a type 
omponent. An interfa
e is a moduletype. A 
olle
tion is 
reated by 
losing a mixin module, and immediately hiding the representationof the 
arrier.Simple examples We show the idea by implementing the very beginning of the Fo
 library. Forthis we assume that MML has been extended with the overriding operator � des
ribed in se
tion[?℄, and with a ma
ro expansion me
hanism for abbreviating signatures. A module type 
an bein
luded in a signature I by a de
laration of the form in
ludeM : ifM denotes the module type fOg,the signature I; in
ludeM denotes the greatest lower bound I 0 of fIg and fOg, as module types.This means that forgetting some 
omponents is allowed. Moreover, we assume that an external andinternal renaming and pre�xing fa
ility is given for signatures. The signature I [(X .x) 7! (Y . y)℄denotes I , with X repla
ed by Y and x repla
ed by y, if it does not generate any 
on
i
t. Thesignature I [(P .p) � (X .x)℄ denotes I , with all the de�ned external and internal names pre�xed byP and p, respe
tively. We skip the details of this extension, although it is 
ertainly non-trivial.2The minimal interfa
e of spe
ies is de�ned as any printable 
arrier:type basi
 obje
t sig = f typeT . t : ?;valPrint . print : t! unit gThe basi
 spe
ies, at the top the semanti
 inheritan
e hierar
hy of the stru
tures we will de�ne, is:val basi
 obje
t = h in
lude basi
 obje
t sig; � iThe interfa
e of a set is de�ned by the following module type:type set sig = f in
lude basi
 obje
t sigvalEq . eq : t! t! boolvalNeq . neq : t! t! boolgThe spe
ies of sets is the �rst to have a 
on
rete method, Neq , whi
h 
an be de�ned in terms ofEq : val set = basi
 obje
t + h in
lude set sig; valNeq . neq = �x:�y:not(eq x y) iWe de�ne the interfa
e of partial orders as:type partial order sig = f in
lude set sigvalLeq . leq : t! t! boolvalLt . lt : t! t! boolvalGeq . geq : t! t! boolvalGt . gt : t! t! bool g2Lillibridge showed that it makes signature mat
hing unde
idable in OCaml [56℄117



Similarly to sets, only one of the four fun
tions of partial order sig is needed to imlement the threeother ones. Thus, the spe
ies of partial orders 
an be de�ned as:val partial order = set + h in
lude partial order sig; valLt . lt = �x:�y:(leq x y) and(not(eq x y))valGeq . geq = �x:�y:(leq y x)valGt . gt = �x:�y:(lt y x) iLatti
es must mat
h the same interfa
e as partial orders, with two additional fun
tions, the greatestlower bound and the least upper bound fun
tions:type latti
e sig = f in
lude partial order sigvalGlb . glb : t! t! tvalLub . lub : t! t! t gThe spe
ies of latti
es does not have anything to de�ne by default, and is therefore implementedas: val latti
e = partial order + h in
lude latti
e sig; � iThen, the interfa
es for mix- and max-latti
es add the distinguished elements Min and Max ,respe
tively: typemin latti
e sig = f in
lude latti
e sigvalMin .min : tval Is min . is min : t! bool gtypemax latti
e sig = f in
lude latti
e sigvalMax .max : tval Is max . is max : t! bool gThe 
orresponding spe
ies 
an de�ne the methods Is min and Is max , respe
tively, in terms ofMix and Max :valmin latti
e = latti
e + h in
ludemin latti
e sig; val Is min . is min = �x:(eq xmin) ivalmax latti
e = latti
e + h in
ludemax latti
e sig; val Is max . is max = �x:(eq xmax ) iComplete latti
es 
an be implemented by inheriting both from min- and max-latti
es.type 
omplete latti
e sig = f in
ludemax latti
e sigin
ludemin latti
e sig gval 
omplete latti
e = max latti
e � min latti
eThe spe
ies of 
omplete latti
es has the mixin module type118



h typeT . t : ?valPrint . print : t! unitvalEq . eq : t! t! boolvalNeq . neq : t! t! boolvalLeq . leq : t! t! boolvalLt . lt : t! t! boolvalGeq . geq : t! t! boolvalGt . gt : t! t! boolvalGlb . glb : t! t! tvalLub . lub : t! t! tvalMin .min : tval Is min . is min : t! boolvalMax .max : tval Is max . is max : t! bool

; valNeq . neq : t! t! boolvalLt . lt : t! t! boolvalGeq . geq : t! t! boolvalGt . gt : t! t! boolval Is min . is min : t! boolval Is max . is max : t! bool ;!; ;i

(We do not detail the dynami
 dependen
ies, whi
h are not interesting.)It is then really easy to instantiate an example 
olle
tion, with integers for examples. Let the
omplete latti
e of natural numbers between 0 and 10 be implemented by the 
olle
tion:val open int latti
e = 
omplete latti
e + h ;; typeT . t = intvalPrint . print = printintvalEq . eq = �x:�y:(x = y)valLeq . leq = �x:�y:(x � y)valGlb . glb = �x:�y:if x � y then x else yvalLub . lub = �x:�y:if x � y then x else yvalMin .min = 0valMax .max = 10 ival int latti
e = 
lose open int latti
eWe 
an then de
ide that the algorithm for Lt is too ineÆ
ient, and in
rementally implement anoptimized 
olle
tion optimized int latti
e , with the 
omparison fun
tion from the library, as follows.val open optimized int latti
e = open int latti
e � h in
lude partial order sig; valLt . lt = �x:�y:(x < y) ival optimized int latti
e = 
lose open optimized int latti
eHard example (part VII): re
ursive polynomials, a �rst attempt A very subtle exam-ple of a representation of mathemati
al stru
tures is given in [14℄ by re
ursive polynomials. It
onsists in representing polynomials in any number of variables, starting from a representation ofpolynomials in one variable, with natural degrees, parameterized over the type of their 
oeÆ
ients.Polynomials introdu
e a slight 
ompli
ation in regard to the previous examples: they en
apsulatea sub-stru
ture of 
oeÆ
ients. A �rst natural attempt to represent su
h sub-stru
tures is to wrapthem as sub-modules. In this paragraph, we show how this strategy fails.De�ne a module type for rings: 119



type ring sig = f typeT . tvalEq . eq : t! t! boolvalZero . zero : tvalEq zero . eq zero : t! boolvalUn . un : tvalAdd . add : t! t! tvalMinus .minus : t! t! tvalUminus . uminus : t! tvalMult .mult : t! t! t gThe natural module type for polynomials has the ring of its 
oeÆ
ients as a virtual 
omponent,and some more fun
tionalities related to polynomials:type poly sig = f valCoef . 
oef : ring sigin
lude ring sigvalLift . lift : 
oef :T ! tvalMult extern .mult extern : 
oef :T ! t! tvalL
 . l
 : t! 
oef :Tval Is 
oef . is 
oef : t! bool gThe lift fun
tion lifts a 
oeÆ
ient to a polynomial of degree zero. The mult extern fun
tionmultiplies a polynomial by a 
oeÆ
ient. The l
 fun
tion returns the highest non-zero 
oeÆ
ient ofa polynomial. The is 
oef fun
tion 
he
ks if a polynomial is of stri
tly positive degree.Some of these fun
tions 
an be implemented in a generi
 way, in the following poly mixin module:val poly = h in
lude poly sig; valMult extern .mult extern = �
:�p:(mult (lift 
) p)valEq zero . eq zero = �p:(
oef :Eq zero (l
 p))val Is 
oef . is 
oef = �p:(eq p (lift (l
 p))) iWe 
an now de�ne the mixin module of re
ursive polynomials. It relies on a representation ofpolynomials Poly . my poly (the internal variable is for avoiding the 
on
i
t with poly). Thissub-module de�nes polynomials in one variable, but this variable is unnamed. The idea is touse my poly as a representation for polynomials in variable \X", but also as a representation forpolynomials in \Y ", and so on. Following this idea, a polynomial in \X" is a pair (\X"; e), wheree is of type my poly :T . There remains a question though: what is the type of the 
oeÆ
ients?Semanti
ally, one 
an see polynomials in variables \X1" : : : \Xn", as polynomials in \X1", whose
oeÆ
ients are polynomials in \X2" : : : \Xn", and so on. This is exa
tly how we pro
eed here.The 
oeÆ
ients of e are re
ursive polynomials. We maintain the invariant that the 
oeÆ
ientsof a polynomial in a variable \X" are polynomials in variables inferior to \X", a

ording to thepolymorphi
 
omparison operators. Basi
 
oeÆ
ients are imported as a Base . base module. Weobtain the (partially snipped) 
ode, of �gure 5.15, with � = Base [base:T ℄;Comp[string ;my poly :T ℄.The mixin module de�nes an intermediate type support as des
ribed above, and a sub-moduleRe
 poly . re
 poly , de�ning the 
oeÆ
ients of the import module my poly , i.e. the re
ursivepolynomials. This is spe
i�ed by the type sharing equation with typeCoef :T = support in theexpe
ted type of my poly . (Type sharing equations are not present in the language initially, butthey are easily implemented using signature in
lusion.) The sub-module re
 poly uses the generi
module for polynomials poly , where (Coef . 
oef ) has been renamed to (Base .my base), in orderboth to mat
h the fa
t that it re-exports the imported module Base . base, and to avoid 
on
i
twith its internal variable base. It spe
ializes the type T of poly to support . The intersting fun
tionsare Compose and Add . 120



val poly re
 = h valBase . base : ring sigvalPoly .my poly : poly sig with typeCoef :T = supporttypeSupport . support : ?support � �; typeSupport . support 0 = ?support 0 � �valRe
 poly . re
 poly = 
lose(poly [(Coef . 
oef ) 7! (Base .my base)℄ �h in
lude poly sig [(Coef . 
oef ) 7! (Base .my base)℄with type T = supportand type Base :T = base :TvalCompose . 
ompose : string ! my poly :T ! t; valBase .my base 0 = basetypeT . t 0 = supportvalEq . eq 0 = �x:�y:(x = y)valZero . zero0 = Base t [base :Zero℄valUn . un 0 = Base t [base :Un℄valCompose . 
ompose 0 = �v:�l:if my poly :Is 
oef l then my poly :L
 lelse Comp t [v; l℄valLift . lift 0 = �a:Base t [a℄valL
 . l
0 = �x:mat
ht� [base :T ℄x�a:a�v:�l:(l
 (my poly :L
 l))valAdd . add 0 = �x1:�x2:mat
ht� [t℄x1�a1: mat
ht� [t℄x2�a2:Basebase:T [base:Add a1 a2℄�v2:�l2:(
ompose v2 (my poly :Add (my poly :Lift x1) l2))�v1:�l1:mat
ht� [t℄x2�a2:(
ompose v1 (my poly :Add (my poly :Lift x2) l1))�v2:�l2: if v1 = v2 then (
ompose v1 (my poly :Add l1 l2))else if v1 > v2then (
ompose v1 (my poly :Add (my poly :Lift x2) l1))else (
ompose v2 (my poly :Add (my poly :Lift x1) l2))[ . . . snipped . . . ℄ i ) iFigure 5.15: Re
ursive polynomials (�rst attempt)
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Compose takes a variable v and a polynomial l (of type my poly :T ), and returns the same poly-nomial, seen as a polynomial in v, in 
anoni
al form (of type support). The variable v is assumedsuperior to the variables used in the 
oeÆ
ients of l. If l is of degree zero, then the fun
tion returnsthe 
orresponding 
oeÆ
ient, whi
h is indeed of type support . If l is of stri
tly positive degree,then the fun
tion returns Compt [v; l℄.Add takes two re
ursive polynomials x1 and x2 of type t, and returns their sum.� If both arguments are base 
oeÆ
ients, then the sum is the sum of these 
oeÆ
ients.� It both arguments are 
omposed polynomials, i.e. 
onstru
ted with the Comp 
onstru
tor,then the variables are examined.{ If both x1 and x2 are re
ursive polynomials in the same variable v, then the underlyingpolynomials are summed, and the result l is inje
ted into re
ursive polynomials in v bythe 
ompose fun
tion.{ Otherwise, the argument with the greatest variable, say x1 for example, is de
omposedinto the variable v and the underlying polynomial l. The 
oeÆ
ients of l are re
ursivepolynomials in variables inferior to v, so x2 is semanti
ally of the same 
lass them.Therefore, it is lifted by my poly :Lift to a polynomial of degree zero, and added to l.The result is then inje
ted ba
k into re
ursive polynomials in v by the 
ompose fun
tion.� If one argument, say x1 is a base 
oeÆ
ient, and the other is a re
ursive polynomial v; l, thenx1 is semanti
ally in the same 
lass as 
oeÆ
ients of l sin
e all its variables are inferior totheirs. So, it 
an be lifted by my poly :Lift to a polynomial of degree zero, and added to l.The result is then inje
ted ba
k into polynomials in v by the 
ompose fun
tion.Until now, no problem arose. But assume now that we have implemented the ring of integersint ring and a mixin module for sparse polynomials sparse poly . If we try to 
onstru
t re
ursivepolynomials by 
omposing these two mixin modules with poly re
, we writeval try = poly re
 +h valRe
 poly . re
 poly : poly sig; valPoly .my poly = 
lose( sparse poly +h;; valCoef . 
oef = re
 polyi)valBase . base = int ring iUnfortunately, this expression is ill-typed, sin
e there is a dependen
y 
y
le between re
 poly andmy poly , and both are expressions of the shape 
lose : : :, whi
h are 
onsidered of unpredi
tableshape. In fa
t, it would be very diÆ
ult to let the system a

ept this. A solution 
ould be to relyon types to guess the shape of both modules. But then, one has to 
he
k that one does not try toinspe
t the value of the other before it has been de�ned. And in this parti
ular 
ase, it is far fromobvious. Indeed, the 
omponents of ea
h module 
an be 
onsidered safe from their de�nitions,but what about the 
omponents of sparse poly? They perfe
tly 
ould require some 
omponents ofre
 poly . Thus, the dependen
y analysis must be re�ned if we want to allow this example to bewell-typed.Hard example (part VII): re
ursive polynomials, a solution There is a di�erent so-lution to implement re
ursive polynomials, using roughly the same idea, but 
attening all thesub-modules. The problems of name 
on
i
ts are solved by pre�xing the names, reprodu
ing in a
at way the namespa
e separations indu
ed by module boundaries in the �rst attempt.The ring sig , poly sig module types, and the poly and mixin module are de�ned as above, ex
eptthat the sub-module representing 
oeÆ
ients is now inlined in poly sig (and 
onsequently also inpoly). The modi�ed module type is 122



type poly sig = f in
lude ring sig [(Coef . 
oef ) � (X . x)℄in
lude ring sigvalLift . lift : 
oef ! tvalMult Extern .mult extern : 
oef ! t! tvalL
 . l
 : t! 
oefval Is Coef . is 
oef : t! bool gCoeÆ
ients are represented by the in
luded signature ring sig [(Coef . 
oef ) � (X . x)℄, whi
hbrings the type Coef T of 
oeÆ
ients, and ring operations on it, su
h as Coef Mult and Coef Add .Polynomials are represented by the se
ond in
luded ring signature (without pre�xing). The newmixin module for re
ursive polynomials is presented in �gure 5.16.As in the �rst attempt, the mixin module bases on the generi
 mixin module for polynomials, buthere, the renaming of Coef to Base must be done 
omponent-wise. Indeed, it would otherwisemodify all the names. For readability, as a shorthand, we write only the names in the renaming, notthe variables. They are renamed a

ordingly. The base 
oeÆ
ients of our re
ursive polynomials areimported as a ring sig signature, pre�xed with Base , to mimi
k the imported Base sub-module ofthe �rst attempt. Similarly, the sub-module Poly of the �rst attempt is imported here as a poly sigsignature. The type sharing equation Coef :T = support is 
onverted into a renaming removing thepre�x of all the 
omponents beginning with Poly Coef : this makes them mat
h the 
omonents
orresponding to re
ursive polynomials. The main datatype is then de�ned, but must be modi�eda

ording to the new naming 
onventions: �0 = Base [base t ℄;Comp [string ; poly t ℄. The rest of themixin module is de�ned similarly, only repla
ing some a

esses to sub-modules with dire
t a

essesto pre�xed 
omponents of the main mixin module.This se
ond attempt is su

essful, sin
e a module of re
ursive polynomials 
an be built on thering of integers int ring and a mixin module for sparse polynomials sparse poly (whi
h has been
attened to mat
h the signature poly sig). The 
ode is as follows:val int re
ursive polynomials = (int ring [(Base . base ) � (X . x)℄+ (sparse poly [(Poly . poly ) � (X . x)℄[ type Poly Coef T 7! Tval Poly Coef Eq 7! Eq Poly Coef Zero 7! ZeroPoly Coef Eq zero 7! Eq zero Poly Coef Un 7! UnPoly Coef Add 7! Add Poly Coef Minus 7! MinusPoly Coef Uminus 7! Uminus Poly Coef Mult 7! Mult ℄)+ re
 poly 
at); ;
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val re
 poly 
at =poly [ type Coef T 7! Base Tval Coef Eq 7! Base Eq Coef Zero 7! Base ZeroCoef Eq zero 7! Base Eq zero Coef Un 7! Base UnCoef Add 7! Base Add Coef Minus 7! Base MinusCoef Uminus 7! Base Uminus Coef Mult 7! Base Mult ℄�h in
lude ring sig [(Base . base ) � (X . x)℄in
lude(poly sig with typeCoef T = support[(Poly . poly ) � (X . x)℄[ type Poly Coef T 7! Tval Poly Coef Eq 7! Eq Poly Coef Zero 7! ZeroPoly Coef Eq zero 7! Eq zero Poly Coef Un 7! UnPoly Coef Add 7! Add Poly Coef Minus 7! MinusPoly Coef Uminus 7! Uminus Poly Coef Mult 7! Mult ℄)valLift . lift : base t ! tvalMult Extern .mult extern : base t ! t! tvalL
 . l
 : t! base tval Is Coef . is 
oef : t! boolvalCompose . 
ompose : string ! poly t ! ttypeSupport . support : ?support � �0; typeSupport . support 0 : ?support 0 � �0 typeT . t 0 = supportvalEq . eq 0 = �x:�y:(x = y)valZero . zero0 = Base t [base zero℄valUn . un 0 = Base t [base un℄valCompose . 
ompose 0 = �v:�l:if poly is 
oef l then poly l
 lelse Comp t [v; l℄valLift . lift 0 = �a:Base t [a℄valL
 . l
0 = �x:mat
ht� [base t ℄x�a:a�v:�l:(l
 (poly l
 l))valAdd . add 0 = �x1:�x2:mat
ht� [t℄x1�a1: mat
ht� [t℄x2�a2:Basebase t [base add a1 a2℄�v2:�l2:(
ompose v2 (poly add (poly lift x1) l2))�v1:�l1:mat
ht� [t℄x2�a2:(
ompose v1 (poly add (poly lift x2) l1))�v2:�l2: if v1 = v2 then (
ompose v1 (poly add l1 l2))else if v1 > v2then (
ompose v1 (poly add (poly lift x2) l1))else (
ompose v2 (poly add (poly lift x1) l2))[ . . . snipped . . . ℄ i iFigure 5.16: Flattened re
ursive polynomials
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Part IIICompilation of mixin modules
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Chapter 6Typed 
ompilation without lo
alde�nitions
6.1 IntuitionsIn this 
hapter, we present an eÆ
ient 
ompilation s
heme for a subset of MM. Let us �rst giveintuitions on it. A mixin stru
ture is translated into a re
ord, with one �eld per output 
omponentof the stru
ture. Ea
h �eld 
orresponds to the expression de�ning the output 
omponent, but�-abstra
ts all input 
omponents on whi
h it depends, that is, all its dire
t prede
essors in thedependen
y graph. These extra parameters a

ount for the late binding semanti
s of virtual
omponents. Consider again the M1 and M2 example at the end of se
tion ??. These two stru
turesare translated to:m1 = f f = �g.�x. ...g...; u = �f. f 0 gm2 = f g = �f.�x. ...f...; v = �g. g 1 gThe sum M = M1 + M2 is then translated into a re
ord that takes the union of the two re
ords m1and m2:m = f f = m1.f; u = m1.u; g = m2.g; v = m2.v gLater, we 
lose M. This requires 
onne
ting the formal parameters representing input 
omponentswith the re
ord �elds 
orresponding to the output 
omponents. To do this, we examine thedependen
y graph of M, identifying the strongly 
onne
ted 
omponents and performing a topologi
alsort. We thus see that we must �rst take a �xpoint over the f and g 
omponents, then 
ompute uand v sequentially. Thus, we obtain the following 
ode for 
lose(M):let re
 f = m.f g and g = m.g f inlet u = m.u f inlet v = m.v g inf f = f; g = g; u = u; v = v gNoti
e that the let re
 de�nition we generate is unusual: it involves fun
tion appli
ations in theright-hand sides, whi
h is usually not supported in 
all-by-value �-
al
uli.In fa
t, the let re
 of MM is almost powerful enough to model su
h �xpoints. We 
hoose as thetarget language of our 
ompilation s
heme the �Æ-
al
ulus, featuring a let re
 
onstru
t that slightlyextends that of MM. It allows to group all the 
omponents within a single binding:127



x 2 Vars VariableX 2 Names NameExpression: e ::= x Variablej fX1 = e1 : : : Xn = eng Re
ordj e:X Re
ord sele
tionj let re
 x1 = e1 : : : xn = en in e let re
j hX1 . x1 : : :Xn . xn; d1 : : : dmi Stru
turej e1 + e2 j 
lose e Composition, 
losurej ejX1:::Xn j ej�X1:::Xn Proje
tion, deletionj e[X1 7! Y1 : : :Xn 7! Yn℄ Renamingj eX�Y SplittingDe�nition: d ::= X [x1 : : : xn℄ . x = e Named de�nitionFigure 6.1: Syntax of MMelet re
 f = m.f gg = m.g fu = m.u fv = m.v gin f f = f; g = g; u = u; v = v gWe have not proven any en
oding property of our 
ompilation s
heme. We would at least like tohave a (weaker) soundness result for it, and a simple idea to show it is to set up a sound typesystem for �Æ, and show that the expressions generated by our 
ompilation s
heme are well-typed.However, the type system of MM would not a

ept them, so we have to �nd a �ner type system.Fortunately, Boudol [13℄ has already developed a non-standard type system for a 
all-by-value
al
ulus that supports su
h single re
ursive de�nitions. Later, we have extended it to mutuallyre
ursive de�nitions in [46℄. Here, we adapt the ideas of [46℄ to �Æ, and our result is that the
ompiled terms are well-typed.6.2 De�nition of the 
ompilation s
heme6.2.1 Restri
ting the sour
e language: MMeThe syntax of MMe terms and types is de�ned in �gure 6.1. The meaning of meta-variables iskept from the presentation of MM (se
tion 3.1). The language is the same, ex
ept that anonymousde�nitions have dissapeared, and the freezing, hiding, and showing operations, that were usingthem. The operations on the stru
ture of expressions are de�ned by restri
tion of the ones of MM.The notion of synta
ti
 
orre
tness is maintained identi
al as forMM, and expressions are similarlyidenti�ed modulo 
orre
t variable renaming.The operational semanti
s are de�ned exa
tly as for MM, without the 
ontra
tion rules Freeze,Hide, Show, and letting the meta-variable op range over the restri
ted set of operators (see �gure3.2), and denote by op [e℄ the appli
ation of op to the expression e. The syntax for 
ontexts ismodi�ed a

ordingly. Also, the notions of predi
table shape and of degree remain the same. Inparti
ular, the Degree fun
tion returns / on all kinds of expressions, ex
ept on mixin modules andre
ords, where it returns ,.The de�nition of the type system slightly di�ers from that of MM. Indeed, the output se
tionsof mixin module types are now lists of types, indexed by names, as indi
ated in �gure 6.2. They128



M 2 Types ::= fOg j hI ;O;GiI 2 Names Fin��! TypesO ::= � j X 7!M;OG �Fin fX ��! Y j X;Y 2 Names; � 2 Degreesg� 2 Vars Fin��! TypesFigure 6.2: Types for MMe� = Degree(x0; e) (X 0; x0) 2 dom(h�; oi) (X [z�℄ . x = e) 2 oX 0 ��!h�;oi X(Xi; xi) 2 dom(h�; oi) (X [x1 : : : xn℄ . x = e) 2 oXi /�!h�;oi XFigure 6.3: Dependen
ies in a MMe stru
tureare still supposed to be �nite maps. Thus, in the following, the meta-variable I still denotes a�nite map from names to types, but the meta-variable O now denotes a list of types indexed bydistin
t names. The typing rules are modi�ed a

ordingly: for a mixin module h�; oi, the outputse
tion of the result type preserves the order in whi
h the 
omponents appeared in o. This doesnot 
hange the typing rule T-Stru
t however. The meaning of the rule T-Sum slightly 
hangesthough, be
ause we have to de�ne the disjoint union operation ℄ on indexed lists. It is de�ned, ifthe two lists de�ne disjoint sets of names, as their 
on
atenation, and unde�ned otherwise. Thus,there is an impli
it side-
ondition in rule T-Sum from the point of view of this se
tion, requiringthat the output se
tions of the two summed mixin modules de�ne disjoint sets of names.The notion of graph and the 
orresponding operations are greatly simpli�ed by the absen
e oflo
al de�nitions: all the 
onsidered graphs are abstra
t (i.e. graphs on names only). The way to
ompute the dependen
y graph �!h�;oi of a stru
ture h�; oi is also simpler, as des
ribed in �gure6.3: nodes are simply names, and no lift operation is ne
essary.Our goal is to translate well-typed terms of MMe into a simple 
al
ulus with let re
, relying onthe dependen
y graphs. To do this in a sound way, it is 
ru
ial to only have to deal with safedependen
y graphs. Fortunately, proposition 7 remains true.Proposition 8 (Types well-formed) If the types in � are well-formed, and � ` e :M , then Mis well-formed.6.2.2 The target language �ÆThe target language for our translation is the �Æ 
al
ulus, a variant of the �-
al
ulus with re
ordsand re
ursive de�nitions introdu
ed by Boudol [13℄.SyntaxThe syntax of �Æ is de�ned in �gure 6.4. Intuitively, it is a subset of MMe, where mixin module
onstru
ts have been repla
ed by fun
tions and appli
ations, and the let re
 has been extended(see below) The meta-variables X and x range over names and variables, respe
tively. Vari-ables are used as binders, as usual. Names are used for a

essing re
ord �elds, as an external129



x 2 Vars VariableX 2 Names Name� := =[n℄ j=[?℄ (n a natural)Expression:e 2 expr ::= x j �x:e j e1e2j fX1 = e1 : : : Xn = engj e:Xj let re
x1is1e1 : : : xn �n enin eFigure 6.4: Syntax of �Æ

� More meta-variables:s ::= X1 = e1 : : : Xn = en Re
ordb ::= x1 �1 e1 : : : xn �n en Binding� Notations:For a �nite map f , and a set of variables P ,dom(f) is its domain,
od(f) is its 
odomainfjP is its restri
tion to P ,and fnP is its restri
tion to dom(f) n P .� Expressions of predi
table shape:e# 2 Predi
table ::= fog j �x:e j let re
 b in e#Figure 6.5: Meta-variables and notations
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interfa
e to other parts of the expression. Figure 6.5 re
apitulates the meta-variables and no-tations we introdu
e in the remainder of this se
tion. The syntax in
ludes the �-
al
ulus 
on-stru
ts; variables x, abstra
tion �x:e, and appli
ation e1e2. The language also in
ludes re
ordsfX1 = e1 : : :Xn = eng, re
ord sele
tion e:X and a let re
 
onstru
t. A mutually re
ursive de�nitionhas the shape let re
 x1 �1 e1 : : : xn �n en in e, where arbitrary expressions are synta
ti
ally allowedas the right-hand side of a de�nition.Synta
ti
 
orre
tness Re
ords s = (X1 = e1 : : : Xn = en) and bindings b = (x1�1e1 : : : xn�nen)are required to be �nite maps: a re
ord is a �nite map from names to expressions, and a bindingis a �nite map from variables to expressions. Requiring them to be �nite maps means that theyshould not bind the same variable or name twi
e.In a let re
 binding b = (x1 = e1 : : : xn = en), we say that there is a forward referen
e fromxi to xj if 1 � i � j � n and xj 2 FV(ei). A forward referen
e from xi to xj is synta
-ti
ally forbidden, ex
ept when ej is of predi
table shape. An expression of predi
table shapeis a re
ord, a fun
tion, or a binding followed by an expression of predi
table shape. Formallye# 2 Predi
table ::= fsg j �x:e j let re
 b in e#.Sequen
es Re
ords and bindings are often 
onsidered as �nite maps in the sequel. We refer tothem 
olle
tively as sequen
es, and use the usual notions on �nite maps, su
h as the domain dom,the 
odomain 
od, the restri
tion �jP to a set P , or the 
o-restri
tion �nP outside of a set P .Stru
tural equivalen
e We 
onsider the expressions equivalent up to alpha-
onversion of bind-ing variables in stru
tures and let re
 expressions. The set of terms of �Æ is de�ned as the set ofstru
tural equivalen
e 
lasses.Semanti
sThe semanti
s of �Æ is quite similar to that of MMe, ex
ept for what 
on
erns let re
 bindings.A �rst di�eren
e is that a binding de�ning only values is 
onsidered fully evaluated only if thesevalues mat
h the 
orresponding size indi
ations: if a value of size n is expe
ted (annotation=[n℄),then the de�ned value must have this size; if a value of unknown size is expe
ted (annotation=[?℄),then any value will do. From now on, the meta-variable bv for bindings of �Æ denotes su
h fullyevaluated bindings. This impli
itely appears in the de�nition of results and evaluation 
ontexts.As shown in �gure 6.6, values in
lude fun
tions �x:e and re
ords of values fsvg, where sv denotesan evaluated re
ord X1 = v1 : : :Xn = vn.The semanti
s of re
ord sele
tion and of fun
tion appli
ation are de�ned in �gure 6.7, by 
om-putational 
ontra
tion rules, de�ning the lo
al 
omputational 
ontra
tion relation  
. Re
ordproje
tion sele
ts the appropriate �eld in the re
ord; and the appli
ation of a fun
tion �x:e to avalue v redu
es to the body of the fun
tion, where the argument has been bound to x by let re
.In �Æ, for mostly te
hni
al reasons, we distinguish the topmost binding synta
ti
ally : the global
omputational redu
tion relation 9 9 K
 is a binary relation on 
on�gurations 
, whi
h are pairs of abinding, the topmost binding, and an expression, written b ` e (see �gure 6.6). Here, the topmostbinding is 
lose to the usual notion of runtime environment, with the additional feature that boundvalues 
an be mutually re
ursive.The rules for handling let re
 and the notion of evaluation 
ontexts are adapted to this notion of
on�guration. The 
omputational 
ontra
tion rule Lift remains the same. The 
omputational131



Con�guration:
 ::= b ` eValue:v 2 values ::= x j �x:e j fsvgAnswer:a 2 answers ::= bv ` vMore meta-variables:sv ::= X1 = v1 : : : Xn = vn Value re
ordbv ::= x1 = v1 : : : xn = vn Value bindingFigure 6.6: Con�gurations and answers in �Æ
� Computational 
ontra
tion rulesfX1 = v1 : : : Xn = vng:Xi 
 vi (Proje
t) x =2 FV(v)(�x:e)v 
 let re
 x = v in e (Beta)dom(b) ? FV(L )L [let re
 b in e℄ 
 let re
 b in L [e℄ (Lift)� Computational redu
tion rulese 
 e0E [e℄ 9 9 K
 E [e0℄ (Context)dom(b1) ? fxg [ dom(bv ; b2) [ FV(bv; b2) [ FV(f)(bv; x = (let re
 b1 in e); b2 ` f) 9 9 K
 (bv; b1; x = e; b2 ` f) (IM)dom(b) ? (dom(bv) [ FV(bv))(bv ` let re
 b in e) 9 9 K
 bv; b ` e (EM) E [N ℄(x) = vE [N [x℄℄ 9 9 K
 E [N [v℄℄ (Subst)� Evaluation 
ontextsLift 
ontext:L ::= 2e j v2 j 2:X j fSgNested lift 
ontext:F ::= 2 j L [F ℄Evaluation 
ontext:E ::= (bv ` F ) j (B [F ℄ ` e)

Re
ord 
ontexts:S ::= sv; X = 2; sBinding 
ontexts:B ::= bv; x = 2; bStri
t 
ontexts:N ::= 2v j 2:X� A

ess in evaluation 
ontexts(bv ` F )(x) = bv(x) (EA) (bv ; y = F ; b ` e)(x) = bv(x) (IA)Figure 6.7: Redu
tion semanti
s for �Æ132



redu
tion relation extends the 
omputational 
ontra
tion relation to any evaluation 
ontext E ,as de�ned in �gure 6.7. An evaluation 
ontext E is a nested lift 
ontext, either inside a partiallyevaluated binding, or under a fully evaluated binding. The redu
tion rules are modi�ed a

ordingly.The target languageThe 
omputational redu
tion relation on expressions is 
ompatible with stru
tural equivalen
e.Hen
e we 
an de�ne 
omputational redu
tion over equivalen
e 
lasses of expressions, obtaining theredu
tion relation �!.De�nition 18 The �Æ language is the set of terms, equipped with the relation �!.�Æ features a let re
 that is slightly extended over the ones of ML or OCaml. We will now showhow to 
ompile it. Our target language for this 
ompilation is presented in the next se
tion and isa �-
al
ulus without a let re
 at all, but with notions of heap, and lo
ations.6.2.3 Compilation s
hemeWe now present a 
ompilation s
heme translatingMMe terms into 
all-by-value �-
al
ulus extendedwith re
ords and a let re
 binding. This 
ompilation s
heme is 
ompositional, and type-dire
ted,thus supporting separate 
ompilation.The translation s
heme for our language is de�ned in �gure 6.8. The translation is type-dire
tedand operates on terms annotated by their types. For the 
ore language 
onstru
ts (variables,
onstants, abstra
tions, appli
ations), the translation is a simple morphism; the 
orresponding
ases are omitted from �gure 6.8.A

ess to a stru
ture 
omponent E:X is translated into an a

ess to �eld X of the re
ord ob-tained by translating E. Conversely, a stru
ture h�; oi is translated into a re
ord 
onstru
tion.The resulting re
ord has one �eld for ea
h exported name X 2 dom(o), and this �eld is asso
i-ated to o(X) where all input parameters on whi
h X depends are �-abstra
ted. Some notationis required here. We write D�1(X) for the list of immediate prede
essors of node X in the de-penden
y graph D, ordered lexi
ographi
ally. (The ordering is needed to ensure that values forthese prede
essors are provided in the 
orre
t order later; any �xed total ordering will do.) If(X1; : : : ; Xn) = D�1(X) is su
h a list, we write ��1(D�1(X)) for the list (x1; : : : ; xn) of variablesasso
iated to the names (X1; : : : ; Xn) by the input mapping �. Finally, we write ~�(x1; : : : ; xn):Mas shorthand for �x1 : : : �xn:M . With all this notation, the �eld X in the re
ord translating h�; oiis bound to ~���1(D�1(X)):Jo(X) : O(X)K.The sum of two mixins E1+E2 is translated by building a re
ord 
ontaining the union of the �eldsof the translations of E1 and E2. For the delete operator E nX , we return a 
opy of the re
ordrepresenting E in whi
h the �eld X is omitted. Renaming E[X  Y ℄ is harder: not only do weneed to rename the �eld X of the re
ord representing E into Y , but the renaming of X to Y inthe input parameters 
an 
ause the order of the impli
it arguments of the re
ord �elds to 
hange.Thus, we need to abstra
t again over these parameters in the 
orre
t order after the renaming, thenapply the 
orresponding �eld of JEK to these parameters in the 
orre
t order before the renaming.Again, some notation is in order: to ea
h name X we asso
iate a fresh variable written X, andsimilarly for lists of names, whi
h be
ome lists of variables. Moreover, we write M (x1; : : : ; xn) asshorthand for M x1 : : : xn.The freeze operation E ! X is perhaps the hardest to 
ompile. Output 
omponents Z that donot depend on X are simply re-exported from JEK. For the other output 
omponents, 
onsider a
omponent Y of E that depends on Y1; : : : ; Yn, and assume that one of these dependen
ies is X ,whi
h itself depends on X1; : : : ; Xp. In E !X , the Y 
omponent depends on (fYig [ fXjg) n fXg.133



J(e :M 0):X :MK = Je :M 0K:XJh�; oi : fI ;O;DgK =fX = ~���1(D�1(X)):Jo(X) : O(X)K j X 2 dom(O)gJ(E1 : fI1;O1;D1g) + (E2 : fI2;O2;D2g) : fI ;O;DgK =let e1 = JE1 : fI1;O1;D1gK in let e2 = JE2 : fI2;O2;D2gK inhX = e1:X j X 2 dom(O1);Y = e2:Y j Y 2 dom(O2)iJ(E : fI 0;O0;D0g) nX : fI ;O;DgK =let e = JE : fI 0;O0;D0gK in hY = e:Y j Y 2 dom(O)iJ(E : fI 0;O0;D0g)[X  Y ℄ : fI ;O;DgK =let e = JE : fI 0;O0;D0gK inhZfXgY = ~�D�1(ZfXgY ):(e:Z D0�1(Z))fXgY j Z 2 dom(O0)iJ(E : fI 0;O0;D0g) !X : fI ;O;DgK =let e = JE : fI 0;O0;D0gK inhZ = e:Z j Z 2 dom(O); X =2 D0�1(Z);Y = ~�D�1(Y ):let re
 X = e:X D0�1(X) in e:Y D0�1(Y ) j X 2 D0�1(Y )iJ
loseE : fI 0;O0;D0g : f;;O; ;gK =let e = JE : fI 0;O0;D0gK inlet re
 X11 = e:X11 D0�1(X11 ) and : : : and X1n1 = e:X1n1 D0�1(X1n1) in: : :let re
 Xp1 = e:Xp1 D0�1(Xp1 ) and : : : and Xpnp = e:Xpnp D0�1(Xpnp) inhX = X j X 2 dom(O)iwhere (fX11 : : : X1n1g; : : : ; fXp1 : : : Xpnpg) is a serialization of dom(O0) against D0Figure 6.8: The translation s
heme
Thus, we �-abstra
t on the 
orresponding variables, then 
ompute X by applying JEK:X to theparameters Xj . Sin
e X 
an depend on itself, this appli
ation must be done in a let re
 bindingover X . Then, we apply JEK:Y to the parameters that it expe
ts, namely Yi, whi
h in
lude X.
The only operator that remains to be explained is 
loseE. Here, we take advantage of the fa
tthat 
lose removes all input dependen
ies to generate 
ode that is more eÆ
ient than a sequen
eof freeze operations. We �rst serialize the set of names exported by E against its dependen
ygraph D. That is, we identify strongly 
onne
ted 
omponents of D, then sort them in topologi
alorder. The result is an enumeration (fX11 : : :X1n1g; : : : ; fXp1 : : :Xpnpg) of the exported names whereea
h 
luster fX i1 : : : X inig represents mutually re
ursive de�nitions, and the 
lusters are listed inan order su
h that ea
h 
luster depends only on the pre
eding ones. We then generate a sequen
eof let re
 bindings, one for ea
h 
luster, in the order above. In the end, all output 
omponents arebound to values with no dependen
ies, and 
an be grouped together in a re
ord.134




(x) = 0� ` x : �(x) = 
 (Var) � ` 
 : TC(
) = 
 (Const)� + fx : � 0g `M : � = (
 � 1)[x 7! d℄� ` �x:M : � 0 d�! � = 
 (Abstr)� `M1 : � 0 d�! � = 
1 � `M2 : � 0 = 
2� `M1 M2 : � = (
1 � 1) ^ d� 
2 (App)� `M : � 0 d�! � = 
 �(x) = � 0� `M x : � = (
 � 1) ^ (x 7! d) (Appvar)� `M : � 0 = 
0 � + fx : � 0g ` N : � = 
[x 7! d℄� ` let x =M in N : � = 
 ^ d� 
0 (Let)� + f: : : xj : �j : : :g `M : � = 
[: : : xj 7! dj : : :℄8i : � + f: : : xj : �j : : :g `Mi : �i = 
i[: : : xj 7! dij : : :℄8i; j : dij � 1 8i; j; k : dik � dij � djk� ` let re
 : : : xi =Mi : : : in M : � = 
 ^ � î di � 
i� ^ � î;j di � dij � 
j� (Re
)8i : � `Mi : �i = 
� ` h: : : Xi =Mi : : :i : h: : : Xi : �i : : :i = 
 (Re
ord)� `M : h: : : Xj : �j : : :i = 
 1 � i � n� `M:Xi : �i = 
 (Sel)Figure 6.9: Typing rules for �Æ6.3 Type soundness of the translation6.3.1 A type system for the target languageThe translation s
heme de�ned above 
an generate re
ursive de�nitions of the form let re
 x =M x in : : :. In �Æ, these de�nitions 
an either evaluate to a �xpoint (i.e. M = �x:�y:y), or getstu
k (i.e. M = �x:x+1). In preparation for showing that no term generated by the translation 
anget stu
k, we now equip �Æ with a sound type system that guarantees that all re
ursive de�nitionsare 
orre
t. Boudol [13℄ gave su
h a type system, however it does not type-
he
k 
urried fun
tionappli
ations with suÆ
ient pre
ision for our purposes. Hen
e we now de�ne a re�nement of Boudol'stype system.The type system for �Æ is de�ned in �gure 6.9. Types, written � , have the following syntax:�Æ types: � ::= int j bool base typesj �1 d�! �2 annotated fun
tion typesj h: : : Xi : �i : : :i re
ord typesArrow types are annotated with degrees d, indi
ating how a fun
tion uses its argument. Forinstan
e, a fun
tion su
h as �x:x + 1 has type int 0�! int, be
ause the value of x is immediately135



needed after appli
ation, whereas �xyz:x + 1 has type int 2�! : : :, be
ause the value of x is notneeded unless at least 2 more fun
tion appli
ations are performed. Formally, a degree 
an be eithera natural number or 1, meaning that the variable is not used. Similarly, the typing judgment isof the form � `M : � = 
, where 
 is a (total) mapping from variables to degrees, indi
ating howM uses ea
h variable: 
(x) =1 means that x is not free in M ; 
(x) = 0 means that the value ofx is needed to evaluate M ; and 
(x) = n+ 1 means that the value of x is needed only after n+ 1fun
tion appli
ations, e.g. x o

urs in M under at least n+ 1 fun
tion abstra
tions.Rule (var) expresses that the variable x is immediately used via the side 
ondition 
(x) = 0.Fun
tion abstra
tion (rule (abstr)) in
rements by 1 the degree of all variables appearing in itsbody, ex
ept for its formal parameter x, whose degree is retained in the type of the fun
tion. Wewrite 
 � 1 for the fun
tion y 7! 
(y)� 1, with the 
onvention that 0� 1 = 0 and 1� 1 =1. Wewrite (
 � 1)[x 7! d℄ for the fun
tion that maps x to d, and otherwise behaves like (
 � 1).Rule (app) deals with general fun
tion appli
ation. In the fun
tion part M1, all variable degreesare de
remented by 1, sin
e the appli
ation removes one level of abstra
tion. The degrees of theargument partM2 are 
ombined with the d annotation on the arrow type ofM1 via the � operation,de�ned as follows: d� 0 = 0 d�1 =1 d� (n+ 1) = dBe
ause of 
all-by-value, immediate dependen
ies in M2 (
2(x) = 0) are still immediate in theappli
ation. Variables not free in M2 (
2(x) = 1) do not 
ontribute any dependen
y to theappli
ation. The interesting 
ase is that of a variable x with degree n+1 inM2, i.e. not immediatelyneeded. We do not know how many times the fun
tion M1 is going to apply its argument insideits body. However, we know that it will not do so before d more appli
ations of M1 M2. Hen
e, we
an take d for the degree of x in M1 M2. Finally, the 
ontributions from the fun
tion part (
1� 1)and the argument part (d� 
2) are 
ombined with the ^ operator, whi
h is point-wise minimum.When the argument of an appli
ation is a variable, as in M x, a more pre
ise type-
he
king ispossible (rule (appvar)). Namely, the variable x is not needed immediately, but only when thefun
tion M needs its argument. Hen
e, the degree of x in the appli
ation is (
(x) � 1) ^ d, whileall other variables y have degree 
(y)� 1.The most 
omplex rule is (re
) for mutual re
ursive de�nitions. Intuitively, the right-hand sidesM1 : : :Mn must not depend immediately on any of the re
ursively de�ned variables x1 : : : xn. Inother terms, the dependen
y dij of Mi on xj must satisfy dij � 1. However, we must also take intoa

ount indire
t dependen
ies: for instan
e, M1 may depend on x2, whose de�nition M2 in turndepends on x3, making M1 depend on x3 as well. We a

ount for these indire
t dependen
ies viathe triangular inequality dik � dij�djk. Finally, the dependen
ies of the whole let re
 are obtainedby 
ombining those of its body M with those arising from the uses of the xi in M , either dire
t(di�
i) or one-step indire
t (di�dij�
j). Longer indire
t dependen
ies su
h as di�dij�djk�
kneed not be taken into a

ount be
ause of the triangular inequality.Finally, the (let) rule is a 
ombination of the (abstr) and (app) rules, and the rules for re
ordoperations (re
ord) and (sel) are straightforward.6.3.2 Soundness of the target languageTo simplify the proofs, we prove the soundness on a subset �Æ of �Æ that ex
ludes 
onstants, re
ord
onstru
tion and a

ess, and the let binding. It is entirely straightforward to extend the proofs tothe omitted 
onstru
ts.Properties of degreesWe start the proof with a number of algebrai
 lemmas on degrees and degree operations. Figure 6.10re-states the de�nitions of the operations on degrees. The following lemmas should be read as136



Degreesd ::= n j 1 Minimumd ^ 1 = d1 ^ d = dm ^ n = min(m;n) Compositiond � 1 = 1d � 0 = 0d � n+ 1 = dPlus1 + n = 1m + n = m+N n Minus1 � n = 1m � n = m�N n if m � nm � n = 0 if m < nFigure 6.10: Summary of degree operationsuniversally quanti�ed over the degrees d; d0; d1; d2; d3. We adopt the 
onvention that � hashighest pre
eden
e, followed by ^, and then + and �.Lemma 181. (d1 + 1) � d2 � d1 � d2 + 1.2. (d1 ^ d2) � d3 = d1 � d3 ^ d2 � d3.3. d1 � (d2 ^ d3) = d1 � d2 ^ d1 � d3.4. (d1 � d2) � d3 = d1 � (d2 � d3).5. (d� n) � d0 = d� d0 � n.6. If d+ 1 = d0, then d0 � 1 and d = d0 � 1.7. If d 6= 0, then d� 1 + 1 = d.8. 0 � d � d.9. If d � d0 then d+ 1 � d0 + 1.10. If d+ 1 � d0 � 1 then d+ 2 � d0.11. If d2 � 1, then d1 � d3 � d1 � d2 � d3.Proof1. If d2 = 0, we obtain 0 � 1 whi
h is true. If d2 =1 we obtain 1 �1. Otherwise, the 
laimredu
es to d1 + 1 � d1 + 1.2. If d3 = 0, we obtain 0 on both sides of the equality. If d3 = 1, both sides are equal to 1.Otherwise we get d1 ^ d2 on both sides.3. If d2 = 0, both sides are equal to 0. If d2 =1, then d2 ^ d3 = d3 and d1 � d2 =1, so bothsides are equal to d1� d3. Otherwise, we argue by 
ase on d3. If d3 = 0, then we obtain 0 onboth sides, and if d3 =1, we obtain d1 � d2 for both sides. Otherwise, d2 ^ d3 = n 6= 0, sod1 � (d2 ^ d3) = d1 = d1 ^ d1 = d1 � d2 ^ d1 � d3.4. If d3 = 0, both sides are equal to 0. If d3 =1, we obtain 1 on both sides. Otherwise, bothsides are equal to d1 � d2.5. Both sides redu
e to 1 if d0 =1, to 0 if d0 = 0, and to d� 1 otherwise.6. By de�nition of +. 137



7. By de�nition of + and �.8. By de�nition of �.9. By de�nition of +.10. Sin
e d+ 1 is stri
tly positive, d0 
annot be 0. Thus, d0 = d0 � 1 + 1 by property 7, and theresult follows by applying property 9 to d+ 1 � d0 � 1.11. If d3 =1 or d3 = 0, both sides redu
e to d3. Otherwise, write d3 = n+1. Then, d1�d3 = d1and d1� d2� d3 = d1� d2, hen
e it simply remains to prove that d1 � d1� d2. Sin
e d2 � 1,we have only two 
ases: either d2 =1, in whi
h 
ase d1� d2 =1 whi
h 
annot be less thand1; or d2 = m+ 1, in whi
h 
ase d1 � d2 = d1, and the result holds.2Lemma 19 If 
 � (
1 � 1) ^ d � 
2, then there exists 
01 and 
02 su
h that 
 = (
01 � 1) ^ d � 
02and 
01 � 
1 and 
02 � 
2.Proof We de�ne 
01 and 
02 pointwise. Consider a variable x. Let d0 = 
(x); d1 = 
1(x); d2 =
2(x). We 
onstru
t d01 and d02 su
h that d0 = (d01 � 1) ^ d� d02 and d01 � d1 and d02 � d2.� If d0 = 0, then we 
an take d01 = d02 = 0.� If d0 =1, then we 
an take d01 = d1 and d02 = d2, be
ause only 1 is greater than d0.� If d0 = n + 1, let d01 = n + 2 and d02 = d2. By hypothesis we know that d0 � d � d2. Sin
ed01 � 1 = n + 1 = d0, we have (d01 � 1) ^ d � d02 = d01 � 1 = d0. Moreover, sin
e d0 � d1 � 1,we have that n+ 1 � d1 � 1, and therefore (d01 = n+ 2 � d1 by lemma 18. Finally, d02 � d2trivially holds.2Lemma 20 If 
 � (
1�1)^(x 7!d), then there exists 
01 su
h that 
01 � 
1 and 
 = (
01�1)^(x 7!d).Proof We pro
eed as in the previous proof. Consider a variable y and let d0 = 
(y) and d1 = 
1(y).We 
onstru
t d01 su
h that d01 � d1 and d0 = (d01 � 1) ^ ((x 7! d)(y)).� If d1 = 0, then d01 = 0 works.� Otherwise, we take d01 = d0 + 1. This d01 is suitable be
ause:{ Sin
e d0 � d1 � 1, we have d0 +1 � d1 � 1+ 1 and d1 6= 0. By lemma 18, it follows thatd1 � 1 + 1 = d1, hen
e d01 � d1.{ From d0 � (d0 +1� 1) � (d01 � 1) and d0 � (d1 � 1)^ (x 7! d)(y) � (x 7! d)(y) it followsthat d0 � (d01 � 1) ^ ((x 7! d)(y)).{ Sin
e d01 � 1 = d0, we have that (d01 � 1) ^ ((x 7! d)(y)) � d0.2Lemma 21 Let n 2 N. If
0 � 
0 ^ ^i;j2f1:::ng di � dij � 
j ^ ^i2f1:::ng di � 
ithen there exist 
00; 
01; : : : ; 
0n su
h that 
0i � 
i, for i = 0; : : : ; n and
0 = 
00 ^ ^i;j2f1:::ng di � dij � 
0j ^ ^i2f1:::ng di � 
0i138



Proof Simply take 
00 = 
0 and 
0i = 
i for i = 1; : : : ; n. By transitivity we have 
00 � 
0 andtrivially 
0i � 
i. It is easy to 
he
k that
00 ^ ^i;j2f1:::ng di � dij � 
0j ^ ^i2f1:::ng di � 
0i � 
0by de�nition of 
0. Moreover, by hypothesis, we know that^i;j2f1:::ng di � dij � 
0j � 
0 and ^i2f1:::ng di � 
0i � 
0hen
e 
0 � 
00 ^ ^i;j2f1:::ng di � dij � 
0j ^ ^i2f1:::ng di � 
0iand the expe
ted equality follows. 2Lemma 22 If 
[x 7!d℄ = (
1�1)^d0�
2 then there exist 
01; 
02; d1; d2 su
h that 
1 = 
01[x 7!d1℄,
2 = 
02[x 7! d2℄, and 
 = (
01 � 1) ^ d0 � 
02.Proof Let d1 = 
1(x) and d2 = 
2(x). Let 
01 be the fun
tion asso
iating 
1(y) to every variabley 6= x and su
h that 
01(x) = 
(x)+ 1, whi
h we 
an write 
1[x 7! 
(x) +1℄. Let 
02 be the fun
tionasso
iating 
2(y) to every variable y 6= x and su
h that 
02(x) =1, whi
h we 
an write 
2[x 7!1℄.We have trivially 
1 = 
01[x 7! d1℄ and 
2 = 
02[x 7! d2℄. We now 
he
k the third property. On x,
(x) = (
(x) + 1� 1) ^ d0 �1 = (
01(x)� 1) ^ d0 � 
02(x)On y 6= x, 
(y) = (
1(y)� 1) ^ d0 � 
2(y) = (
01(y)� 1) ^ d0 � 
02(y)2Lemma 23 If 
[x 7!d℄ = 
0^� ^i;j2f1:::ng di � dij � 
j�^� î di � 
i� then there exist 
00 and a 
0i forea
h i, su
h that 
00[x 7!d0℄ = 
0, 
0i[x 7!d0i℄ = 
i, and 
 = 
00^� ^i;j2f1:::ng di � dij � 
0j�^� î di � 
0i�,with d0 = 
0(x) and d0i = 
i(x) for all i.Proof Take 
00 = 
0[x 7! 
(x)℄ and 
0i = 
i[x 7!1℄ for all i. We 
he
k that the expe
ted propertieshold as in the previous proof. 2Weakening lemmasWe now prove two \weakening" lemmas showing that the typing judgement still holds if the degreeenvironment 
 is repla
ed by another environment 
0 � 
, or if the degree 
(x) of an unusedvariable x is 
hanged.Lemma 24 (degree restri
tion) If 
0 � 
 and � `M : � = 
, then � `M : � = 
0.Proof We reason by indu
tion on the typing derivation of M , and by 
ase on the last typing ruleused.Rule (var), M = x. We know that �(x) = � and 
(x) = 0 � 
0(x), so 
0(x) = 0 and we 
an applythe axiom (var) again. 139



Rule(abstr), M = �xM1. Given the typing rules, we have a derivation of � + fx 7! �1g ` M1 :�2 = (
 � 1)[x 7! d℄ with � = �1 d�! �2. But it is easy to noti
e that (
0� 1)[x 7! d℄ � (
 � 1)[x 7! d℄,so by indu
tion hypothesis, we have a derivation of � + fx 7! �1g `M1 : �2 = (
0 � 1)[x 7! d℄. Theexpe
ted result follows by another appli
ation of the rule (abstr).Rule (app), M = M1 M2. By typing hypothesis, we have derivations for � ` M1 : � 0 d�! � = 
1and � `M2 : � 0 = 
2, with 
 = (
1 � 1) ^ d� 
2. By lemma 19, we 
onstru
t 
01 and 
02, su
h that
01 � 
1, 
02 � 
2 and 
0 = (
01 � 1) ^ d� 
02. Applying the indu
tion hypothesis twi
e, we obtainderivations for � `M1 : � 0 d�! � = 
01 and � ` M2 : � 0 = 
02, and we 
an apply the rule (app) againto obtain the expe
ted result.Rule (appvar), M = M1 x. We have a derivation for � ` M1 : � 0 d�! � = 
1 with �(x) = � 0 and
 = (
1 � 1) ^ d. Hen
e, 
0 � (
1 � 1) ^ (x 7! d). Applying lemma 20, we obtain 
01 su
h that
01 � 
1 and 
0 = (
01 � 1) ^ (x 7! d). We 
an apply rule (appvar) again to derive the expe
tedjudgment.Rule (re
), M = let re
 : : : xi =Mi : : : in N . By typing hypothesis, we have� + f: : : xj : �j : : :g ` N : � = 
0[: : : xj 7! dj : : :℄� + f: : : xj : �j : : :g `Mi : �i = 
i[: : : xj 7! dij : : :℄for all i; j, dij � 1for all i; j; k, dik � dij � djk
 = 
0 ^ � î di � 
i� ^ � î;j di � dij � 
j�Using lemma 21, we take 
0N = 
0 and for all i, 
0i = 
i, knowing that 
0N � 
0 and 
0 =
0N^� î di � 
0i�^� î;j di � dij � 
0j�. By indu
tion hypothesis, we know how to derive �+f: : : xj :�j : : :g ` N : � = 
0N [: : : xj 7! dj : : :℄. Hen
e we 
an derive � `M : � = 
0. 2Lemma 25 (degree weakening) If � `M : � = 
[x 7! d℄ and x =2 FV(M), then � `M : � = 
.Proof The proof is by indu
tion on the typing derivation of M and by 
ase on the last rule used.Rule (var), M = y. Sin
e x =2 FV(M), x 6= y. By typing hypotheses, 
(y) = 0 and �(y) = � . Itfollows that � `M : � = 
.Rule (abstr), M = �yM1, where y is fresh. The premise of the typing rule holds: �+fy 7! �1g `M1 : �2 = (
[x 7!d℄�1)[y 7!d0℄ and � = �1 d0�! �2. But, obviously (
[x 7!d℄�1)[y 7!d0℄ = (
�1)[y 7!d0℄[x 7! d� 1℄. Hen
e, by indu
tion hypothesis we obtain �+ fy 7! �1g `M1 : �2 = (
 � 1)[y 7! d0℄and the expe
ted result follows by rule (abstr).Rule (app), M = M1 M2. We have � ` M1 : � 0 d0�! � = 
1 and � ` M2 : � 0 = 
2 with
[x 7! d℄ = (
1 � 1) ^ d0 � 
2. Applying lemma 22, we obtain d1, d2, 
01 and 
02 su
h that
 = (
01� 1)^ d0� 
02, 
01[x 7! d1℄ = 
1 and 
02[x 7!d2℄ = 
2. By indu
tion hypothesis we 
an derive� `M1 : � 0 d0�! � = 
01 and � `M2 : � 0 = 
02. The expe
ted result follows by rule (app).Rule (appvar), M = M1y, with y 6= x by hypothesis x =2 FV(M). We have a derivation of� ` M1 : �1 d0�! �2 = 
1 with 
[x 7! d℄ = (
1 � 1) ^ (y 7! d0). Take 
01 = 
1[x 7! 
(x) + 1℄.140



We have 
01[x 7! 
1(x)℄ = 
1 and 
 = (
01 � 1) ^ (y 7! d0). The �rst equality is straightforward,and the se
ond equality follows from the fa
ts that 
(x) = 
(x) + 1 � 1, and for any z 6= x,((
1 � 1) ^ (y 7! d0))(z) = ((
01 � 1) ^ (y 7! d0))(z). We then 
on
lude by indu
tion hypothesis asabove.Rule (re
), M = let re
 : : : xi =Mi : : : in N . We have� + f: : : xj : �j : : :g ` N : � = 
N [: : : xj 7! dj : : :℄and for all i � + f: : : xj : �j : : :g `Mi : �i = 
i[: : : xj 7! dij : : :℄with for all i; j; k, dik � dij � djk and for all i; j, dij � 1 and 
[x 7! d℄ = 
N ^ � î di � 
i� ^� î;j di � dij � 
j�. Lemma 23 shows the existen
e of 
0N and 
0i for all i su
h that 
0N [x 7!dN ℄ = 
N ,and for all i 
0i[x 7! d0i℄ = 
i, and 
 = 
0N ^ � î di � 
0i� ^ � î;j di � dij � 
0j�, with dN = 
N (x) andfor all i, d0i = 
0i(x). Applying the indu
tion hypothesis, we derive� + f: : : xj : �j : : :g ` N : � = 
0N [: : : xj 7! dj : : :℄and for all i � + f: : : xj : �j : : :g `Mi : �i = 
0i[: : : xj 7! dij : : :℄The result follows by rule (re
). 2Lemma 26 (type weakening) If �+fx 7! � 0g `M : � = 
 and x =2 FV(M), then � `M : � = 
.Proof Straightforward by indu
tion on the typing derivation. 2Substitution lemmasWe now establish the traditional substitution lemma: a variable 
an be substituted by a term of thesame type without a�e
ting the type of the program. This lemma provides a semanti
 justi�
ationfor our de�nition of � in relation with what really happens during the redu
tion of an appli
ation.Lemma 29 (substitution) If � + fx 7! � 0g ` M1 : � = 
1[x 7! d℄, and � ` M2 : � 0 = 
2, withx =2 FV(M2) [ dom(
2), then � `M1fxgM2 : � = 
1 ^ d� 
2.Proof We pro
eed by indu
tion on the typing derivation ofM1 and 
ase analysis on the last typingrule used. We write M =M1fxgM2, �0 = � + fx 7! � 0g, and 
0 = 
1 ^ d� 
2.Rule (var), M1 = y. We have �0(y) = � and 
1[x 7! d℄(y) = 0.If y = x, then M = M2, d = 0, � = � 0 and by hypothesis � ` M : � = 
2. So by lemma 24, it isenough that 
0 � 
2 or 
1 ^ 0 � 
2 � 
2, whi
h is true by lemma 18.If y 6= x, then x =2 FV(M) and � + fx 7! � 0g ` M : � = 
1[x 7! d℄, so by lemmas 25 and 26,� `M : � = 
1, and it suÆ
es that 
0 � 
1, whi
h is trivially true.Rule (abstr), M1 = �yM3, with y fresh. By typing hypothesis, we have�0 + fy 7! �1g `M3 : �2 = 
3[y 7! d0℄141



with � = �1 d0�! �2 and 
3[y 7!d0℄ = (
1[x 7!d℄�1)[y 7!d0℄ = (
1 � 1)[x 7!(d�1); y 7!d0℄. TakeM 03 =M3fxgM2. By indu
tion hypothesis, we have �+fy 7! �1g `M 03 : �2 = (
1�1)[y 7!d0℄^(d�1)�
2.Sin
e y is fresh, it does not o

ur in 
2, hen
e(
1 � 1)[y 7! d0℄ ^ (d� 1) � 
2= ((
1 � 1) ^ (d� 1) � 
2)[y 7! d0℄= ((
1 � 1) ^ (d� 
2 � 1))[y 7! d0℄ by lemma 18= ((
1 ^ d� 
2)� 1)[y 7! d0℄ = (
0 � 1)[y 7! d0℄Hen
e, rule (abstr) 
on
ludes � ` �yM 03 : �1 d0�! �2 = 
0, whi
h is the expe
ted result.Rule (app), M1 = M3 M4. We have �0 ` M3 : � 00 d0�! � = 
3 and �0 ` M4 : � 00 = 
4 and
1[x 7! d℄ = (
3 � 1) ^ d0 � 
4. By lemma 22, if d3 = 
3(x) and d4 = 
4(x), there exists 
03and 
04 su
h that 
03[x 7! d3℄ = 
3, 
04[x 7! d4℄ = 
4, and 
1 = (
03 � 1) ^ d0 � 
04. By indu
tionhypothesis, if M 03 = M3fxgM2 and M 04 = M4fxgM2, then � ` M 03 : � 00 d0�! � = 
03 ^ d3 � 
2 and� `M 04 : � 00 = 
04 ^ d4 � 
2, so by rule (app)� `M : � = ((
03 ^ d3 � 
2)� 1) ^ d0 � (
04 ^ d4 � 
2)Moreover, by lemma 18, the degree environment is equal to(
03 � 1) ^ (d3 � 
2 � 1) ^ (d0 � 
04) ^ (d0 � d4 � 
2)= 
1 ^ (d3 � 
2 � 1) ^ (d0 � d4 � 
2)= 
1 ^ ((d3 � 1^d0 � d4) � 
2= 
1 ^ d� 
2= 
0Rule (appvar), M1 = M3 y. As in the (var) 
ase, we argue by 
ase, a

ording to whether y isequal to x or not.Case y = x. Then, M = M 03 M2, where M 03 = M3fxgM2. The typing hypothesis implies�0 `M3 : � 00 d0�! � = 
3 (*) and �0(y) = �0(x) = � 0 = � 00 and 
1[x 7! d℄ = (
3 � 1)^ (y 7! d0). Take
03 = 
3[x 7! 
1(x) + 1℄. We have 
1 = (
03 � 1) and 
03[x 7! 
3(x)℄ = 
3. Thus we 
an write thepremise (*) as follows �0 `M3 : � 00 d0�! � = 
03[x 7! 
3(x)℄n Hen
e, by indu
tion hypothesis we have� `M 03 : � 00 d0�! � = 
03 ^ d3 � 
2with d3 = 
3(x). Then by rule (app), we obtain� `M : � = ((
03 ^ d3 � 
2)� 1) ^ d0 � 
2But 
0 = (
03 � 1) ^ d� 
2. Sin
e d = (d3 � 1) ^ d0, it follows that
0 = (
03 � 1) ^ (d3 � 
2 � 1) ^ d0 � 
2Hen
e, we have derived the desired judgment.Case y 6= x. Then, M = M 03 y, where M 03 = M3fxgM2. By typing hypothesis, we have �0 `M3 : � 00 d0�! � = 
3 (*) and �0(y) = �(y) = � 00 and 
1[x 7! d℄ = (
3 � 1) ^ (y 7! d0). Take142




03 = 
3[x 7! 
1(x)+1℄. We have 
1 = (
03� 1)^ (y 7! d0), and 
03[x 7! 
3(x)℄ = 
3. Thus we rewritethe premise (*) as follows: �0 `M3 : � 00 d0�! � = 
03[x 7! 
3(x)℄By indu
tion hypothesis, it follows that� `M 03 : � 00 d0�! � = 
03 ^ d3 � 
2with d3 = 
3(x). Then by rule (appvar), we get� `M : � = ((
03 ^ d3 � 
2)� 1) ^ (y 7! d0)whi
h yields by lemma 18� `M : � = (
03 � 1) ^ (d3 � 
2 � 1) ^ (y 7! d0)Moreover, 
0 = 
1 ^ d� 
2= (
03 � 1) ^ (y 7! d0) ^ d� 
2= (
03 � 1) ^ (y 7! d0) ^ (d3 � 1) � 
2(be
ause 
1[x 7! d℄ = (
3 � 1) ^ (y 7! d0))= (
03 � 1) ^ (y 7! d0) ^ (d3 � 
2 � 1) (by lemma 18)Thus, the expe
ted result holds.Rule (re
), M = let re
 x1 = N1 and : : : and xn = Nn in N , where the xi are fresh. By typinghypothesis, �0 + f: : : xj : �j : : :g ` N : � = 
N [: : : xj 7! dj : : :℄for all i, �0 + f: : : xj : �j : : :g ` Ni : �i = Æi[: : : xj 7! dij : : :℄for all i, j, dij � 1for all i, j, k, dik � dij � djkWe write N 0 = NfxgM2 and for all i, N 0i = NifxgM2. We have 
1[x 7! d℄ = 
N ^ � î di � Æi� ^� î;j di � dij � Æj�. Lemma 23 shows that we 
an 
onstru
t 
0N and a Æ0i for all i su
h that 
0N [x 7!dN ℄ = 
N , and Æ0i[x 7! d0i ℄ = Æi for all i and 
1 = 
0N ^ � î di � Æ0i� ^ � î;j di � dij � Æ0j�, withdN = 
N (x) and d0i = Æi(x) for ea
h i. Thus, the two premises 
an be rewritten as follows:�0 + f: : : xj : �j : : :g ` N : � = 
0N [: : : xj 7! dj : : :℄[x 7! dN ℄for all i, �0 + f: : : xj : �j : : :g ` Ni : �i = Æ0i[: : : xj 7! dij : : :℄[x 7! d0i ℄By indu
tion hypothesis, it follows that� + f: : : xj : �j : : :g ` N 0 : � = 
0N [: : : xj 7! dj : : :℄ ^ dN � 
2for all i, � + f: : : xj : �j : : :g ` N 0i : �i = Æ0i[: : : xj 7! dij : : :℄ ^ d0i � 
2Sin
e the xis are fresh we have 
0N [: : : xj 7!dj : : :℄^dN �
2 = (
0N ^dN �
2)[: : : xj 7!dj : : :℄ andfor all i, Æ0i[: : : xj 7! dij : : :℄ ^ d0i � 
2 = (Æ0i ^ d0i � 
2)[: : : xj 7! dij : : :℄. We 
an therefore applyrule (re
) to obtain� `M : � = 
0N ^ dN � 
2 ^ î;j di � dij � (Æ0j ^ d0j � 
2) ^ î di � (Æ0i ^ d0i � 
2)143



A

ording to lemma 18, the degree environment above is equal to
0N ^ (dN � 
2)^ ( î;j di � dij � Æ0j)^ ( î;j di � dij � d0j � 
2)^ ( î di � Æ0i)^ ( î di � d0i � 
2)To obtain the expe
ted result, it suÆ
es to prove that this degree environment is equal to 
0. Sin
e
1[x 7! d℄ = 
N ^ � î di � Æi� ^ � î;j di � dij � Æj�we know that d = 
N (x) ^ � î di � Æi(x)� ^ � î;j di � dij � Æj(x)�Therefore, d = dN ^ � î di � d0i � ^ � î;j di � dij � d0j�. It follows that
0 = 
1 ^ d� 
2= 
0N ^ � î di � Æ0i� ^ � î;j di � dij � Æ0j�^�dN ^ � î di � d0i � ^ � î;j di � dij � d0j��� 
2= 
0N ^ � î di � Æ0i� ^ � î;j di � dij � Æ0j�^(dN � 
2) ^ � î di � d0i � 
2� ^ � î;j di � dij � d0j � 
2�This 
ompletes the proof. 2We now extend the previous lemma to the 
ase of parallel substitution, exploiting the fa
t thatMf: : : xi 7!Mi : : :g is equal to Mfx1gy1 : : : fxngynfy1gM1 : : : fyngMn, where the yi are fresh.To support this redu
tion, we �rst show the stability of the typing judgement under substitutionof one variable by a fresh variable.Lemma 27 If � + fx : �g ` M : � = 
[x 7! d℄ and y =2 FV(M), then � + fy : �g ` Mfxgy : � =
[y 7! d℄.Proof Easy indu
tion on the typing derivation of M . 2Lemma 31 (parallel substitution) Assume �+f: : : xi : �i : : :g `M : � = 
M [: : : xi 7!di : : :℄,and for all j 2 f1 : : : ng, � ` Mj : �j = 
j with for all i; j, xi =2 FV(Mj) [ dom(
j). Then,� `Mf: : : xi 7!Mi : : :g : � = 
M ^ î di � 
i.Proof Write Mf: : : xi 7!Mi : : :g as Mfx1gy1 : : : fxngynfy1gM1 : : : fyngMn where the yi arefresh. We �rst apply lemma 27 n times to obtain � + f: : : yi : �i : : :g ` Mfx1gy1 : : : fxngyn :� = 
M [: : : yi 7! di : : :℄. We then apply lemma 29 n times again, su

essively using the n typinghypotheses for the Mi. This leads to the desired judgment. 2144



Substitution by a variableWe now state and prove a stronger variant of lemma 29 for the 
ase where we substitute a variableby another variable. This alternate substitution lemma is distin
t from lemma 27: here, y is notsupposed to be fresh, and this is why former o

uren
es of y must be taken into a

ount, whi
h isdone through the ^ operation.Lemma 30 (substitution by a variable) If � + fx 7! � 0g ` M : � = 
[x 7! d℄ and �(y) = � 0,then � `Mfxgy : � = 
 ^ (y 7! d).Proof We write �0 = � + fx 7! � 0g and M 0 = Mfxgy and pro
eed by indu
tion on the typingderivation of M and 
ase analysis on the last typing rule used.Rule (var) We distinguish the three sub-
ases M = x, M = y, and M = z with z 6= x and z 6= y.All three 
ases are straightforward.Rule (abstr), M = �zM1 where z is fresh. By typing hypothesis, we have�0 + fz 7! �1g `M1 : �2 = (
[x 7! d℄� 1)[z 7! d0℄with � = �1 d0�! �2. This is equivalent to�0 + fz 7! �1g `M1 : �2 = (
 � 1)[z 7! d0℄[x 7! d� 1℄Applying the indu
tion hypothesis, we then have� + fz 7! �1g `M1fxgy : �2 = (
 � 1)[z 7! d0℄ ^ (y 7! d� 1)whi
h yields � + fz 7! �1g `M1fxgy : �2 = ((
 ^ (y 7! d))� 1)[z 7! d0℄We 
on
lude � `Mfxgy : � = 
 ^ (y 7! d) by rule (abstr).Rule (app), M = M1 M2. The typing hypothesis entails �0 ` M1 : � 0 d0�! � = 
1 and �0 ` M2 :� 0 = 
2 with 
[x 7! d℄ = (
1 � 1)^ d0 � 
2. Take 
01 = 
1[x 7! 
(x) + 1℄ and 
02 = 
2[x 7!1℄. Thesedegree environments enjoy the following properties:
1 = 
01[x 7! 
1(x)℄ 
2 = 
02[x 7! 
2(x)℄ 
 = (
01 � 1) ^ d0 � 
02By indu
tion hypothesis, we 
an derive � `M1fxgy : � 00 d0�! � = 
01 ^ (y 7! 
1(x)) � `M2fxgy : � 00 = 
02 ^ (y 7! 
2(x))� `M 0 : � = (
01 � 1) ^ (y 7! (
1(x)� 1)) ^ d0 � (
02 ^ (y 7! 
2(x)))The degree environment in the 
on
lusion is equal to(
01 � 1) ^ d0 � 
02 ^ (y 7! ((
1(x)� 1) ^ d0 � 
2(x))) = 
 ^ (y 7! d)The desired result follows.Rule (appvar), M = M1 z We have �0 ` M1 : � 00 d0�! � = 
1 and �0(z) = � 00 and 
[x 7! d℄ =(
1 � 1) ^ (z 7! d0). We 
onsider the two 
ases z = x and z 6= x separately.Case z = x. In this 
ase, � 0 = � 00. Consider 
01 = 
1[x 7! 
(x) + 1℄. We have 
01 � 1 = 
 and
01[x 7! 
1(x)℄ = 
1. By indu
tion hypothesis, we obtain� `M1fxgy : � 0 d0�! � = 
01 ^ (y 7! 
1(x))145



Sin
e �(y) = � 0, rule (appvar) 
on
ludes� `M 0 : � = (
01 � 1) ^ (y 7! (
1(x)� 1)) ^ (y 7! d0)But the degree environment in this 
on
lusion is equal to (
01 � 1) ^ (y 7! ((
1(x)� 1) ^ d0)), thatis, 
 ^ (y 7! d). This is the expe
ted result.Case z 6= x. De�ne 
01 = 
1[x 7!
(x)+1℄. We have 
 = (
01�1)^ (z 7!d0) and 
01[x 7!
1(x)℄ = 
1.By indu
tion hypothesis, we obtain� `M1fxgy : � 00 d0�! � = 
01 ^ (y 7! 
1(x))Sin
e �(z) = � 00, we derive by rule (appvar)� `M 0 : � = (
01 � 1) ^ (y 7! (
1(x)� 1)) ^ (z 7! d0)The latter degree environment is equal to 
 ^ (y 7! (
1(x) � 1)), that is, 
 ^ (y 7! d), as requiredto establish the result.Rule (re
), M = let re
 : : : xi =Mi : : : in N where the xi are fresh. The premises of rule (re
)hold: �0 + f: : : xi : �i : : :g `Mj : �j = 
j [: : : xj 7! dji : : :℄ for all j�0 + f: : : xi : �i : : :g ` N : � = 
N [: : : xi 7! di : : :℄for all i; j, dij � 1for all i; j; k, dik � dij � djkMoreover, 
[x 7! d℄ = 
N ^ � î di � 
i� ^ � î;j di � dij � 
j�. By lemma 23, we 
an 
onstru
t 
0Nand 
0i for ea
h i satisfying the following 
onditions: 
 = 
0N ^ � î di � 
0i� ^ � î;j di � dij � 
0j�,
N = 
0N [x 7!dN ℄, and for all i, 
i = 
0i[x 7!d0i℄, with dN = 
N (x) and for all i, d0i = 
i(x). Applyingthe indu
tion hypothesis, we obtain derivations for the following judgments:� + f: : : xi : �i : : :g `Mjfxgy : �j = 
0j [: : : xi 7! dji : : :℄ ^ (y 7! d0j) for all j� + f: : : xi : �i : : :g ` Nfxgy : � = 
0N [: : : xi 7! di : : :℄ ^ (y 7! dN )From these premises, rule (re
) derives � `M 0 : � = 
0, where
0 = 
0N ^ (y 7! dN )^� î;j di � dij � (
0j ^ (y 7! d0j))�^� î di � (
0i ^ (y 7! d0i))�= 
 ^ (y 7! (dN ^ � î;j di � dij � d0j� ^ � î di � d0i�))= 
 ^ (y 7! d)This 
on
ludes the proof. 2SoundnessThe soundness of �Æ's type system (theorem 3) is, as usual, a 
orollary of two properties: subje
tredu
tion (lemma 32) and progress (lemma 33). We start with a te
hni
al lemma on re
ursivede�nitions arising from the redu
tion of a let re
 term.146



Lemma 28 Assume � + f: : : xi : �i : : :g ` Mj : �j = 
j [: : : xi 7! dji : : :℄ for all j 2 f1 : : : ng.Further assume that for all i; j, dij � 1 and for all i; j; k, dik � dij � djk. Then, for any i0 2f1 : : : ng, � ` let re
 : : : xi =Mi : : : in Mi0 : �i0 = 
i0 ^ î di0i � 
iProof By appli
ation of rule (re
), we obtain� ` let re
 : : : xi =Mi : : : in Mi0 : �i0 = 
i0 ^ î;j di0i � dij � 
j ^ î di0i � 
iSin
e di0j � di0i � dij , we have di0j � 
j � di0i � dij � 
j . Thus,î;j di0i � dij � 
j ^ î di0i � 
i = î di0i � 
iand the expe
ted result follows. 2Lemma 32 (subje
t redu
tion) If � `M : � = 
 and M �!M 0, then � `M : � = 
.Proof The proof is by 
ase analysis on the redu
tion rule used.Redu
tion rule (beta), M = �xM1 v. The typing derivation for M 
an end either with anappli
ation of the (app) rule or with the (appvar) rule.In the (appvar) 
ase, we have v = y. We rename x if ne
essary to ensure x 6= y. The typingderivation for M is of the following form� + fx 7! � 0g `M1 : � = (
0 � 1)[x 7! d℄� ` �xM1 : � 0 d�! � = 
0 �(y) = � 0� `M : � = (
0 � 1) ^ (y 7! d)Moreover, 
 = (
0 � 1) ^ (y 7! d) and M 0 =M1fxgy. By lemma 30, we have� `M 0 : � = (
0 � 1) ^ (y 7! d)whi
h is the expe
ted result.In the (app) 
ase, the typing derivation for M is� + fx 7! � 0g `M1 : � = (
1 � 1)[x 7! d℄� ` �xM1 : � 0 d�! � = 
1 ...� ` v : � 0 = 
2� `M : � = (
1 � 1) ^ d� 
2Moreover, M 0 = M1fxgv and 
 = (
1 � 1) ^ d� 
2. By lemma 29, it follows that � `M 0 : � = 
,as expe
ted.Redu
tion rule (mutre
), M = let re
 : : : xi = vi : : : in N , where the xi are fresh. We haveM 0 =Mf: : : xi 7!Mi : : :g with, for all i, Mi = let re
 : : : xj = vj : : : in vi. By typing, we have� + f: : : xj : �j : : :g ` N : � = 
N [: : : xj 7! dj : : :℄for all i, � + f: : : xj : �j : : :g ` vi : �i = 
i[: : : xj 7! dij : : :℄for all i; j, dij � 1for all i; j; k, dik � dij � djk147



By lemma 28, it follows that � `Mi : �i = 
i ^ ĵ dij � 
jBy lemma 31, we obtain � `M 0 : � = 
N ^ � î di � (
i ^ ĵ dij � 
j)�whi
h is identi
al to the expe
ted result� `M 0 : � = 
N ^ � î di � 
i� ^ � îj di � dij � 
j�Redu
tion rule (
ontext), M = E [M1℄, M1 �!M 01 and M 0 = E [M 01℄. The result follows bystru
tural indu
tion and 
ase analysis over the 
ontext E. The only point worth mentioning isthat in the 
ase E = v 2 and the typing derivation ends with rule (appvar), then M1 
an only bea variable, and therefore 
annot redu
e. 2Lemma 33 (progress) If � `M : � = 
 and 
 � 1, then either M is a value, or there exists M 0su
h that M �!M 0.Proof The proof is a standard indu
tive argument on the typing derivation ofM , and 
ase analysison the last typing rule used.Rule (var). M is a variable, i.e. a value.Rule (abstr). M is a �-abstra
tion, i.e. a value.Rule (app), M = M1 M2. We have � ` M1 : � 0 d�! � = 
1 and � ` M2 : � 0 = 
2. Moreover,
 = (
1 � 1) ^ d� 
2.Applying the indu
tion hypothesis to M1 and M2, either both terms are values or at least oneredu
es. If M1 redu
es, M also redu
es via the 
ontext 2 M2. If M1 is a value and M2 redu
es,M also redu
es via the 
ontext M1 2. If both M1 and M2 are values, the type � 0 d�! � of M1guarantees that M1 is either a variable or an abstra
tion. But M1 
annot be a variable, be
ause
 � 1 implies 
1 � 2. Hen
e, M1 is an abstra
tion and we 
an apply the (beta) rule to redu
e M .Rule (appvar). Same reasoning as in the (app) 
ase.Rule (re
), M = let re
 : : : xi =Mi : : : in N . If all Mi are values, M redu
es by rule (mutre
).Otherwise, M redu
es via the rule (
ontext). 2Theorem 3 (soundness of �Æ) If � `M : � = 
 and 
(x) � 1 for all x free in M , then M eitherredu
es to a value or diverges, but does not get stu
k.Proof The theorem follows from the following lemmas, whi
h are proved in appendix 6.3.2. The�rst three lemmas are substitution lemmas for general one-variable substitution, substitution ofone variable by another, and parallel substitution. They play a 
ru
ial role for proving subje
tredu
tion for the typing rules (app), (appvar) and (re
) respe
tively.148



� D�1(X) = (X1; : : : ; Xn) is the list of the prede
essors of X in D, ordered lexi
ographi
ally.� D(X;Y ) = min fv j X v�! Y 2 Dg (with the 
onvention that D(X;Y ) =1 if D 
ontains noedges from X to Y )� FCTD(X; I) = (Mv11 ; : : : ;Mvnn ), for Pred(D) � dom(I), where{ D�1(X) = (X1; : : : ; Xn){ for all i 2 f1 : : : ng, I(Xi) =Mi and D(Xi; X) = vi.� Pred(D) = fX j X v�! Y 2 D;X; Y 2 Names; v 2 Valsg� Su

(D) = fY j X v�! Y 2 D;X; Y 2 Names; v 2 ValsgFigure 6.11: Operations on graphsJ�1 ! �2K = �1 0�! �2JintK = intJboolK = boolJfI ;O;DgK = hX : JO(X)KX;D;I j X 2 dom(O)i if ` fI ;O;DgJMKX;D;I = JM1K v1+(n�1)������! JM2K v2+(n�2)������! : : : JMnK vn�! JMKwhere (Mv11 ; : : : ;Mvnn ) = FCTD(X; I)Figure 6.12: Translation of typesLemma 29 (substitution) If � + fx 7! � 0g ` M1 : � = 
1[x 7! d℄, and � ` M2 : � 0 = 
2, withx =2 FV(M2) [ dom(
2), then � `M1fxgM2 : � = 
1 ^ d� 
2.Lemma 30 (substitution by a variable) If � + fx 7! � 0g ` M : � = 
[x 7! d℄ and �(y) = � 0,then � `Mfxgy : � = 
 ^ (y 7! d).Lemma 31 (parallel substitution) If � + f: : : xi : �i : : :g ` M : � = 
M [: : : xi 7! di : : :℄,and for all j 2 f1 : : : ng, � ` Mj : �j = 
j with for all i; j, xi =2 FV(Mj) [ dom(
j), then� `Mf: : : xi 7!Mi : : :g : � = 
M ^ î di � 
i.The soundness of �Æ then follows from the well-known properties of subje
t redu
tion (redu
tionpreserves typing) and progress (well-typed terms are not stu
k).Lemma 32 (subje
t redu
tion) If � `M : � = 
 and M �!M 0, then � `M : � = 
.Lemma 33 (progress) If � `M : � = 
 and 
 � 1, then either M is a value, or there exists M 0su
h that M �!M 0.26.3.3 Soundness of the translationThe goal of this se
tion is to prove the soundness of our approa
h, in the sense that a well-typedMMe expression translates to a well-typed �Æ expression. The soundness of �Æ then ensures thatthe translation evaluates 
orre
tly. 149



Core terms: C ::= xM j 
stM variables, 
onstantsj �xCM j (C1 C2)M abstra
tion, appli
ationj E:XM 
omponent proje
tionMixin terms: E ::= C 
ore termj h�; oiM mixin stru
turej (+E1E2)M sumj (E[X  Y ℄)M rename X to Yj (E !X)M freeze Xj (E nX)M delete Xj (
loseE)M 
loseOutput assignments: o ::= Xi i2I7! EiFigure 6.13: Syntax of type-annotated termsTo state the soundness of the translation, we need to set up a translation from sour
e types to�Æ types. We start by de�ning useful operations on graphs and signatures in �gure 6.11. Wede�ne FCTD(X; I) as the list of the types and valuations of the prede
essors of X in D a

ordingto I , ordered lexi
ographi
ally. Then, Pred(D) and Su

(D) are simply the sets of prede
essorsand su

essors of any node in D. The translation of types is presented in �gure 6.12. A naturaltranslation for environments follows, de�ned by J�K = J�KÆ�. Moreover, we de�ne the initial degreeenvironment 
orresponding to a type environment as do(�) = 0 Æ �, that is to say the fun
tionequal to 0 on dom(�) and 1 elsewhere. In the sequel, we will often use valuations as degrees. Itis worth noti
ing that for all valuations v1; and v2, min(v1; v2) = v1 ^ v2 = v1 � v2.As the translation operates on annotated well-typed terms, we de�ne an annotated syntax in �gure6.13. The type system for annotated terms is exa
tly the same, ex
ept that it looks more like awell-formedness judgment � ` E. Thus a derivation for a standard term yields a 
orre
t derivationfor the 
orresponding annotated term. We denote by E the annotated term 
orresponding to aderivation of E, whi
h should be 
lear from the 
ontext. A well-formed annotated term is a termwhose annotations are all well-formed types. We 
onsider only well-formed annotated terms in thefollowing.We now turn to proving theorem 4: the translation of a well-typed sour
e term is a well-typed�Æ-term.We start by stating three typing rules that are admissible in �Æ, and help type-
he
k the termsarising from the translation s
heme. We omit the proofs of admissibility, whi
h are straightforward.Lemma 34 (single let re
) The following typing rule is admissible for the type system of �Æ.� + fx 7! � 0g `M : � = 
1[x 7! d℄ � + fx 7! � 0g ` N : � 0 = 
2[x 7! d0℄ d0 � 1� ` let re
 x = N in M : � = 
1 ^ d� 
2Lemma 35 (n abstra
tions) The following typing rule is admissible for the type system of �Æ.� + f: : : xi : �i : : :g `M : � = (
 � n)[: : : xi 7! di : : :℄� ` ~�(x1; : : : ; xn):M : �1 d1+(n�1)������! �2 d2+(n�2)������! : : : �n dn�! � = 
Lemma 36 (n appli
ations) The following typing rule is admissible for the type system of �Æ.� `M : �1 d1+(n�1)������! �2 d2+(n�2)������! : : : �n dn�! � = 
 �(xi) = �i for i = 1; : : : ; n� `M(x1; : : : ; xn) : � = (
 � n) ^ (: : : xi 7! di : : :)150



We now prove two te
hni
al lemmas on the typing of sub-expressions that o

ur when translatingthe 
lose and freeze operators.Lemma 37 (translation of 
lose) Assume �j � e : JfI ;O;DgK = do(�). Let X1; : : : ; Xn benames su
h that Xi =2 dom(�) and O(Xi) = I(Xi) and D(Xi; Xj) 6= 0 for i; j 2 f1; : : : ; ng.Further assume that for all immediate prede
essors X of one of the Xi in D, either X is one ofthe Xi, or �(X) = I(X). Let M be an expression and � be a type su
h that �0j �M : � = do(�0),where �0 = �+ fX1 : O(X1); : : : ; Xn : O(Xn)g. Then,�j � let re
 X1 = e:X1 D�1(X1) and : : : and Xn = e:Xn D�1(Xn) in M : � = do(�)Proof By de�nition of the translation of a mixin signature, and the hypotheses on �, the 
onditionsof lemma 36 are met, and we obtain�0j � e:Xi D�1(Xi) : O(Xi) = do(�) ^ (X 7!D(X;Xi) j X 2 D�1(Xi))Sin
e Xj =2 dom(�) for all j, the degree environment above is pointwise greater or equal todo(�)[Xj 7!D(Xj ; Xi) j j 2 f1; : : : ; ng℄. Thus, by lemma 24, it follows that�0j � e:Xi D�1(Xi) : O(Xi) = do(�)[Xj 7!D(Xj ; Xi) j j 2 f1; : : : ; ng℄Moreover, D(Xj ; Xi) 2 f1;1g for all i and j. Hen
e, the premises of the (re
) typing rule are met.Applying the weakening lemma 24 to its 
on
lusion, we obtain the desired result. 2Lemma 38 (translation of freeze) Assume �j � e : JfI ;O;DgK=do(�), where e is a variabledistin
t from X for all names X. Let X be a name su
h that I(X) = O(X). Write D0 = D!X andI 0 = InX . Then, for all names Y 2 dom(O), if X =2 D�1(Y ) we have�j � e:Y : JO(Y )KY;D0;I0 = do(�)and if X 2 D�1(Y ), we have�j � ~�D0�1(Y )let re
 X = e:X D�1(X) in e:Y D�1(Y ) : JO(Y )KY;D0;I0 = do(�)Proof Re
all the de�nition of D0:D0 = D!X = (D [Daround) nDremovewhere Daround = fZ v01^v02����! Y j (Z v1�! X) 2 D; (X v2�! Y ) 2 Dg and Dremove = fX v�! Y j Y 2Names; v 2 f0; 1gg.Thus, in the 
ase X =2 D�1(Y ), no edges leading to Y are added nor removed. Hen
e, D0�1(Y ) =D�1(Y ), whi
h implies JO(X)KX;D!X;InX = JO(X)KX;D;I and the expe
ted result.Consider now the 
ase X 2 D�1(Y ). We have D0�1(Y ) = (D�1(Y ) [ D�1(X)) n fXg. De�ne�0 = �+ fZ : JI(Z)K j Z 2 D�1(Y )g. By lemma 36, and using the fa
t that e is not one of the Z,it follows that �0j � e:X D�1(X) : JOXK = fe 7! 0;Z 7!D(Z;X) j Z 2 D�1(X)gand �0 + fX : JI(X)Kgj � e:Y D�1(Y ) : JOY K = fe 7! 0;Z 7!D(Z; Y ) j Z 2 D�1(Y )gNoti
e that D(X;X) � 1, be
ause otherwise the graph D would not be safe, making the signaturefI ;O;Dg ill-formed. In addition, O(X) = I(X). The 
onditions of lemma 34 are therefore met,and we obtain �0j � let re
 X = e:X D�1(X) in e:Y D�1(Y ) : JO(Y )K = 
 where
 = fe 7! 0;Z 7!D(Z;X) j Z 6= X;Z 2 D�1(X)g^ fe 7! 0;Z 7!D(Z; Y ) j Z 6= X;Z 2 D�1(Y )g151



By de�nition of D0 = D!X , 
 is equal to fe 7!0;Z 7!D0(Z; Y ) j Z 2 D0�1(Y )g. Applying lemma 35,we obtain�j � ~�D0�1(Y )let re
 X = e:X D�1(X) in e:Y D�1(Y ) : JO(X)KX;D0 ;I0 = fe 7! 0gwhi
h implies the desired result by weakening. 2Theorem 4 (soundness of the translation) If � ` E : M , then J�K ` JEK : JMK = do(�) +IsRe
(E ).Proof The proof is by stru
tural indu
tion on E, and 
ase analysis on E.Fun
tion abstra
tion: E = �x:C and M = �1 ! �2. By indu
tion hypothesis, J�K + fx :�1gj� JCK : �2 = do(�)[x 7!0℄+ IsRe
(C ). Applying the degree weakening lemma if IsRe
(C ) is notzero, we obtain J�K + fx : �1gj � JCK : �2 = do(�)[x 7! 0℄. From this, the (abstr) typing rule showsthat J�Kj � J�x:CK : �1 0�! �2 = do(�) + 1, whi
h is the expe
ted result sin
e IsRe
(�x :C ) = 1.Other 
ore language 
onstru
ts: the result follows immediately from the indu
tion hypothesis,sin
e IsRe
(E ) = 0 in these 
ases.Stru
ture 
onstru
tion: E = h�; oi and M = fI ;O;Dg. By typing, we have D = Dh�; oi, ` D,dom(o) = dom(O), and for all X 2 dom(o), � + I Æ � ` o(X) : O(X).Let o = Xi i2I7! Ei, O = Xi i2I7! Mi, vi = IsRe
(Ei) and � = yj j2J7! Yj , with I(Yj) = M 0j for all j,with the Xis and Yjs ordered lexi
ographi
ally, that is, if i1 < i2, then Xi1 <lex Xi2 , and similarlyfor the Yjs.By indu
tion hypothesis, for all i, we have J�K + JI Æ �K ` JEiK : JMiK = do(� + I Æ �) + vi.But FV(JEiK) = FV(Ei) and FV(Ei) \ dom(�) = ��1(D�1(Xi)), so we 
an apply lemma 35,and weakening lemmas 25 and 26 to eliminate variables of dom(�) that are not free in Ei. Let(Z1; : : : ; Zn) = D�1(Xi) and for all k 2 f1 : : : ng, M 00k = I(Zk). We obtain� ` ~���1(D�1(Xi)):JEiK : JM 001 K vi+(n�1)������! : : : JM 00n K vi�! JMiK = do(�)But JMiKXi;D;I = JM 001 K vi+(n�1)������! : : : JM 00n K vi�! JMiK, be
ause D(Zk; Xi) = �(��1(Zk); Ei) =IsRe
(Ei) = vi. The desired result follows.Closing: E = 
loseE0 and M = fI ;O;Dg. We apply lemma 37 repeatedly to ea
h let re
 groupin the translation, starting with the innermost one. Sin
e the let re
 are generated following aserialisation of the graph D, all free variables in a let re
 are bound earlier, and dependen
iesbetween the variables bound in the same let re
 
annot have degree 0 (otherwise the graph Dwould not be safe, and M would be ill-formed). The expe
ted result follows.Freezing: E = E1 ! X . The result follows from the indu
tion hypothesis applied to E1, andlemma 38 applied to ea
h 
omponent of the re
ord generated by the translation.Delete: E = E1 nX . The result follows immediately from the indu
tion hypothesis applied to E1.Renaming: E = E1[X  Y ℄. We apply the indu
tion hypothesis to E1, then use lemmas35 and 36 to handle the rearrangement of the parameters of the re
ord 
omponents. 2We de�ne IsRe
(E ) as 1 if E is an abstra
tion �xC, and 0 otherwise, and extend this de�nition toannotated expressions. 152



Theorem 4 (soundness of the translation) If � ` E : M , then J�K ` JEK : JMK = do(�) +IsRe
(E ).See appendix ?? for the full proof. Noti
e that this result holds for non-empty 
ontexts �; in
onjun
tion with the 
ompositional nature of the translation, this ensures that our 
ompilations
heme is appli
able (and sound) not only to 
losed programs, but also to terms with free variablesas 
an arise during separate 
ompilation.
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Chapter 7Compilation of let re

7.1 OverviewThe \in-pla
e updating tri
k" The \in-pla
e updating tri
k" outlined in [25℄ and re�ned inthe OCaml 
ompiler [55℄, implements let re
 de�nitions that satisfy the following two 
onditions.Consider the mutually re
ursive de�nition x1 = e1 : : : xn = en. First, the value of ea
h de�nitionshould be represented at run-time by a heap allo
ated blo
k of stati
ally predi
table size. Se
ond,for ea
h i, the 
omputation of ei should not need the value of any of the de�nitions ej , but onlytheir names xj . As an example of the se
ond 
ondition, a re
ursive de�nition like f = � x.(...f ...) is a

epted, sin
e no 
omputation will try to use the value of f . Contrarily, a re
ursivede�nition like f = (f 0) is refused.Evaluation of a let re
 de�nition with in-pla
e updating 
onsists of three steps. First, for ea
hde�nition, allo
ate an uninitialized blo
k of the expe
ted size, and bind it to the re
ursively-de�ned identi�er. Those blo
ks are 
alled dummy blo
ks. Se
ond, 
ompute the right-hand sidesof the de�nitions. Re
ursively-de�ned identi�ers thus refer to the 
orresponding dummy blo
ks.Owing to the se
ond 
ondition, no attempt is made to a

ess the 
ontents of the dummy blo
ks.This step leads, for ea
h de�nition, to a blo
k of the expe
ted size. Third, the 
ontents of theobtained blo
ks are 
opied to the dummy blo
ks, updating them in pla
e.For example, 
onsider, in a given language L, a mutually re
ursive de�nition x1 = e1; x2 = e2,where it is stati
ally predi
table that the values of the expressions e1 and e2 will be representedat runtime by heap allo
ated blo
ks of sizes n1 and n2, respe
tively. Here is what the 
ompiled
ode does, as depi
ted in �gure 7.1. First, it allo
ates two uninitialized heap blo
ks, at adresses l1and l2, of sizes n1 and n2, respe
tively. This is 
alled the pre-allo
ation step. As a se
ond step, it
omputes e1, where x1 and x2 are bound to l1 and l2, respe
tively. The result is a heap allo
atedblo
k of size n1, with possible referen
es to the two uninitialized blo
ks. The same pro
ess is
arried on for e2, resulting in a heap allo
ated blo
k of size n2. The third and �nal step 
onsistsin 
opying the 
ontents of the two obtained blo
ks to the two uninitialized blo
ks. The result isthat the two initially dummy blo
ks now 
ontain the proper 
y
li
 data stru
ture.Simple generalization The s
heme des
ribed above 
omputes all de�nitions one after another,and only then updates the dummy blo
ks in pla
e. From the example above, it seems quite 
learthat in-pla
e updating for a de�nition 
ould be done as soon as its value is available.As long as mutual referen
es do not really use the referen
ed values, as happens for re
ursive fun
-tions for instan
e, both s
hemes behave identi
ally. Nevertheless, in the 
ase where e2 really usesthe value v1 
omputed for e1, for example if e2 = (x1 1), the original s
heme 
an go wrong. Indeed,the dummy blo
k pre-allo
ated for x1 is still empty at the time where e2 is 
omputed. Instead,155



� Pre-allo
ation: � �� Computation: � �e1 e2OO
mm

� In-pla
e updating: e1 e2
YY

pp

Figure 7.1: The \in-pla
e updating tri
k"with immediate in-pla
e updating, the value v1 is already available when 
omputing e2. This trivialmodi�
ation to the s
heme thus 
orresponds to in
reasing the expressive power of let re
. It allowsde�nitions to really use previous de�nitions. Furthermore, it allows to transparently introdu
ede�nitions with unknown sizes in let re
, as shown by the following example.An example of exe
ution is presented in �gure 7.2. The exe
uted de�nition is x1 = e1; x2 = e2; x3 =e3, where e1 and e3 are expe
ted to evaluate to blo
ks of sizes n1 and n3, respe
tively, but wherethe representation for the value of e2 is not stati
ally predi
table. The pre-allo
ation step onlyallo
ates dummy blo
ks for x1 and x3. The value v1 of e1 is then 
omputed. It 
an make referen
esto x1 and x3, whi
h 
orrespond to pointers to the dummy blo
ks, but not to x2, whi
h would notmake any sense here. This value is 
opied to the 
orresponding dummy blo
k. Then, the valuev2 of e2 is 
omputed. It 
an refer to both dummy blo
ks, but it 
an also really use the value v1.Finally, the value v3 of e3 is 
omputed and 
opied to the 
orresponding dummy blo
k.This modi�ed s
heme implements more mutually re
ursive de�nitions than the initial one. Thenext se
tion formalizes its semanti
s.7.2 The sour
e language �Æ7.2.1 SyntaxThe syntax of �Æ is de�ned in �gure 7.3. The meta-variables X and x range over names andvariables, respe
tively. Variables are used as binders, as usual. Names are used for a

essingre
ord �elds, as an external interfa
e to other parts of the expression. Figure 7.4 re
apitulates themeta-variables and notations we introdu
e in the remainder of this se
tion. The syntax in
ludesthe �-
al
ulus 
onstru
ts; variables x, abstra
tion �x:e, and appli
ation e1e2. The language alsoin
ludes re
ords fX1 = e1 : : :Xn = eng, re
ord sele
tion e:X and a let re
 
onstru
t. A mutually156



1. Pre-allo
ation: � �2. Computing e1: � �v1OO3. Updating with v1:v1 �
YY

4. Computing e2: v1 �v2YY
11

5. Computing e3: v1 v2 �
YY

// v3rr6. Updating with v3:v1 v2 v3
YY

//

ss

Figure 7.2: The re�ned \in-pla
e updating tri
k"157



x 2 Vars VariableX 2 Names NameExpression: e 2 expr ::= x j �x:e j e1e2j fX1 = e1 : : : Xn = eng j e:Xj let re
 x1 = e1 : : : xn = en in eFigure 7.3: Syntax of �Æ� More meta-variables:s ::= X1 = e1 : : : Xn = en Re
ordb ::= x1 = e1 : : : xn = en Binding� Notations:For a �nite map f , and a set of variables P ,dom(f) is its domain, 
od(f) is its 
odomainfjP is its restri
tion to P , and fnP is its restri
tion to Vars nP .� Expressions of predi
table shape:e# 2 Predi
table ::= fog j h�; oi j let re
 b in e#Figure 7.4: Meta-variables and notationsre
ursive de�nition has the shape let re
 x1 = e1 : : : xn = en in e, where arbitrary expressions aresynta
ti
ally allowed as the right-hand side of a de�nition.Synta
ti
 
orre
tness Re
ords s = (X1 = e1 : : : Xn = en) and bindings b = (x1 = e1 : : : xn =en) are required to be �nite maps: a re
ord is a �nite map from names to expressions, and abinding is a �nite map from variables to expressions. Requiring them to be �nite maps means thatthey should not bind the same variable or name twi
e.Consider the let re
 binding b = (x1 = e1 : : : xn = en). We say that there is a forward referen
efrom xi to xj if i � j, and xj o

urs free in ei.Forward referen
es in bindings are allowed only when they point to a 
ertain 
lass of expressions, theexpressions of predi
table shape. As a �rst approximation, we say that the shape of an expressionis predi
table if it is a stru
ture, a re
ord, or a binding followed by an expression of predi
tableshape. Formally e# 2 Predi
table ::= fog j h�; oi j let re
 b in e#.Sequen
es Re
ords and bindings are often 
onsidered as �nite maps in the sequel. We refer tothem 
olle
tively as sequen
es, and use the usual notions on �nite maps, su
h as the domain dom,the 
odomain 
od, the restri
tion �jP to a set P , or the 
o-restri
tion �nP outside of a set P .7.2.2 Stru
tural equivalen
eWe 
onsider the expressions equivalent up to alpha-
onversion of binding variables in stru
turesand let re
 expressions. For this, we de�ne the stru
tural 
ontra
tion relation, in �gure 7.8, relyingon notions de�ned just below.A binder x, in a let re
 or in a fun
tion, may be renamed into a new variable y, provided y meetssome freshness 
onditions. Variable renaming is formally de�ned in �gure 7.7, using notions de�nedin �gures 7.5 and 7.6. Variable renaming is a total fun
tion, from pairs of an expression and a158



UnsafeNewNames(x; �x:e) = Captx(e) [ FV(e)UnsafeNewNames(x; let re
 b in e) = � FV(let re
 b in e)[ Captx(e)[ [(y�f)2b(fyg [ Captx(f))�n fxgFigure 7.5: Unsafe new names in �ÆCaptx(let re
 b in e) = 8>><>>: [y2dom(b)�fyg [ Captx(b(y))� [ Captx(e)if x 2 FV(let re
 b in e); otherwiseCaptx(x) = Captx(
) = ;Captx(�y:e) = 8<: fyg [ Captx(e)if x 2 FV(�y:e); otherwiseOther 
ases easy. Figure 7.6: Capture in �Ævariable renaming x 7! y (x is repla
ed with y), to expressions. In 
ase renaming 
rosses a nodebinding one of the two variables x and y, it stops. Otherwise, it is propagated as usual. Therefore,variable renaming sometimes does not preserve meaning. For instan
e, renaming x with y in �y:xyields the same expression, sin
e renaming does not 
ross the node binding y. This is why weintrodu
e the notion of unsafe new names. It is de�ned in �gure 7.5. A new name 
an be unsafefor a binder if it is 
aptured by binders inside the sub-expression, as y is in the above example. Thenotion of 
apture is formalized by the Capt fun
tion in �gure 7.6. Basi
ally, Captx(e) denotes theset of binding variables lo
ated above o

urren
es of x in e. For instan
e Captx(�y:x) is the setfyg. A new name 
an also be unsafe for a binder when it is free in the 
onsidered sub-expression.For example, renaming x to y in �x:(xy) does not preserve meaning. The stru
tural 
ontra
tionrelation,  s, de�ned in �gure 7.8, allows to rename a binder, provided the 
orresponding variablerenaming is 
orre
t on the 
onsidered expression. The stru
tural redu
tion relation 9 9 Ks is the
ontextual 
losure of the stru
tural 
ontra
tion relation. These two relations are symmetri
, andtherefore the transitive 
losure 9 9 Ks� of 9 9 Ks is a 
ongruen
e, 
alled the stru
tural equivalen
erelation, and also written =s.In the following, all expressions are 
onsidered up to stru
tural equivalen
e =s.Let � = fx 7! yg. xf�g = yzf�g = z if z 6= xfX1 = e1 : : : Xn = engf�g = fX1 = e1f�g : : :Xn = enf�gg(�z:e)f�g = � �z:(ef�g) if z =2 fx; yg�z:e otherwise(let re
 b in e)f�g = � let re
 bf�g in ef�g if fx; yg \ dom(b) = ;let re
 b in e otherwise(x1 = e1 : : : xn = en)f�g = (x1 = e1f�g : : : xn = enf�g)Other 
ases easy. Figure 7.7: Variable renaming in �Æ159



y =2 UnsafeNewNames(x; let re
 b1; x = e; b2 in f) � = x 7! ylet re
 b1; x = e; b2 in f  s let re
 b1f�g; y = ef�g; b2f�g in ff�gy =2 UnsafeNewNames(x; �x:e)�x:e s �y:(efx 7! yg)Figure 7.8: Stru
tural 
ontra
tion relation of �ÆCon�guration: 
 ::= b ` eValue: v 2 values ::= x j �x:e j fsvgAnswer: a 2 answers ::= bv ` vMore meta-variables:sv ::= X1 = v1 : : : Xn = vn Value re
ordbv ::= x1 = v1 : : : xn = vn Value bindingFigure 7.9: Con�gurations and results in �Æ7.2.3 Semanti
sThe semanti
s of �Æ is quite standard, ex
ept for what 
on
erns let re
 bindings.As shown in �gure 7.9, values in
lude fun
tions �x:e and re
ords of values fsvg, where sv denotesan evaluated re
ord X1 = v1 : : : Xn = vn.The semanti
s of re
ord sele
tion and of fun
tion appli
ation are de�ned in �gure 7.10, by 
om-putational 
ontra
tion rules, de�ning the lo
al 
omputational 
ontra
tion relation  
. Re
ordproje
tion sele
ts the appropriate �eld in the re
ord ; and the appli
ation of a fun
tion �x:e to avalue v redu
es to the body of the fun
tion, where the argument has been bound to x.Five operations are ne
essary for handling bindings properly, all de�ned Ariola et al. [7℄.1. A �rst operation is let re
 lifting. It 
onsists in lifting a let re
 node up one level in an expres-sion. For example, an expression of the shape e1+(let re
 b in e2) be
omes let re
 b in e1+e2.2. A se
ond operation is internal merging. During the evaluation of a binding, a de�nition mayreturn a let re
 as an answer, where a value is expe
ted. Internal merging merges this bindinginto the 
urrent one. An expression of the shape let re
 b1; x = (let re
 b2 in e); b3 in fbe
omes let re
 b1; b2; x = e; b3 in f , provided no variable 
apture o

urs.3. A third operation is external merging. The shape of results in �Æ allows only one binding towrap values. Therefore, if evaluation results in two nested bindings, they must be merged intoa single one. An expression of the shape let re
 b1 in let re
 b2 in e be
omes let re
 b1; b2 in e,provided no variable 
apture o

urs.4. A fourth operation, external substitution, allows to a

ess bound variables when de�ned bya surrounding binding. An expression of the shape let re
 b in C [x℄ be
omes let re
 b in C [e℄,if x = e appears in b and x is not 
aptured by C , and no variable 
apture o

urs.5. A last operation, internal substitution, allows to a

ess identi�ers bound earlier in the samebinding. (Assuming left-to-right evaluation, \earlier" means \to the left of".) An expressionof the shape let re
 b1; y = C [x℄; b2 in e be
omes let re
 b1; y = C [f ℄; b2 in e if x is de�ned asf in b1, and not 
aptured by C , and no variable 
apture o

urs.160



� Contra
tion rulesfX1 = v1 : : : Xn = vng:Xi 
 vi (Proje
t) x =2 FV(v)(�x:e)v 
 let re
 x = v in e (Beta)dom(b) ? FV(L )L [let re
 b in e℄ 
 let re
 b in L [e℄ (Lift)� Computational redu
tion rulese 
 e0E [e℄ 9 9 K
 E [e0℄ (Context) E [N ℄(x) = vE [N [x℄℄ 9 9 K
 E [N [v℄℄ (Subst)dom(b) ? (dom(bv) [ FV(bv))(bv ` let re
 b in e) 9 9 K
 bv ; b ` e (EM)dom(b1) ? fxg [ dom(bv; b2) [ FV(bv; b2) [ FV(f)(bv; x = (let re
 b1 in e); b2 ` f) 9 9 K
 (bv; b1; x = e; b2 ` f) (IM)� Evaluation 
ontextsLift 
ontext:L ::= 2e j v2 j 2:X j fSgMultiple lift 
ontext:F ::= 2 j L [F ℄Evaluation 
ontext:E ::= (bv ` F ) j (B [F ℄ ` e)
Re
ord 
ontexts:S ::= sv; X = 2; sSequen
e 
ontexts:B ::= bv; x = 2; bStri
t 
ontexts:N ::= 2v j 2:X� A

ess in evaluation 
ontexts(bv ` F )(x) = bv(x) (EA) (bv; y = F ; b ` e)(x) = bv(x) (IA)Figure 7.10: Redu
tion semanti
s for �ÆThe question is how to arrange these operations to make the evaluation deterministi
 and toensure that it rea
hes the result when it exists. Our 
hoi
e 
an be summed up as follows. There isa topmost binding. When this topmost binding is already evaluated, evaluation 
an pro
eed underthis binding. Otherwise, evaluation is allowed inside this binding. If evaluation meets anotherbinding inside the expression, this binding is lifted to be immediately under the topmost binding.Then, it is merged with the latter, internally or externally a

ording to the 
ontext. Externaland internal substitutions are allowed only from the evaluated part of the topmost binding. Inorder to simplify the presentation of the translation and the 
orre
tness proof, we distinguishthis topmost binding synta
ti
ally : the global 
omputational redu
tion relation 9 9 K
 is a binaryrelation on 
on�gurations 
, whi
h are pairs of a binding, the topmost binding, and an expression,written b ` e (see �gure 7.9). Here, the topmost binding is 
lose to the usual notion of runtimeenvironment, with the additional feature that bound values 
an be mutually re
ursive.More formally, let re
 handling is done through one additional 
omputational 
ontra
tion rule Liftperforming the lifting operation, and a 
omputational redu
tion relation, de�ned in �gure 7.10.The 
ontra
tion rule Lift lifts a let re
 binding up a lift 
ontext. As de�ned in �gure 7.10, a lift
ontext is any non-let re
 expression, where the spe
ial 
ontext hole variable 2 appears immediatelyunder the �rst node, in position of the next sub-expression evaluated.The se
ond 
ontra
tion rule IM 
orresponds to internal merging. If, during the evaluation ofthe topmost binding, one de�nition evaluates to a binding, then this binding is merged with the161



x 2 VarsX 2 NamesExpression:E 2 Expr ::= x j �x:E j EE �-
al
ulusj let x1 = E1 : : : xn = En in E Non-re
ursive let bindingj fX1 = E1 : : :Xn = Eng j E:X Re
ordsj l j allo
 j update Lo
ations, allo
ation, mutationFigure 7.11: Syntax of �allo
topmost one. The evaluation 
an then 
ontinue.The 
omputational redu
tion relation extends the 
omputational 
ontra
tion relation to any eval-uation 
ontext, as de�ned in �gure 7.10. We 
all a multiple lift 
ontext a series of nested lift
ontexts, and an evaluation 
ontext is a multiple lift 
ontext, possibly inside a partially evaluatedbinding, or under a fully evaluated binding.The EM redu
tion rule 
orresponds to external merging. It is only possible at toplevel, providedno variable 
apture o

urs.Finally, the external and internal substitution operations are modeled within a single redu
tionrule Subst. This rule transforms an expression of the shape E [N [x℄℄ into E [N [v℄℄, provided the
ontext E [N ℄ de�nes x as v and no variable 
apture o

urs. The meta-variable N ranges overstri
t 
ontexts. A stri
t 
ontext is a 
ontext that requires a non-variable node to evaluate. Anexample of stri
t 
ontext is 2v, that is, the fun
tion part of a fun
tion appli
ation. An exampleof a non-stri
t 
ontext is (�x:e)2, that is, the argument part of a fun
tion appli
ation, where avariable would allow the evaluation to 
ontinue. Stri
t 
ontexts are formally de�ned in �gure 7.10.The Subst rule repla
es a variable in a stri
t 
ontext with its value, a

ording to the 
ontext. Asindi
ated in �gure 7.10, evaluation 
ontexts de�ne the variable they bind, in two possible ways.First, a topmost, semanti
ally 
orre
t, fully evaluated let re
 binding de�nes the variables it bindsfor the nodes under it. Se
ond, if (bv; x � F ; b) is the topmost, partially evaluated binding, thenbv de�nes the variables it binds, inside F , and later inside b. The two rules de�ning a

ess inevaluation 
ontexts in �gure 7.10 show how these de�nitions may be used. The two di�erent waysof a

ess 
orrespond to the external and internal substitution operations, respe
tively.The 
omputational redu
tion relation on expressions is 
ompatible with stru
tural equivalen
e =s.Hen
e we 
an de�ne 
omputational redu
tion over equivalen
e 
lasses of expressions, obtaining theredu
tion relation �!.7.3 The target language �allo
The syntax of the target language �allo
 is presented in �gure 7.11. It distinguishes variables x fromnames X . It in
ludes the 
onstru
ts of the �-
al
ulus (fun
tion abstra
tion and appli
ation) and anon re
ursive let binding. Additionally, there are 
onstru
ts for re
ord operations (
onstru
tion andsele
tion), and 
onstru
ts for modeling the heap: an allo
ation operator allo
, an update operatorupdate, and lo
ations l.The semanti
s of �allo
 is de�ned as a stru
tural redu
tion relation on 
on�gurations. As de�nedin �gure 7.12, a 
on�guration is a pair of a heap and an expression. A heap is a �nite map fromlo
ations l to evaluated heap blo
ks. An evaluated heap blo
k Hv 2 HeapValues is either a fun
tion�x:E, or an evaluated re
ord fSvg (where Sv ::= X1 = V1 : : :Xn = Vn), or an appli
ation of theshape allo
n, for n 2 N. Su
h appli
ations model dummy heap blo
ks, 
ontaining unspe
i�ed data.A well-formed 
on�guration is su
h that all the lo
ations mentioned are bound in its heap.162



Con�guration:C ::= � ` E� 2 Heaps = Vars Fin��! HeapValuesAnswer: A 2 Answers ::= � ` VV 2 Values ::= x j lMore meta-variables:Hv 2 HeapValues ::= �x:E j allo
 n j fSvgSv ::= X1 = V1 : : :Xn = VnB ::= x1 = E1 : : : xn = EnFigure 7.12: Con�gurations and results in �allo
Evaluated heap blo
ks are not values. Only variables and lo
ations are values. In this 
al
ulus,fun
tion abstra
tions are not values, sin
e their evaluation allo
ates the fun
tion in the heap, andreturns its lo
ation: the result of the evaluation of �x:E is a 
on�guration � ` l, where the lo
ationl is bound to �x:JeK in the heap �.The related operators in the language are allo
, whi
h 
reates a new empty blo
k of size given byits argument, and update, whi
h 
opies its se
ond argument in pla
e of its �rst one, provided theyhave the same size. For this, we assume given a fun
tion Size from �allo
 heap value blo
ks to N.Notation We write �hl 7! Hvi for the map equal to � anywhere but on l where it returns Hv.We write �1+�2 for the union of two heaps �1 and �2 whose domains are disjoint. In parti
ular,when the heap � is unde�ned on l, we write �+fl 7! Hvg to denote the union of � and fl 7! Hvg.7.3.1 Stru
tural equivalen
eIn �allo
 , a notion of stru
tural equivalen
e identi�es expressions modulo variable and lo
ationrenaming. Lo
ations are bound only by heaps, at toplevel in 
on�gurations. We 
onsider 
on�gu-rations equal modulo renaming of bound lo
ations. This relation is easy to de�ne sin
e the lo
ationrenaming never 
ross any lo
ation binder, so we do not formalize it here. However, we have tode�ne the stru
tural equivalen
e modulo variable renaming. A binder x, in a let or in a fun
tion,may be renamed into a new variable y, provided y meets some freshness 
onditions. Stru
turalequivalen
e is formally de�ned in �gure 7.13.Substitutions First, variable renaming is de�ned. It is a total fun
tion, from pairs of an ex-pression and a variable renaming x 7! y (x is repla
ed with y), to expressions. Nevertheless, wewill see that the 
omputational redu
tion relation uses a more 
omplex notion of substitution thanjust variable renaming: it must also repla
e variables with lo
ations in some 
ases. Therefore,substitutions are elements of Subst = Vars Fin��! Values. We interpret them as total fun
tions fromvariables to values, extending them with the identity fun
tion on variables, outside of their synta
-ti
 domain. The domain dom(�) of a substitution � is the set of variables x su
h that �(x) 6= x.We sometimes 
onsider substitutions as sets, taking the union of two of them when it makes sense,and sometimes we 
ompose them, in the reverse notation, sin
e they 
ome from the right. The
omposition of �1 and �2 is de�ned by xf�1Æ�2g = xf�1gf�2g: it a
ts as �1, then �2. Moreover, we
all variable renamings, or simply renamings, the inje
tive substitutions whose 
odomains 
ontain163



� Substitutions Let � 2 Subst = Vars Fin��! Values.zf�g = �(z)(�x:E)f�g = �x:(Ef�nfxg[��1(fxg)g)(let B in F )f�g = let Bf�g in Ff�n dom(B)[��1(dom(B))g(x = E;B)f�g = (x = Ef�g; Bf�nfxg[��1(fxg)g)� ` Ef�g = � Æ� ` Ef�gOther 
ases easy.� Capture Captx(let y = E;B in F ) = Captx(�y: let B in F ) [ Captx(E)Captx(x) = ;Captx(�y:E) = 8<: fyg [ Captx(E)if x 2 FV(�y:E); otherwiseOther 
ases easy.� Unsafe new namesUnsafeNewNames(x; �x:E) = Captx(E) [ FV(E)UnsafeNewNames(x; let x = E;B in F ) = UnsafeNewNames(x; �x:(let B in F ))� Stru
tural redu
tion y =2 UnsafeNewNames(x; �x:E)�x:E  s �y:(Efx 7! yg)y =2 UnsafeNewNames(x; let x = E;B in F )let x = E;B in F  s let y = E; (Bfx 7! yg) in Ffx 7! ygFigure 7.13: Stru
tural equivalen
e in �allo
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�(l) = �x:E� ` lV  
 � ` Efx 7! V g (Beta) l =2 dom(�)� ` Hv  
 �+ fl 7! Hvg ` l (Allo
ate)�(l) = fSvg� ` l:X 
 � ` Sv(X) (Proje
t) Size(�(l1)) = Size(�(l2))� ` update l1 l2 
 �hl1 7! �(l2)i ` fg (Update)dom(B) ? �� ` �[let B in E℄ 
 � ` let B in �[E℄ (Lift)Figure 7.14: Computational 
ontra
tion rules for �allo
only variables, and we denote them by �. Symmetri
ally, we 
all variable allo
ations the inje
tivesubstitutions mapping variables to lo
ations, and denote them by �.We extend substitutions to �allo
 expressions and 
on�gurations, as des
ribed in �gure 7.13 (wherewe take the usual notation for substitution Ef�g, meaning �(E)). In 
ase the substitution 
rossesa binder x, then it forgets any information about x. Thus, under this binder the substitutionbe
omes �nfxg[��1(fxg). Otherwise, it is propagated as usual. Therefore, substitution sometimesdoes not preserve meaning. For instan
e, renaming x with y in �y:x yields the same expression,sin
e substitution does not 
ross the node binding y.Stru
tural equivalen
e This is why we introdu
e the notion of unsafe new names. It is de�nedin �gure ??. A new name 
an be unsafe for a binder if it is 
aptured by binders inside the sub-expression, as y is in the above example. The notion of 
apture is formalized by the Capt fun
tionin �gure 7.13. Basi
ally, Captx(e) denotes the set of binding variables lo
ated above o

urren
esof x in e. For instan
e Captx(�y:x) is the set fyg. A new name 
an also be unsafe for a binderwhen it is free in the 
onsidered sub-expression. As an example, renaming x to y in �x:(xy) doesnot preserve meaning.The stru
tural 
ontra
tion relation,  s, de�ned in �gure 7.13, allows to rename a binder, pro-vided the 
orresponding variable renaming is 
orre
t on the 
onsidered expression. The stru
turalredu
tion relation 9 9 Ks is the 
ontextual 
losure of the stru
tural 
ontra
tion relation. These tworelations are symmetri
, and therefore the transitive 
losure 9 9 Ks� of 9 9 Ks is a 
ongruen
e, 
alledthe stru
tural equivalen
e relation, and also written =s.7.3.2 Semanti
sThe semanti
s of �allo
 , like the one of �Æ, is given in terms of a 
omputational 
ontra
tion relationthat handles rules for the basi
 
onstru
tors and a 
omputational redu
tion relation that handlesglobal rules. As in �Æ, evaluation results are values surrounded by a heap binding:A 2 Answers ::= � ` V:Computational 
ontra
tion relation The 
omputational 
ontra
tion relation is de�ned bythe rules in �gure 7.14, using the notion of lift 
ontexts in �gure 7.15.The Beta rule is a bit unusual, in that it applies a heap allo
ated fun
tion to an argument V .The fun
tion must be a heap binding l 7! �x:E, and the result is Efx 7! V g.165



Lift 
ontext:� ::= 2E j V 2 j 2:X j f�gj let x = 2; B in e Re
ord 
ontext:� ::= Sv ; X = 2; SMultiple lift 
ontext:� ::= 2 j �[�℄Figure 7.15: Evaluation 
ontexts of �allo
� ` E 
 �0 ` E0� ` �[E℄ 9 9 K
 �0 ` �[E0℄ (Context)� ` let x = V;B in E 9 9 K
 � ` (let B in E)fx 7! V g (Let)� ` let � in E 9 9 K
 � ` E (EmptyLet) l =2 (FV(�nflg) [ dom(�nflg) [ FV(E))� ` E 9 9 K
 �nflg ` E (GC)� ` let B1 in let B2 in E 9 9 K
 � ` let B1; B2 in E (EM)Figure 7.16: Computational redu
tion in �allo
The Proje
t rule works similarly: it proje
ts a name X out of a heap allo
ated re
ord l 7! fSvg,where Sv is a �nite set of evaluated re
ord �eld de�nitions of the shape X1 = V1 : : : Xn = Vn. Theresult is Sv(X) (i.e. Vi is X = Xi).The Allo
ate rule is one of the key points of �allo
 . It states that a value blo
k Hv evaluatesinto a fresh heap lo
ation 
ontaining Hv, and a pointer to it: � + fl 7! Hvg ` l (l fresh). If Hv isa dummy blo
k allo
n, the result is a dummy blo
k on the heap.The Update rule 
opies the 
ontents of a heap blo
k on to another one. If the lo
ations l1 and l2are respe
tively bound to blo
ks Hv1 and Hv2 in the heap �, then � ` update l1 l2 will evaluate to�hl1 7! Hv2i ` fg.Finally, as in �Æ, the evaluation of bindings is 
on�ned to the toplevel of terms, when
e the Liftrule, whi
h lifts a binding outside of a lift 
ontext. In �allo
 , lift 
ontexts are of the shape� ::= 2E j V 2 j 2:X j f�g j let x = 2; B in e;where � ranges over re
ord 
ontexts, of the shape � ::= Sv; X = 2; S.Computational redu
tion relation The 
omputational redu
tion relation is de�ned in �gure7.16.The Context rule shifts the 
ontra
tion relation to a multiple lift 
ontext. Lift 
ontexts have beende�ned in the last paragraph, and multiple lift 
ontexts are simply series of nested lift 
ontexts.The Let rule des
ribes the toplevel evaluation of bindings. On
e the �rst de�nition is evaluated,the binding variable is repla
ed with the obtained value in the rest of the expression. Eventually,when the binding is empty, it 
an be removed with rule EmptyLet.By rule GC, when a heap binding is not used by any other binding than itself, and not used eitherby the expression, it may be removed.Finally, the EM rule states that it is equivalent to evaluate two bindings in su

ession, or toevaluate their union. 166



7.3.3 The �allo
 
al
ulus and its 
on
uen
eThe set of terms of the �allo
 
al
ulus is the set of equivalen
e 
lasses for =s. The 
omputationalredu
tion relation on expressions is 
ompatible with =s, so we may extend it to terms, to obtainthe redu
tion relation �!.De�nition 19 The �allo
 
al
ulus is the set of terms, equipped with the relation �!.Unlike in �Æ, the redu
tion of �allo
 is not deterministi
 be
ause of rules GC and EM. Rule GC
an apply at any time, and rule EM gives a 
hoi
e between two out
omes when two su

essivebindings are en
ountered. It is therefore important to make sure that �allo
 is 
on
uent. Let C�!be the relation de�ned by the rules Context, Let, and EmptyLet. It is syntax dire
ted, andtherefore deterministi
.We �rst prove the following proposition, whi
h is also des
ribed by the following diagram, wherethe plain arrows are universally quanti�ed, and the dotted ones are existentially quanti�ed.C EM
  A

AA
AA

AA
AA

AA
AA

AA
AC

~~}}
}}

}}
}}

}}
}}

}}
}}C1 EM �   

C2C
~~EM�~~C 0Proposition 9 For all 
on�gurations C, C1, and C2 su
h that C C�! C1 and C EM�! C2, thereexists a 
on�guration C 0 su
h that C1 EM�!� C 0 and C2 C�! EM�!� C 0.ProofIf C EmptyLet�! C1, the two obtained 
on�gurations are identi
al. If C C�! C1 by rule Let, thenthe two redu
tions simply 
ommute. If C Context�! C1, then we have to examine the underlying
ontra
tion step C 
C1. In all 
ases but one, the two redu
tion steps simply 
ommute. The onlyproblemati
 
ase is when the applied rule is Lift. We have C = � ` �[E℄, with E = �[let B in E1℄,and C1 = � ` �[let B in �[E1℄℄.� If � ::= 2F j V 2 j f�g j 2:X , as rule EM applies on C, we must have � of the shapelet x = �1; B1 in let B2 in F 0. ThereforeC1 = � ` let x = �1[let B in �[E1℄℄; B1 in let B2 in F 0;and C2 = � ` let x = �1[�[let B in E1℄℄; B1; B2 in F 0:Let C 0 = � ` let x = �1[let B in �[E1℄℄; B1; B2 in F 0:We obtain easily that C1 and C2 both redu
e to C 0, in one step of EM�! and Lift�!, respe
tively,whi
h is as expe
ted. 167



� If � = let x = 2; B1 in F , then � might still be of the shape letx = �1; B01 in letB2 inF 0,in whi
h 
ase the previous reasoning applies. If it is not of this shape, then the let binding
ontained in � is part of the EM redex, so � = 2, and F is of the shape let B2 in F 00. So,we have a diagram of the shape:� ` letx = (let B in E1); B1in letB2inF 00 Lift //

EM
��

� ` letB inletx = E1; B1 inlet B2 in F 00EM
��� ` letB; x = E1; B1 inlet B2 in F 00EM
��� ` let x = (let B in E1);B1; B2inF 00 Lift //

� ` letB inletx = E1; B1; B2inF 00 EM // � ` letB; x = E1; B1; B2inF 00
2This result extends by a simple indu
tion to the following 
orollary, pi
torially des
ribed by thefollowing diagram. C EM �  AAAAAAAAAAAAAAAAC

~~}}
}}

}}
}}

}}
}}

}}
}}C1 EM �   

C2C
~~EM�~~C 0

Corollary 7 For all 
on�gurations C, C1, and C2 su
h that C C�! C1 and C EM�!� C2, there existsa 
on�guration C 0 su
h that C1 EM�!� C 0 and C2 C�! EM�!� C 0.
Then, the relation CEM�! is de�ned as C�!, extended with rule EM. Formally, CEM�!= C�! [ EM�!.Thanks to the previous 
orollary, we prove that the CEM�! relation is 
on
uent. This is done by
onsidering the relation CEM�! EM�!�, whi
h is strongly 
on
uent. In other terms for any two redu
tionsteps C CEM�! EM�!� C1 and C CEM�! EM�!� C2, there exist a 
on�guration C 0 and two redu
tion steps168



C1 CEM�! EM�!� C 0 and C2 CEM�! EM�!� C 0. A pi
torial view of this is given by the following diagram:C CEM
  A

AA
AA

AA
ACEM

~~}}
}}

}}
}}EM� ~~~~~~~~~~ EM�  @@@@@@@@C1CEM

  

C2CEM
~~EM �   EM�~~C 0Proposition 10 The relation CEM�! EM�!� is strongly 
on
uent.Proof To prove this last statement, we pro
eed by 
ase on the CEM rules applied, from C, torea
h C1 and C2, respe
tively. If the two rules are EM, then as this relation is deterministi
, we
on
lude easily, and similarly if the two redu
tions are C�! steps. The only relevant 
ase is whenone redu
tion is a C�! step, say C C�! C1, and the other is in EM�!.In this 
ase, we have C C�! C 01 EM�!� C1. By the previous 
orollary, we obtain a C 02 su
h thatC2 CEM�! EM�!� C 02. Then, by 
on
uen
e of the deterministi
 relation EM�!, we obtain C 0 su
h thatC 01 EM�!� C 0 and C 02 EM�!� C 0. This 
on�guration is also su
h that C1 and C2 redu
e to it by relationCEM�! EM�!�, in at most one step.This is depi
ted by the following diagram. CC

~~~~
~~

~~
~~

~~
~~

~~
~~ EM �  @@@@@@@@@@@@@@@@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@

C 01EM�~~~~~~~~~~~~~~~~~~ EM ���C1
EM �  

C2C
~~EM���C 02EM�~~C 0169



2Corollary 8 (Con
uen
e of �allo
) The �allo
 
al
lulus is 
on
uent.7.4 Translation7.4.1 Generalized 
ontexts in �allo
The purpose of this paper is to prove that �Æ 
an be faithfully translated into �allo
 . A desiredproperty for this translation, in order to make the proof of 
orre
tness easier, is that a result istranslated as a result, not needing any additional 
omputation. However, a simple abstra
tion su
has �x:x is a value of �Æ, and 
ould be translated as su
h in �allo
 , but is not a result of �allo
 . The
orre
t translation is rather the 
on�guration fl 7! �x:xg ` l. The drawba
k of su
h a method isthat the translation is no longer 
ompositional, at least in the usual sense. Indeed, the translationof an appli
ation su
h as (�x:x)(�x:x) is not the appli
ation of the translation of the fun
tion tothe translation of the argument.De�nitionIn order to over
ome this diÆ
ulty, we introdu
e a non-standard notion of 
ontexts in �allo
 , whi
htake as an argument 
on�gurations, rather than just expressions. Con�gurations are pairs of aheap and a multiple lift 
ontext, and the appli
ation of a 
ontext � ` � to a 
on�guration �0 ` Eis � +�0 ` �[E℄.We are not done yet. We have indeed seen that results in �Æ 
an be of the shape bv ` v. We imaginethat bv will be translated as the heap, roughly. But heaps of �allo
 only 
ontain heap blo
ks, i.e.dummy blo
ks, fun
tions or evaluated re
ords. Therefore, in the 
ase where bv 
ontains de�nitionsof the shape x = y for example (or x = 1 if we had 
onstants), we have to �nd another solution.Furthermore, this solution has to take into a

ount the asymmetry of let re
 in �Æ. Indeed, theheap x = y; z = x in fa
t maps both x and z to the value y. Our solution is to retain the partof �Æ heaps that 
annot be in
luded in �allo
 heaps as substitutions. For instan
e, the �Æ bindingx = y; z = x is translated as the substitution fz 7! xg Æ fx 7! yg (re
all that 
omposition ofsubstitution is \left to right").But then, 
ontexts again be
ome a bit more 
ompli
ated, be
ause they must in
lude a substitutionpart. Indeed, the �Æ 
ontext x = y; z = x ` 2 does not 
orrespond to any standard evaluation
ontext in �allo
 . Instead, we have to de�ne a stronger kind of evaluation 
ontexts, in
luding aheap �, a standard 
ontext �, and a substitution �. We write them � ` �[�℄, and denote themby 	.Applying a 
ontext to a 
on�guration is valid if the two heaps de�ne disjoint sets of lo
ations, andif the substitution 
arried by the 
ontext is 
orre
t for the 
on�guration, in the following sense.De�nition 20 (Substitution 
orre
tness) A substitution � is 
orre
t for an expression E i�8x 2 dom(�); �(x) =2 Captx(E):This de�nition extends straightforwardly to heaps and 
on�gurations. Fortunately, when the pro-posed substitution is not 
orre
t for the 
onsidered 
on�guration, stru
tural equivalen
e allowsto rename all the problemati
 binders in it, and �nd an equivalent 
on�guration for whi
h thesubstitution is 
orre
t.Similarly, the 
omposition 	1 Æ	2 of two 
ontexts 	i = �i ` �i[�i℄ is �1 +�2 ` �1[�2℄[�2 Æ �1℄,provided the substitution �2Æ�1 is 
orre
t for the heap �1+�2 and the 
ontext �1[�2℄. But again,stru
tural equivalen
e always allows to �nd 
orre
t equivalent 
ontexts (sin
e binders in 
ontextsare not in position to 
apture the pla
eholder).170



PropertiesIn this se
tion, we prove some properties of stability of the redu
tion relation inside 
ontexts. Notevery redu
tion step is valid inside 
ontexts, sin
e for instan
e the Let and EmptyLet are onlyvalid at toplevel. However, we will see that inside 
ontexts of the shape � ` 2[�℄, redu
tion ispreserved.We �rst prove that 
ontra
tion is preserved under 
orre
t substitution.Proposition 11 If C1 
 C2 and � is 
orre
t for C1 and C2, then C1f�g 
 C2f�g.Proof By 
ase on the applied 
ontra
tion rule. Let Ci = �i ` Ei, for i = 1; 2.Beta. Then E1 = lV , and �1 = �2, and �1(l) = �x:E. We have E1f�g = l(V f�g), and as � is
orre
t, (�x:E)f�g = �x:(Ef�g). So �1f�g ` l(V f�g) 
 �2f�g ` Ef�gfx 7! (V f�g)g. As� is 
orre
t for C1, x is not in the domain or 
odomain of �, so � Æ fx 7! (V f�g)g = fx 7!V g Æ �, and therefore C1f�g 
 �2f�g ` E2f�g.Allo
ate, Update, Proje
t. Similar.Lift We again have �1 = �2, with E1 = �[let B in E℄ and E2 = let B in �[E℄. By the side
ondition on the Lift rule, we also know that dom(B) ? FV(�). By hypothesis, we �nallyhave dom(B) disjoint from the domain and 
odomain of �.So, C1f�g = �1f�g ` �f�g[let Bf�g in Ef�g℄, whi
h redu
es to�1f�g ` letBf�g in�f�g[Ef�g℄, as expe
ted.2This property extends to 
omputational redu
tion.Proposition 12 If C1 �! C2 and � is 
orre
t for C1 and C2, then C1f�g �! C2f�g.Proof By 
ase on the applied rule. Let again Ci = �i ` Ei, for i = 1; 2.Context. By appli
ation of the previous proposition.EmptyLet. Trivial.Let. We have C1 = �1 ` let x = V;B in E, and C2 = �1 ` let Bfx 7! V g in Efx 7! V g. So,C1f�g = �1f�g ` let x = (V f�g); Bf�g in (Ef�g);whi
h redu
es to�1f�g ` let Bf�gfx 7! (V f�g)g in (Ef�gfx 7! (V f�g)g);but as x is not in the domain or 
odomain of �, the substitution � Æ fx 7! (V f�g)g is equalto fx 7! V g Æ �, so C1f�g redu
es to�1f�g ` let Bffx 7! V g Æ �g in (Effx 7! V g Æ �g);whi
h is exa
tly C2f�g.2Now, we prove that redu
tion by the Context rule is preserved inside any evaluation 
ontext.171



Evaluation 
ontext:	 ::= � ` �[�℄Restri
ted evaluation 
ontext:� ::= � ` 2[�℄ Figure 7.17: Evaluation 
ontexts in �allo
Proposition 13 If C1 Context�! C2, then for any 
ontext 	, 	[C1℄ Context�! 	[C2℄.Proof Let C1 = �1 ` E1, C2 = �2 ` E2, C 01 = 	[C1℄, C 02 = 	[C2℄, and 	 = � ` �[�℄. Let usassume w.l.o.g. that � is 
orre
t for the 
onsidered obje
ts. Then, C 01 = (�1 +�)f�g ` �[E1℄f�gand C 02 = (�2 +�)f�g ` �[E2℄f�g.Let us prove �rst that C 001 Context�! C 002 , with C 001 = (�1 +�) ` �[E1℄ and C 002 = (�2 + �) ` �[E2℄.As we know, C1 redu
es to C2 by rule Context, so in fa
t, E1 = �[E01℄, E2 = �[E02℄, and theproof of C1 �! C2 is of the shape: �1 ` E01 
 �2 ` E02C1 �! C2But it is trivial that 
ontra
tion rules are not a�e
ted by additional bindings in the heap, so weobtain easily that � +�1 ` E01 
 �+�2 ` E02Then, by rule Context, we have C 001 �! C 002 :Finally, by proposition 12, we dedu
e thatC 001 f�g �! C 002 f�g;whi
h is the expe
ted result.2Now, we would like a similar property to be true with any redu
tion, but we have seen that itdoes not hold be
ause of the toplevel nature of the LetRe
 rule. However, we have a slightlyproperty, with 
ontexts of the shape � ` 2[�℄, whi
h we denote by the meta-variable �, and 
allweak evaluation 
ontexts. (The two notions of 
ontexts introdu
ed in this se
tion are re
alled in�gure 7.17.) A toplevel redu
tion remains toplevel inside a weak evaluation 
ontext.Proposition 14 If C1 �! C2, then �[C1℄�! �[C2℄.7.4.2 De�nition of the two translationsThis se
tion des
ribes the translation. It 
onsists in fa
t in two translations. The �rst one, 
alledthe standard translation, is very intuitive, but not easily proved 
orre
t. The se
ond one is mu
hless intuitive, but is easier to prove 
orre
t. The key te
hni
al point is that the standard translation172



Translation of expressions:JxK = xJ�x:eK = �x:JeKJe1e2K = Je1KJe2KJf : : : Xi = ei : : : gK = f : : : Xi = JeiK : : : gJe:XK = JeK:XJlet re
 b in eK = let Dummy(b);Update(b) in JeKDummy pre-allo
ation of bindings:Dummy(�) = �Dummy(x = e; b) = (x = allo
n;Dummy(b)) if Size(e) = nDummy(x = e; b) = Dummy(b) if Size(e) = [?℄Computation of bindings:Update(�) = �Update(x = e; b) = (y = (updatexJeK);Update(b)) if Size(e) = n, with y freshUpdate(x = e; b) = (x = JeK;Update(b)) if Size(e) = [?℄Figure 7.18: Translation (standard translation)redu
es to the se
ond translation, without using the Beta or Proje
t rules, and therefore withoutperforming any real 
omputation.Both translations rely on a fun
tion Size from to �Æ expressions to N [ f[?℄g. This fun
tion issupposed to guess the size of the result of the translation of its argument. We assume that the sizeof any expression of predi
table shape is known, and moreover that the size of variables is unde�ned.In other words, for any e# 2 Predi
table, Size(e#) 6= [?℄, and for any variable x, Size(x) = [?℄.The standard translation The standard translation is de�ned in �gure 7.18. It is almost dire
tfor variables, fun
tions, appli
ations, and re
ord operations, but the translation of bindings is moreintri
ate. The translation of a binding b is the 
on
atenation of two bindings in �allo
 . The �rst ofthem is 
alled the pre-allo
ation binding, and gives instru
tions to allo
ate dummy blo
ks on theheap for de�nitions of known size. The se
ond binding is 
alled the update binding. It 
omputesde�nitions, and alternatively updates the previously pre-allo
ated dummy blo
ks for de�nitionsof known sizes, or simply binds the result for de�nitions of unknown sizes. As announ
ed, thistranslation does not map results to results. A simple example is �x:x, whi
h is translated as �x:x.To rea
h a result, this translation still has to redu
e to the 
on�guration fl 7! (�x:x)g ` l.The se
ond translation, named the TOP translation, performs all this kind of redu
tions at themeta-level, in order to asso
iate results to results. As a 
onsequen
e, it asso
iates �allo
 
on�gura-tions to �Æ expressions, and �allo
 
on�gurations to �Æ 
on�gurations. It is de�ned in �gures 7.19and 7.20.The TOP translation The idea is that the TOP translation is used until the 
urrent point ofevaluation in the expression, and beyond that point, the standard translation is used.Variables are still translated as variables. A fun
tion �x:e is translated as with the standardtranslation, i.e. �x:JeK, but the result is allo
ated on the heap, at a fresh lo
ation l: fl 7! �x:JeKg `l. 173



Translation of expressions as 
on�gurations:JxKTOP = ; ` xJ�x:eKTOP = fl 7! �x:JeKg ` lJfsvgKTOP = �+ fl 7! fSvgg ` l for JsvKTOP = � ` SvJfsv ; X = e; sgKTOP = �1 +�2 ` fSv; X = E; JsKg for 8<: e =2 valuesJsvKTOP = �1 ` SvJeKTOP = �2 ` EJveKTOP = �1 +�2 ` V E for � JvKTOP = �1 ` VJeKTOP = �2 ` EJe1e2KTOP = � ` EJe2K for � e1 =2 valuesJe1KTOP = � ` EJe:XKTOP = � ` E:X for JeKTOP = � ` EJlet re
 b in eKTOP = � JbKTOP[; ` JeK℄ if b is not evaluatedJbKTOP[JeKTOP℄ otherwiseTranslation of 
on�gurations:Jb ` eKTOP = Jlet re
 b in eKTOPTranslation of bindings and evaluated re
ords:Jbv ; bKTOP = TDum(b) ÆTOP(bv) ÆTUp(b) where b 6= (x = v; b0)JX1 = v1 : : :Xn = vnKTOP = ℄1�i�n�i ` (X1 = V1 : : :Xn = Vn)with 8i; JviKTOP = �i ` ViFigure 7.19: The TOP translation (�rst part)
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Translation of evaluated bindings: Ev. binding ! (heap � substitution � variable allo
ation)TOP(�) = ; ` (id ; id )TOP(x = v; bv) = � ` (� Æ fx 7! V g; �) if 8<: Size(v) = [?℄JvKTOP = ; ` VTOP(bv) = � ` (�; �)TOP(x = v; bv) = � ` (�; � [ fx 7! lg) if 8<: Size(v) = nJvKTOP = � ` lTOP(bv) = � ` (�; �)A
tual dummy pre-allo
ation: Binding ! (heap � variable allo
ation)TDum(�) = ; ` idTDum(x = e; b) = TDum(b) if Size(v) = [?℄TDum(x = e; b) = �+ fl 7! allo
ng ` � [ fx 7! lg if � Size(v) = nTDum(b) = � ` �A
tual 
omputation of bindings: Binding ! (heap � binding of �allo
)TUp(�) = ; ` �TUp(x = e; b) = �1 +�2 ` x = E;B if 8<: Size(v) = [?℄JeKTOP = �1 ` ETUp(b) = �2 ` BTUp(x = e; b) = �1 +�2 ` y = (updatexE); B if 8>><>>: Size(v) = nJeKTOP = �1 ` ETUp(b) = �2 ` By freshFigure 7.20: The TOP translation (
ontinued): bindings
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An evaluated re
ord takes the translations of its �elds and puts them in a re
ord allo
ated on theheap at a fresh lo
ation l: � + fl 7! fSvgg ` l. Here, � ` Sv is the translation of the re
ord sv,de�ned in �gure 7.19. If sv = (X1 = v1 : : : Xn = vn), and for ea
h i, JviKTOP = �i ` Vi, then� ` Sv = ℄1�i�n�i ` (X1 = V1 : : : Xn = Vn).When the re
ord is not fully evaluated, it is not yet allo
ated on the heap. It is divided into itsevaluated part sv, and the rest X = e; s. sv is translated as for evaluated re
ords, into �1 ` Sv.The �eld e is translated with the TOP translation, into �2 ` E, and s is translated with thestandard translation. We denote by JsK the re
ord s, translated with the standard translation.Fun
tion appli
ation works like re
ords: if the fun
tion part is not a value, then it is translatedwith the TOP translation, while the argument is translated with the standard translation. If thefun
tion is a value, then both parts are translated with the TOP translation.The translation of a re
ord sele
tion e:X 
onsists in translating e with the TOP translation, andthen sele
ting the �eld X .TOP translation of bindings The translation of bindings is more 
ompli
ated. As for re
ords,the binding is divided into its evaluated part bv and the rest b, whi
h 
an be empty, but does notbegin with a value.The rest of the binding b, is translated as follows. The pre-allo
ation pass, in the standard trans-lation, 
onsists in giving instru
tions for allo
ating dummy blo
ks. Here, these blo
ks are dire
tlyallo
ated by the fun
tion TDum, whi
h returns the heap of dummy blo
ks, and the substitutionrepla
ing variables with the 
orresponding lo
ations. The update pass, in the standard transla-tion, 
onsists in either updating a dummy blo
k with the translation of the de�nition, or simplybinding it. Here, it is almost the same, ex
ept that the �rst de�nition is translated with the TOPtranslation, while the remaining ones are translated with the standard translation. The TUp is in
harge of these operations.Roughly, the binding bv is translated as a heap and a substitution, by the TOP fun
tion. De�nitionsof unknown size x = v yield a translation of the shape ; ` V , and are in
luded in the translationas a substitution x 7! V . De�nitions of known size x = v are translated as a heap and a variableallo
ation: v has a translation of the shape � ` l, and it is in
luded in the translation of bv as �,and the allo
ation x 7! l.In pra
ti
e, it is useful to distinguish substitutions 
oming from de�nitions of unknown size, whi
h
an be of any shape, from substitutions 
oming from de�nitions of known size, whi
h are allo
ations,and therefore have the shape x 7! l. Indeed, when putting the results together, it is importantto take the order into a

ount, for de�nitions of unknown size. For instan
e, a binding su
h asy = z; x = y generates two substitutions y 7! z and x 7! y, but the �rst one must be performed last.This is why, a

ording to the de�nition of TOP, the result would be fx 7! ygÆfy 7! zg. This worksbe
ause synta
ti
ally, de�nitions of unknown size 
an only be mentioned by subsequent de�nitionsin the binding. However, de�nitions of known size 
an be mentioned by previous de�nitions. Thekey is that the substitutions they generate are allo
ations, so they are not modi�ed by othersubstitutions, and 
an be performed right in the end. Formally, the translation of bv is a heap �,a substitution �, 
orresponding to the de�nitions of unknown size, and an allo
ation �, giving thelo
ations allo
ated in � for the de�nitions of known size. Semanti
ally, it 
orresponds to a heap� and the substitution � Æ �, and will be used as su
h.The three fun
tions for translating bindings, TDum, TUp, and TOP, 
an be viewed as 
ontexts.The TDum returns a heap � and an allo
ation �, and it forms a 
ontext � ` 2[�℄. The TUpfun
tion returns a heap � and a binding B, whi
h form a 
ontext � ` let B in 2[id ℄. TheTOP fun
tion returns a heap �, a substitution �, and an allo
ation �, and it forms a 
ontext� ` 2[� Æ �℄. Noti
e that the 
ontext 
orresponding to TUp is not an evaluation 
ontext. In
ase the whole binding bv; b is evaluated (i.e. b is empty), then the 
ontexts for pre-allo
ation176



and update, TDum(b) and TUp(b) are empty, and the translation of let re
 bv; b in e is the TOPtranslation of e, JeKTOP, put in the 
ontext TOP(bv). Otherwise, the translation of let re
 bv; b in eis the standard translation of e, put in the 
ontext TDum(b) ÆTOP(bv) ÆTUp(b).7.4.3 Relating the two translationsAn interesting fa
t is that the standard translation of any expression redu
es to its TOP translation,in any 
ontext. The proof of this property is in three steps. First, we prove it for values. Then, weprove that the standard translation of a binding redu
es to its TOP translation. Finally, we provethe expe
ted result.In fa
t, for values, we prove a more powerful result, namely that the standard translation redu
esto the TOP translation, but only by rule Context, with a premise using Allo
ate, whi
h wewrite Context (Allo
ate).We make some additional hypotheses related to the 
orre
tness of the Size fun
tion.Hypothesis 3 For all expressions e; f; e0, for all value v, for all bindings b; b0, for all substitution�, for all 
ontext C :� If Size(e) = n and b ` e�! b0 ` e0, then Size(e0) = n ;� If Size(v) = n, then there exist � and l su
h that JvKTOP = � ` l and Size(�(l)) = n ;� If Size(e) = Size(f) = n, then Size(C [e℄) = Size(C [f ℄).� Size(ef�g) = Size(e) ;� Size(let re
 b in e) = Size(e).Proposition 15 (Translation of values redu
es to TOP) For all 
ontext 	 and for all valuev, 	[; ` JvK℄ �!� 	[JvKTOP℄, only by rule Context (Allo
ate).Proof By indu
tion on v.� v = x, trivial.� v = �x:e. Then JvK = �x:JeK, so in any 
ontext ; ` JvK redu
es in one Context (Allo
ate)step to fl 7! �x:JeKg ` l, whi
h is the TOP translation of v.� v = fX1 = v1 : : :Xn = vng. By indu
tion hypothesis, for any 
ontext 	i, for ea
h i, we have	i[; ` JviK℄�!	i[JviKTOP℄:Let for ea
h i, JviKTOP = �i ` Vi. By a trivial indu
tion on n, we prove that for any 
ontext	, 	[; ` JfX1 = v1 : : : Xn = vngK℄�!� 	[ ℄1�i�n�i ` fX1 = V1 : : :Xn = Vng℄;only by rule Context (Allo
ate). By proposition 13, this 
on�guration in turn redu
esby rule Context (Allo
ate) to	[ ℄1�i�n�i + fl 7! fX1 = V1 : : : Xn = Vngg ` l℄;whi
h is exa
tly JvKTOP.2 177



Corollary 9 For all weak evaluation 
ontext �, expression E, and binding b of the shape b = (x =v; b0), � ÆUpdate(b)[; ` E℄�!� � ÆTUp(b)[; ` E℄Proof We know that � ÆUpdate(b)[; ` E℄ = �[let y = �[JvK℄;Update(b0) in E℄,where (y;�) = � (x;2) if Size(v) = [?℄(z; updatex 2) otherwise (z fresh):This expression 
an be seen as 	[; ` v℄ for some 	. By proposition 15, it redu
es to 	[JvKTOP℄,so we obtain � Æ let y = �;Update(b0) in E[JvKTOP℄, whi
h is exa
tly � ÆTUp(b)[; ` E℄. 2Now, let us have a look at the translation of bindings. The TOP translation splits the bindingsin two, a

ording to the �rst non-value de�nition. But of 
ourse, one 
ould split at another point,provided the �rst part 
ontains only values. Indeed, the �rst part is given as an argument to theTOP fun
tion, whi
h is de�ned only on evaluated bindings, whereas the se
ond part is given as anargument to the TDum and TUp fun
tions, whi
h work as well on value and non-value de�nitions.We 
all a partial translation of a binding b = bv; bv 0; b0 its TOP translation, 
omputed as if bv 0 wasnot evaluated, i.e. TDum(bv 0; b0) Æ TOP(bv) Æ TUp(bv 0; b0). We prove that any partial translationredu
es to the TOP translation. We pro
eed in three main steps: �rst, we prove that the pre-allo
ation pass is performed at the obje
t level by the 
ode generated by the Dummy fun
tion,and at the meta level by the TDum fun
tion, in the same way ; then we prove a similar propertyfor the fun
tions Update and TUp ; and we eventually 
onne
t the two to prove the whole desiredproperty.Proposition 16 (Dummy) For all binding B, for all weak evaluation 
ontext �,�[; ` let Dummy(b); B in E℄�!� (� ÆTDum(b))[; ` let B in E℄:Proof By indu
tion on b. If b is empty, then there is nothing to prove. Otherwise, we are in oneof the following 
ases.� b = (x = e; b0), with Size(e) = [?℄. Then Dummy(b) = Dummy(b0) and TDum(b) =TDum(b0), so by indu
tion hypothesis, we obtain the expe
ted result.� b = (x = e; b0), with Size(e) = n. Then Dummy(b) = (x = allo
n;Dummy(b0)). LetTDum(b0) = � ` �, we have TDum(b) = � + fl 7! allo
ng ` � [ fx 7! lg, for a freshl. Let � be a weak evaluation 
ontext, and E0 = �[let Dummy(b); B in E℄. We haveE0 = �[; ` let x = allo
n;Dummy(b0); B in E℄. By rule Context (Allo
ate), wehave E0 �! �[fl 7! allo
ng ` let x = l;Dummy(b0); B in E℄. By proposition 14, thislast expression redu
es to �[fl 7! allo
ng ` (let Dummy(b0); B in E)fx 7! lg℄. Let �0 =TDum(x = e) = fl 7! allo
ng ` 2[fx 7! lg℄ and �1 = � Æ �0; we 
an view the expression as�1[; ` let Dummy(b0); B in E℄, whi
h by indu
tion hypothesis redu
es to �1[TDum(b0)[; `let B in E℄℄. In other words, we obtain �[TDum(x = e) ÆTDum(b0)[; ` let B in E℄℄, whi
his the expe
ted result, sin
e obviously TDum(x = e) ÆTDum(b0) = TDum(b).2Proposition 17 (Update) Let b = (x = v; b0). For all weak evaluation 
ontext �, for all expres-sion E, we have� ÆTDum(b) ÆTUp(b)[; ` E℄�!� � ÆTDum(b0) ÆTOP(x = v) ÆUpdate(b0)[; ` E℄:Proof 178



� If Size(v) = n, then JvKTOP = �v ` l, and we haveTUp(b) = �v ` y = updatex l;Update(b0);with a fresh y. Alternatively, we 
an 
hoose another fresh lo
ation l0 for the result, and haveJvKTOP = �0v ` l0, with �0v = �vnl + fl0 7! �v(l)g.Let E0 = � ÆTDum(b) ÆTUp(b)[; ` E℄.We have E0 = � ÆTDum(b)[�0v ` let y = updatex l0;Update(b0) in E℄, and also Size(v) = nand TDum(b) = TDum(b0) Æ (fl 7! allo
ng ` fx 7! lg). SoE0 = � ÆTDum(b0)[(�0v + fl 7! allo
ng ` let y = updatex l0;Update(b0) in E)fx 7! lg℄:But by hypothesis 3, Size(�0v(l0)) = n, so rule Update applies, and E0 redu
es to� ÆTDum(b0)[(�0v + fl 7! �0v(l0)g ` let y = fg;Update(b0) in E)fx 7! lg℄;and then, as y is fresh, by rule Let to� ÆTDum(b0)[(�0v + fl 7! �0v(l0)g ` let Update(b0) in E)fx 7! lg℄:But the lo
ation l0 is not used anymore, so by rule GC, the obtained expression redu
es to� ÆTDum(b0)[(�0vnl0 + fl 7! �0v(l0)g ` let Update(b0) in E)fx 7! lg℄:And �nally, we noti
e that �0vnl0 + fl 7! �0v(l0)g = �v, so E0 redu
es to� ÆTDum(b0)[(�v ` let Update(b0) in E)fx 7! lg℄= � ÆTDum(b0) ÆTOP(x = v)[; ` let Update(b0) in E℄= � ÆTDum(b0) ÆTOP(x = v) ÆUpdate(b0)[; ` E℄:� If Size(v) = [?℄, then there exists a y su
h that JvKTOP = ; ` y, soTUp(b) = ; ` x = y;Update(b0):Let E0 = � ÆTDum(b) ÆTUp(b)[; ` E℄.We have E0 = � ÆTDum(b)[; ` let x = y;Update(b0) in E℄,and by rule Let, by proposition 14, E0�!� ÆTDum(b)[; ` (let Update(b0) in E)fx 7! yg℄.But TOP(x = v) = TOP(x = y) = ; ` (x 7! y; id), so E0�!� ÆTDum(b) ÆTOP(x = v)[; `let Update(b0) in E℄, whi
h is the expe
ted result.2Proposition 18 (Pre-allo
ated lo
ations are de�nitive) If TDum(bv) = �1 ` �1, thenthere exist �2; �2; �2 su
h that TOP(bv) = �2 ` (�2; �2) and �1 = �2.In the following proposition, we 
onsider a substitution � as a 
ontext ; ` 2[�℄.Proposition 19 (De
omposition of the translation of evaluated bindings) Let bv = (x =v; bv 0) and TDum(bv 0) = �bv0 ` �bv 0 . We haveTOP(bv) = �bv 0 ÆTOP(x = v) ÆTOP(bv 0):179



Proof Let TOP(x = v) = �v ` (�v ; �v), and TOP(bv 0) = � ` (�; �). We have TOP(bv) =�v + �bv0 ` (� Æ �v ; � [ �v). By proposition 18, we 
an 
hoose �; �, and � su
h that � = �bv 0 .Then, �bv 0 ÆTOP(x = v) ÆTOP(bv 0)= �+�v ` � Æ � Æ �v Æ �v Æ �bv 0= �+�v ` � Æ �bv 0 Æ �v Æ �v Æ �bv 0But �v and �bv 0 have disjoint domains and 
odomains, so they 
ommute and we obtain�bv 0 ÆTOP(x = v) ÆTOP(bv 0)= �+�v ` � Æ �bv 0 Æ �v Æ �bv 0 Æ �vFurthermore, �bv 0 and �v also have disjoint domains and 
odomains, so they 
ommute. Finally,�bv 0 is idempotent, so �bv 0 ÆTOP(x = v) ÆTOP(bv 0)= �+�v ` � Æ �v Æ �bv 0 Æ �v= �+�v ` (� Æ �v) Æ (�bv 0 [ �v)= TOP(bv)2Proposition 20 (Commuting 
ontexts) Let �1 = �1 ` 2[�1℄ and �2 = �2 ` 2[�2℄. Ifdom(�2) ? �1 and �21 = �1, then �1 Æ �2 = �1 Æ �2 Æ �1.Proof This property is simple, provided �2 Æ �1 = �1 Æ �2 Æ �1. Re
all that dom(�2) ? �1. Weprove that the two total fun
tions � = �2 Æ �1 and �0 = �1 Æ �2 Æ �1 from variables to values arepointwise equal.� On x 2 dom(�2), by hypothesis x =2 dom(�1), so we have �0(x) = xf�1gf�2gf�1g =xf�2gf�1g = �(x).� On x =2 dom(�2), distinguish the two 
ases.{ If x 2 dom(�1), then �(x) = xf�2gf�1g = xf�1g. But by hypothesis �1(x) 2 
od(�1) ?dom(�2), so �0(x) = xf�1gf�2gf�1g = �1(x)f�2gf�1g = �1(x)f�1g = xf�21g = xf�1g =�(x):{ If x =2 dom(�1), then �(x) = x = �0(x).2Corollary 10 Let bv = (bv1; bv2) be a synta
ti
ally 
orre
t binding. Let TDum(bv2) = �2 ` �2.We have �2 ÆTOP(bv1) Æ �2 = �2 ÆTOP(bv1).Proof Let TOP(bv1) = �1 ` (�1; �1). By proposition 20, it is enough to prove dom(�1 Æ �1) ? �2and �22 = �2. But we have dom(bv1) ? dom(bv2), so dom(�1 Æ �1) ? dom(�2). Moreover, 
od(�2)
ontains only lo
ations, whereas dom(�1 Æ �1) 
ontains only variables, so 
od(�2) ? dom(�1 Æ �1).Finally, as all variable allo
ations, �2 is idempotent. 2Corollary 11 Let bv = (bv1; bv2) and TDum(bv2) = �2 ` �2. We haveTOP(bv) = �2 ÆTOP(bv1) ÆTOP(bv2):Proof By indu
tion on bv1.� bv1 = �, be
ause �2 is idempotent. 180



� bv1 = (x = v; bv 01). Let bv 0 = bv 01; bv2, TDum(bv 0) = �0bv0 ` �bv 0 , and TDum(bv 01) = �0bv 01 `�bv 01 . By de�nition of TDum, we have �bv 0 = �bv 01 [ �2. Then, we 
an 
al
ulateTOP(bv) = �bv 0 ÆTOP(x = v) ÆTOP(bv 0) (by lemma 19)= �bv 0 ÆTOP(x = v) Æ �2 ÆTOP(bv 01) ÆTOP(bv2)(by indu
tion hypothesis)= �bv 01 [ �2 ÆTOP(x = v) Æ �2 ÆTOP(bv 01) ÆTOP(bv2)= �bv 01 Æ �2 ÆTOP(x = v) Æ �2 ÆTOP(bv 01) ÆTOP(bv2)= �bv 01 Æ �2 ÆTOP(x = v) ÆTOP(bv 01) ÆTOP(bv2)(by proposition 10)= �2 Æ �bv 01 ÆTOP(x = v) ÆTOP(bv 01) ÆTOP(bv2)= �2 ÆTOP(bv1) ÆTOP(bv2) (by proposition 19)2Proposition 21 (TOP Update pass) For all weak evaluation 
ontext �, and 
on�guration C,� ÆTDum(bv ; b) ÆTUp(bv ; b)[C℄�!� � ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[C℄:Proof By indu
tion on bv. If bv = �, there is nothing to prove. Otherwise, let bv = (x = v; bv 0).By proposition 17,� ÆTDum(bv; b) ÆTUp(bv; b)[C℄�!� � ÆTDum(bv 0; b) ÆTOP(x = v) ÆUpdate(bv 0; b)[C℄:But by 
orollary 10, this is equal to� Æ � ÆTOP(x = v) ÆTDum(bv 0; b) ÆUpdate(bv 0; b)[C℄;where TDum(bv 0; b) = � ` �.By indu
tion hypothesis, we know that the obtained expression redu
es to� Æ � ÆTOP(x = v) ÆTDum(b) ÆTOP(bv 0) ÆUpdate(b)[C℄:But if we let TDum(bv 0) = �1 ` �1 and TDum(b) = �2 ` �2, we have � = �1 [ �2, so� Æ � ÆTOP(x = v) ÆTDum(b) ÆTOP(bv 0) ÆUpdate(b)[C℄= � Æ �1 Æ �2 ÆTOP(x = v) ÆTDum(b) ÆTOP(bv 0) ÆUpdate(b)[C℄= � Æ �1 ÆTDum(b) ÆTOP(x = v) ÆTOP(bv 0) ÆUpdate(b)[C℄( by 
orollary 10 )= � ÆTDum(b) Æ �1 ÆTOP(x = v) ÆTOP(bv 0) ÆUpdate(b)[C℄( be
ause TDum(b) is not modi�ed by any substitution )� ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[C℄ ( by proposition 19 )2Proposition 22 (Update pass) For all weak evaluation 
ontext �, and 
on�guration C,� ÆTDum(bv; b) ÆUpdate(bv; b)[C℄�!� � ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[C℄:Proof By 
orollary 9, we have� ÆTDum(bv ; b) ÆUpdate(bv ; b)[C℄�!� � ÆTDum(bv; b) ÆTUp(bv; b)[C℄:By proposition 21, it further redu
es to � ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[C℄: 2181



Proposition 23 (Partial translation of bindings) For all evaluation 
ontext 	,	[; ` Jlet re
 bv; b in eK℄�!� 	 ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[; ` e℄:Proof Let 	 = � ` �[�℄, and � = � ` 2[�℄. LetE0 = 	[; ` JeK℄ = 	[; ` let Dummy(bv ; b);Update(bv; b) in JeK℄By rule Lift and modulo variable renaming, we haveE0 �!� �[; ` let Dummy(bv; b);Update(bv ; b) in �[JeK℄℄:By proposition 16, this expression redu
es to � ÆTDum(bv; b)[; ` let Update(bv ; b) in �[JeK℄℄.By proposition 22, it in turn redu
es to � ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[�[JeK℄℄, whi
h is equalto 	 ÆTDum(b) ÆTOP(bv) ÆUpdate(b)[JeK℄: 2Lemma 39 (Standard translation redu
es to TOP translation) For all 
ontext 	 and forall expression e, 	[; ` JeK℄�!� 	[JeKTOP℄:Proof By indu
tion on e. If e is a value, we use proposition 15.Appli
ation. Let e = e1e2, 	 be a 
ontext, and E0 = 	[; ` JeK℄ = 	[; ` Je1KJe2K℄. Let alsoJe1KTOP = �1 ` E1. By indu
tion hypothesis, E0 �!� 	[�1 ` E1Je2K℄. If e1 is not a value,this is dire
tly 	[JeKTOP℄. Otherwise, E1 is a value, say V1, and 	0 = 	[�1 ` (V12)[id ℄℄ isan evaluation 
ontext, so by indu
tion hypothesis again, if we let Je2KTOP = �2 ` E2, then	0[; ` Je2K℄�!� 	0[�2 ` E2℄, whi
h is equal to 	[�1 +�2 ` V1E2℄ = 	[JeKTOP℄.Re
ord �eld sele
tion. Simple by indu
tion hypothesis.Re
ord. Let e = fsv ; X = f; sg, where f is not a value. Let JsvKTOP = �1 ` Sv. By a trivialindu
tion on sv, we prove that 	[; ` Jfsv; X = f; sgK℄ �!� 	[�1 ` fSv; X = JfK; JsKg℄.This expression 
an be viewed as 	0[; ` JfK℄, with 	0 = 	[�1 ` fSv; X = 2; JsKg℄. LetJfKTOP = �2 ` F . By indu
tion hypothesis, the above expression redu
es to 	0[�2 ` F ℄,whi
h is equal to 	[�1 +�2 ` fSv; X = F; JsKg℄, and this is the expe
ted result.Binding. Let e = let re
 b in f .1. If b = �, then JbKTOP = ; ` 2[id ℄, so JeKTOP = JfKTOP. So, 	[; ` JeK℄ = 	[; `let � in JfK℄. By rules Lift and then EmptyLet, it redu
es to 	[; ` JfK℄, whi
h byindu
tion hypothesis redu
es to 	[JfKTOP℄, as expe
ted.2. If b = bv, non empty, then JeKTOP = TOP(bv)[JfKTOP℄. We have	[; ` JeK℄= 	[; ` Jlet re
 bv in fK℄�!� 	 ÆTOP(bv)[; ` JfK℄(by proposition 23)�!� 	 ÆTOP(bv)[JfKTOP℄(by indu
tion hypothesis)= 	[JeKTOP℄182



3. If b = bv; b0, with b0 non empty, then JeKTOP = TDum(b0) ÆTOP(bv) ÆTUp(b0)[; ` JfK℄.We have 	[; ` JeK℄= 	[; ` Jlet re
 bv; b0 in fK℄�!� 	 ÆTDum(b0) ÆTOP(bv) ÆUpdate(b0)[; ` JfK℄(by proposition 23)�!� 	 ÆTDum(b0) ÆTOP(bv) ÆTUp(b0)[; ` JfK℄(by indu
tion hypothesis)= 	[JeKTOP℄27.5 Corre
tness7.5.1 Translation of 
ontexts and 
ompositionalityBoth the standard and the TOP translations rely on sizes. In a binding, if a de�nition x = e is ofknown size, then it is translated as the binding y = updatex JeK, whereas otherwise, it is translatedas x = JeK. For this reason, it is not 
ompositional in the usual sense: a straightforward propertysu
h as JE [e℄K = JE K[JeK℄ does not hold. Moreover, there is no straightforward translation for
ontexts: 
onsider let re
 x = 2 in fg for instan
e; should it be translated as if the expression�lling the hole was of known size or unknown size?The TOP translation retains a kind of 
ompositionality though. We de�ne 
omplete 
ontextsin �Æ, as normal 
ontexts, ex
ept that the 
ontext hole is now annotated with a size indi
ation� 2 N [ f[?℄g. Complete 
ontext appli
ation is only valid if the argument as the expe
ted size.Complete 
ontexts are then translated exa
tly as expressions. For this, the de�nition in �gure7.19 is simply extended with J2�KTOP = J2�K = 2, given that a 
ontext hole 2� has size �, andthat it is not a value. Normal 
ontexts are translated, with an additional argument giving the sizeof the 
ontext hole. For instan
e, we write JE KTOP� for JE [2� ℄KTOP. The standard translation is
ompositional for this notion of 
ontexts.Proposition 24 (Compositionality of the standard translation) For all 
ontext E and ex-pression e, JE [e℄K = JE KSize(e)[JeK℄:The translation is 
ompositional with respe
t to this notion of 
ontexts, provided the right sizeindi
ation is 
hosen, and that the expression �lling the hole is not a value. Indeed, in the translationof bindings, a distin
tion is made between evaluated and unevaluated de�nitions, whi
h breaks
ompositionality in this 
ase, be
ause the 
ontext hole is not 
onsidered a value. Fortunately, forvalues, a weaker property of 
ompositionality modulo redu
tion holds, whi
h allows to prove thatthe translation is faithfull.Proposition 25 (Compositionality for lift 
ontexts) If e =2 Values, thenJL [e℄KTOP = JL KTOPSize(e)[JeKTOP℄:Proof By 
ase analysis on L . We treat one example 
ase, appli
ation: L = 2f . We haveJL [e℄KTOP = JefKTOP = � ` EJfK, where JeKTOP = � ` E. But JL KTOPSize(e) = ; ` 2JfK, whi
h isthe expe
ted result. 2Proposition 26 (Compositionality for multiple lift 
ontexts) If e =2 Values, thenJF [e℄KTOP = JF KTOPSize(e)[JeKTOP℄:183



Proof By indu
tion on F . If F = 2, there is nothing to prove. Otherwise, let F = L [F 0℄ and� = Size(e).By indu
tion hypothesis, JF 0[e℄KTOP = JF 0KTOP� [JeKTOP℄.As the Size fun
tion is 
ompositional, � 0 = Size(F 0[e℄) = Size(F 0[2� ℄).By proposition 26, JL [F 0[e℄℄KTOP = JL KTOP�0 [JF 0[e℄KTOP℄ = JL KTOP�0 [JF 0KTOP� [JeKTOP℄℄.By proposition 26, JL [F 0℄KTOP� = JL [F 0[2� ℄℄KTOP = JL KTOP�0 [JF 0[2� ℄KTOP℄ = JL KTOP�0 [JF 0KTOP� ℄.So, JL [F 0[e℄℄KTOP = JL [F 0℄KTOP� [JeKTOP℄. 2Lemma 40 (Compositionality for evaluation 
ontexts) If e =2 Values, thenJE [e℄KTOP = JE KTOPSize(e)[JeKTOP℄:Proof By 
ase on E . Let � = Size(e).� If E = F , use proposition 26.� If E = bv ` F , then JE [e℄KTOP=TOP(bv)[JF [e℄KTOP℄=TOP(bv)[JF KTOP� [JeKTOP℄℄=(TOP(bv) Æ JF KTOP� )[JeKTOP℄=JE KTOP� [JeKTOP℄:� If E = (bv; x = F ; b ` f), then let b0 = (x = F [e℄; b). We have JE [e℄KTOP = TDum(b0) ÆTOP(bv) ÆTUp(b0)[; ` JfK℄, sin
e F [e℄ 
annot be a value.Let �0 ` E0 = JF [e℄KTOP = JF KTOP� [JeKTOP℄ (by proposition 26).Let �u ` B = TUp(b), and � 0 = Size(F [e℄) = Size(F [2� ℄).Let (x0;�0) = � (x;E0) if � 0 = [?℄(x; updatex E0) otherwiseWe have TUp(b0) = �u + �0 ` x0 = �0[E0℄; B. Let 	0 = �u ` let x0 = �0; B in JfK. Wehave JE [e℄KTOP=TDum(b0) ÆTOP(bv) Æ	0 Æ JF KTOP� [JeKTOP℄=JE KTOP� [JeKTOP℄:2When the expression �lling the 
ontext hole is a value, we have seen that this 
ompositionalityproperty is false. We nevertheless prove a weaker one.Proposition 27 (Semi-
ompositionality for lift 
ontexts) For all evaluation 
ontext 	,	[JL KTOPSize(v)[JvKTOP℄℄�!� 	[JL [v℄KTOP℄:Proof By 
ase on L . Let � = Size(v) and �v ` V = JvKTOP.� If L is of the shape v02 or 2:X , then 	[JL KTOPSize(v)[JvKTOP℄℄ = 	[JL [v℄KTOP℄:� L = 2e. Let JeKTOP = � ` E. We have JeKTOP� = ; ` 2JeK and 	 Æ JL KTOP� [JvKTOP℄ =	[�v ` V JeK℄, whi
h by lemma 39 redu
es to 	[�v +� ` V E℄ = 	[JL [v℄KTOP℄:184



� L = fsv; X = 2; sg. Let JsvKTOP = �0v ` Sv 0, JsK = S, and JsKTOP = �0 ` S0.We have 	ÆJL KTOP� [JvKTOP℄ = 	[�v+�0v ` fSv 0; X = V; Sg℄, whi
h by lemma 39 redu
es to	[C℄ = 	[�v+�0v+�0 ` fSv 0; X = V; S0g℄. If s is not evaluated, then C is exa
tly JL [v℄KTOP.Otherwise, 	[C℄ redu
es by rule Context (Allo
ate) to 	[�v+�0v+�0+fl 7! fSv 0; X =V; S0gg ` l℄, whi
h is exa
tly 	[JL [v℄KTOP℄.2Proposition 28 (Semi-
ompositionality for multiple lift 
ontexts) For all evaluation 
on-text 	, 	[JF KTOPSize(v)[JvKTOP℄℄�!� 	[JF [v℄KTOP℄:Proof By indu
tion on F . If F = 2, there is nothing to prove. Otherwise, F = L [F 0℄. Let� = Size(v) and � 0 = Size(F 0[2� ℄) = Size(F 0[v℄) (by hypothesis 3).By proposition 27, as neither F 0[2� ℄ nor F 0[v℄ are values, we have JF KTOP� = JL KTOP�0 [JF 0KTOP� ℄ andJF [v℄KTOP = JL KTOP�0 [JF 0[v℄KTOP℄.By indu
tion hypothesis, 	 Æ JF KTOP� [JvKTOP℄= 	 Æ JL KTOP�0 Æ JF 0KTOP� [JvKTOP℄= 	 Æ JL KTOP�0 [JF 0KTOP� [JvKTOP℄℄�!� 	 Æ JL KTOP�0 [JF 0[v℄KTOP℄= 	[JL KTOP�0 [JF 0[v℄KTOP℄℄= 	[JF [v℄KTOP℄2Proposition 29 (Semi-
ompositionality for evaluation 
ontexts) For all evaluation
ontext 	, 	[JE KTOPSize(v)[JvKTOP℄℄�!� 	[JE [v℄KTOP℄:Proof By 
ase analysis on E .� E = (bv ` F ). Let � = Size(v) and � 0 = Size(F [2� ℄) = Size(F [v℄) (by hypothesis 3). Wehave (	 Æ JE KTOP� )[JvKTOP℄= 	 ÆTOP(bv) Æ JF KTOP� [JvKTOP℄�!� 	 ÆTOP(bv)[JF [v℄KTOP℄(by proposition 28)= 	[Jbv ` F [v℄KTOP℄= 	[JE [v℄KTOP℄:� E = (B [F ℄ ` e), with B = (bv; x = 2; b). Let � = Size(v) and � 0 = Size(F [2� ℄) = Size(F [v℄)(by hypothesis 3). Let also b0 = (x = 2�0 ; b). We have	 Æ JE KTOP� [JvKTOP℄= 	 ÆTDum(b0) ÆTOP(bv) Æ (TUp(b0)[; ` JeK℄) Æ JF KTOP� [JvKTOP℄�!� 	 ÆTDum(b0) ÆTOP(bv) Æ (TUp(b0)[; ` JeK℄)[JF [v℄KTOP℄( by proposition 28)If F [v℄ is not a value, the obtained expression is exa
tly 	[JE [v℄KTOP℄. Otherwise, theobtained expression is a partial translation of E [v℄, so by proposition 23, it redu
es to	[JE [v℄KTOP℄, as expe
ted.2 185



7.5.2 Translation of a

essIn �Æ, the topmost binding is used as a heap, to store the values of variables. These values maythen be 
opied when the 
orresponding bound variable is used in a stri
t 
ontext. In �allo
 , heaps
an only 
ontain blo
ks, i.e. re
ords and fun
tions. Variables (or 
onstants if the 
al
ulus featuredthem) 
annot be stored in them. Instead, we have seen that they are substituted on the 
y duringthe translation. This distin
tion makes the translation of a

ess a bit weird.Proposition 30 If TOP(bv) = �a ` (�; �), bv(x) = v, and JvKTOP = �v ` V , then �v � �a and(� Æ �)(x) = V f� Æ �g.Proof By indu
tion on bv.� bv = �. Contradi
ts bv(x) = v.� bv = (x = v; bv 0) and Size(v) = n. We haveJvKTOP = �v ` lTOP(bv 0) = �0a ` �0�0TOP(bv) = Thv +�0a ` (�0; (�0 + fx 7! lg)) = �a ` (�; �)Obviously, we have �v � �a. Furthermore, by synta
ti
 
orre
tness of bv, x =2 dom(�), so(� Æ �)(x) = �(x) = l = V = V f� Æ �g.� bv = (x = v; bv 0), with Size(v) = [?℄. We haveJvKTOP = ; ` y = �v ` VTOP(bv 0) = �0a ` (�0; �0)TOP(bv) = �0a ` (�0 Æ fx 7! yg; �0);and therefore (� Æ �)(x) = yf�0g = V f�g.� bv = (y = v0; bv 0) and Size(v0) = n. We haveJv0KTOP = �0v ` lTOP(bv 0) = �0a ` (�0; �0)TOP(bv) = �0a +�0v ` (�0; �0 + fy 7! lg) = �a ` (�; �):By indu
tion hypothesis, �v � �0a, so �v � �0a. By indu
tion hypothesis, (�0 Æ �0)(x) =V f�0g, so (� Æ �)(x) = (�0 Æ �0)(x)fy 7! lg = V f�0 Æ �0 Æ fy 7! lgg = V f� Æ �g.� bv = (y = v0; bv 0) and Size(v0) = undefined. We haveJv0KTOP = ; ` zTOP(bv 0) = �0a ` (�0; �0)TOP(bv) = �0a ` (�0 Æ fy 7! zg; �0) = �a ` (�; �):By indu
tion hypothesis, �v � �0a, so �v � �0a. By indu
tion hypothesis, (�0 Æ �0)(x) =V f�0g. But by synta
ti
 
orre
tness of bv, we know that y is not free in bv 0, so y =2 
od(�0),and as we additionally have y =2 dom(�0), we 
an dedu
e that fy 7! zgÆ�0 = �0 Æfy 7! zf�0gg.So, we have (� Æ �)(x)= xf�0 Æ fy 7! zg Æ �0g= xf�0 Æ �0 Æ fy 7! zf�0ggg= ((�0 Æ �0)(x))fy 7! zf�0gg= V f�0 Æ �0gfy 7! zf�0gg= V f�0 Æ �0 Æ fy 7! zf�0ggg= V f�0 Æ fy 7! zg Æ �0g= V f� Æ �g:186



2Proposition 31 (A

ess) Let 	 = JE KTOP� = � ` �[�℄. If E (x) = v and JvKTOP = �v ` V ,then �(x) = V f�g and �v � �.Proof By 
ase analysis on the proof of E (x) = v.EA. E = bv ` F , and bv(x) = v. We haveJE KTOP� = TOP(bv) Æ JF KTOP� :Let TOP(bv) = �a ` (�a; �a) and JF KTOP� = �0 ` �0[id ℄. We 
an dedu
e � = �a Æ �a. Byproposition 30, we have �v � �a � � and (�a Æ �a)(x) = V f�a Æ �ag, or in other words�(x) = V f�g, whi
h is the expe
ted result.IA. E = (bv; x = F ; b ` e). Then, JE KTOP� = TDum(x = F [2� ℄; b) Æ TOP(bv) Æ TUp(x =F [2� ℄; b)[; ` JeK℄.Let TDum(x = F [2� ℄; b) = �d ` �dTOP(bv) = �a ` (�a; �a)TUp(x = F [2� ℄; b)[; ` JeK℄ = �0 ` �0:We have � = �aÆ�aÆ�d. By proposition 30, �v � �a, so �v � �. Furthermore, (�aÆ�a)(x) =V f�aÆ�ag, so �(x) = xf�aÆ�aÆ�dg = xf�aÆ�agf�dg = V f�aÆ�agf�dg = V f�g, as expe
ted.27.5.3 Translation of internal mergingProposition 32 (Internal merging) If b ` e IM�! b0 ` e0, then Jb ` eKTOP �!� Jb0 ` e0KTOP.Proof Let b ` e = (bv; x = (let re
 b1 in e1); b1 ` f), and b0 ` e0 = (bv ; b1; x = e1; b2 ` f). Letb0 = (x = (let re
 b1 in e1); b2) and b00 = (x = e1; b2).We have Jb ` eKTOP = TDum(b0) ÆTOP(bv) ÆTUp(b0)[; ` JfK℄.Let now (x0;�0) = � (x;2) if Size(e1) = Size(let re
 b1 in e1) = [?℄ (
f hypothesis 3)(y; updatex 2) with y fresh otherwise.Let also �1 ` E1 be de�ned as follows. If b1 is evaluated, let �1 ` E1 = Je1KTOP, and otherwise�1 ` E1 = ; ` Je1K. This way, we always have Jlet re
 b1 in e1KTOP = Jb1KTOP[�1 ` E1℄.Finally, let �1 = ; ` let x0 = �0;Update(b2) in JfK, and b1 = bv1; b01, where b01 does not begin witha value. We have TUp(b0)[; ` f ℄= �1[Jb1KTOP[�1 ` E1℄℄= �1 ÆTDum(b01) ÆTOP(bv1) ÆTUp(b01)[�1 ` E1℄:But the 
ontext TDum(b01) ÆTOP(bv1) is a weak evaluation 
ontext, and the domain of its substi-tution only 
on
erns variables in the domain of b1, whi
h are disjoint from free variables in b2; f; xby the side 
ondition to the rule IM. Therefore, this 
ontext 
ommutes with �1, andTUp(b0)[; ` f ℄= TDum(b01) ÆTOP(bv1) Æ�1 ÆTUp(b01)[�1 ` E1℄:Now, if b1 is not fully evaluated, the two translation are semanti
ally identi
al. But if b1 is fullyevaluated, i.e. b01 = �, then Jb0 ` e0KTOP translates with the TOP translation until e1, and possiblyfurther, if e1 is a value too. We distinguish the two 
ases.187



1. b1 is not fully evaluated. Let TUp(b01) = �01 ` B01. We have �1 ` E1 = ; ` Je1K and with� = TDum(b0) ÆTOP(bv) ÆTDum(b01) ÆTOP(bv1),Jb ` eKTOP= �[�01 ` let x0 = let B01 in Je1K[; ℄Update(b2) in JfK℄Lift�! �[�01 ` let B01 in let x0 = Je1K[; ℄Update(b2) in JfK℄EM�! �[�01 ` let B01; x0 = Je1K[; ℄Update(b2) in JfK℄= �[�01 ` let B01; x0 = Je1K[; ℄Update(b2) in JfK℄= � ÆTUp(b01; b00)[; ` JfK℄:But let us now examine � a bit TDum(b0) ÆTOP(bv) Æ TDum(b01) ÆTOP(bv1). First, noti
ethat TDum(b0) = TDum(b00), by hypothesis 3.Then, TOP(bv) and TDum(b01) are two weak evaluation 
ontexts, and the domain of thesubstitution of TDum(b01) is in
luded in dom(b01), whi
h is disjoint from the free variablesof bv, so if TDum(b01) = �0d ` �0d, then TOP(bv) Æ TDum(b01) = �0d Æ TOP(bv) Æ TDum(b01).Moreover, �0d is a variable allo
ation, and is therefore idempotent, so we 
an apply proposition20 to obtain � = TDum(b00) ÆTDum(b01) ÆTOP(bv) ÆTOP(bv1)= TDum(b00; b01) ÆTOP(bv) ÆTOP(bv1)= TDum(b01; b00) ÆTOP(bv) ÆTOP(bv1):Furthermore, TOP(bv1) = �bv1 ` (�bv1 ; �bv1). As �bv1 is idempotent, we have TOP(bv1) =�bv1 Æ TOP(bv1). But we know that the domain of �bv1 is disjoint from the free variablesof TOP(bv), so TOP(bv) Æ �bv1 = �bv1 Æ TOP(bv), and therefore � = TDum(b01; b00) Æ �bv1 ÆTOP(bv) Æ TOP(bv1). But by 
orollary 10, �bv1 Æ TOP(bv) Æ TOP(bv1) = TOP(bv; bv1), so� = TDum(b01; b00) ÆTOP(bv; bv1).Finally, we obtain thatJb ` eKTOP = TDum(b01; b00) ÆTOP(bv ; bv1) ÆTUp(b01; b00)[; ` JfK℄= Jbv; bv1; b01; b00KTOP[; ` JfK℄= Jbv; b1; x = e1; b2KTOP[; ` JfK℄= Jb0 ` e0KTOP:2. b1 is fully evaluated. We have Jb ` eKTOP = TDum(b0) ÆTOP(bv) ÆTOP(bv1) Æ�1[�1 ` E1℄.Let TOP(bv1) = �bv1 ` (�bv1 ; �bv1). We know that �bv1 is idempotent, so TOP(bv1) =�bv1 Æ TOP(bv1). As above, dom(�bv1) ? FV(TOP(bv)), so TOP(bv) Æ TOP(bv1) = �bv1 ÆTOP(bv) ÆTOP(bv1), in whi
h by 
orollary 10 we re
ognize TOP(bv; bv1).Therefore, Jb ` eKTOP = TDum(b0) ÆTOP(bv; bv1) Æ�1[�1 ` E1℄.But we noti
e that �1[�1 ` E1℄ = TUp(b00)[; ` JfK℄. And by hypothesis 3, TDum(b0) =TDum(b00). Let TDum(b0) = �b0 ` �b0 . By proposition 20, we haveTDum(b0)ÆTOP(bv ; bv1) =�b0 ÆTOP(bv ; bv1) ÆTDum(b00), so Jb ` eKTOP = �b0 ÆTOP(bv ; bv1) ÆTDum(b00) ÆTUp(b00)[; `JfK℄.Let b00 = (bv0; b000), with b000 not beginning with a value. By proposition 21, Jb ` eKTOP �!��b0 ÆTOP(bv; bv1) ÆTDum(b000 ) ÆTOP(bv0) ÆUpdate(b000 )[; ` JfK℄.But if TDum(bv0) = �bv0 ` �bv0 and TDum(b000) = �b000 ` �b000 , then �b0 = �bv0 + �b000 , so byproposition 20, the obtained expression is equal to �bv0ÆTDum(b000 )ÆTOP(bv ; bv1)ÆTOP(bv0)ÆUpdate(b000)[; ` JfK℄. But �bv0 
ommutes with TDum(b000 ), so we obtain TDum(b000) Æ �bv0 ÆTOP(bv ; bv1)ÆTOP(bv0)ÆUpdate(b000)[; ` JfK℄, whi
h by 
orollary 10 is equal to TDum(b000)Æ�bv0 ÆTOP(bv ; bv1; bv0) ÆUpdate(b000 )[; ` JfK℄, whi
h is exa
tly Jb0 ` e0KTOP.2 188



� Evaluated binding 
ontextsB v ::= bv1; x = 2; bv2 with Depth(bv1; x = 2; bv2) de�ned as 1+ j bv1 j� Depth of an evaluation 
ontextDepth(2) = 0Depth(L [F ℄) = 1 +Depth(F )Depth(bv ` F ) = 1+ j bv j +Depth(F )Depth(B v [F ℄ ` e) = Depth(B v ) +Depth(F )�Measuring the number of let re
 nodes�l(e) is the number of let re
 nodes not under a � in e (same for 
on�gurations).�Measuring the depth of the let re
 to lift (same for 
on�gurations)�d(F [L [let re
 bv in e℄℄) = 1 +Depth(F )�d(e) = 0 otherwisewell de�ned sin
e the sum of the depths of let re
 nodes stri
tly de
reases.�Measuring the binding level of the hot variable�b(e) is the depth of the binder of the hot variable, if any:�b(B v [v℄; y = F [x℄; b ` e) = Depth(B v ) if (B v [v℄)(x) = v�b(B v [v℄ ` F [x℄) = Depth(B v ) if (B v [v℄)(x) = v�b(e) = 0 otherwise�Measure �e(e) = (�l(e); �d(e))�(
) = (�l(
); �d(
); �b(
)) (lexi
ographi
ally ordered).Figure 7.21: Measure7.5.4 SimulationDue to their di�erent ways of handling bindings, the two 
al
ulus �Æ and �allo
 do not yield astep by step simulation. Indeed, a redex and its redu
t in �Æ may have the same translation. Asan example, 
onsider any expressions of the shape L [let re
 bv in e℄ and let re
 bv in L [e℄. Thebinding bv is translated as a heap � and a substitution �, in both 
ases, and the fa
t that it isunder or above the L 
ontext is not visible in the translation. The only problem with this isthat in some 
ases an in�nite redu
tion sequen
e in �Æ 
ould be translated as an empty one in�allo
 , thus possibly 
hanging the in�nite looping observable behaviour. In order to ensure thatthis doesn't happen, we prove that su
h silent redu
tion steps 
annot happen inde�nitely. Forthis, we introdu
e a measure on expressions and 
on�gurations that stri
tly de
reases during silentredu
tions steps. Its de�nition is given in �gure 7.21.It �rst de�nes two fun
tions from expressions to N. The �rst, �l, is the number of let re
 nodesnot under a lambda in the given expression. The se
ond, �d is the depth of the let re
 node to liftin the given expression, if any. Formally, if e is of the shape F [L [let re
 b in f ℄℄, then the let re
node 
an be lifted by rule Lift, so the result is the depth of the 
ontext F [L ℄, or 1 plus the depthof F .The fun
tions �l and �d form a measure �e on expressions, de�ned by �e = (�l; �d), orderedlexi
ographi
ally.Moreover, these two fun
tions are straightforwardly extended to 
on�gurations, repla
ing F withE for the se
ond de�nition.A third fun
tion �b is de�ned, but only on 
on�gurations, giving the depth of the binder for thehot variable, if any. We say that x is the hot variable in 
 if 
 is of the shape E [N [x℄℄. Then�b(e) is the depth at whi
h x is bound in E . Formally, we de�ne evaluated binding 
ontexts as189



binding 
ontexts of the shape bv1; x = 2; bv2, and their depth as 1 plus the 
ardinal of bv1. Thenthe depth of multiple lift 
ontexts is de�ned as the number of nested lift 
ontexts, and the depthof evaluation 
ontexts is de�ned a

ordingly.A property of this measure is that it is monotone through 
ontextual 
losure.Proposition 33 If �e(e) > �e(e0), then for any evaluation 
ontext E , �(E [e℄) > �(E [e0℄).Proof The property 
learly holds for both measures �l and �d, thus for their lexi
ographi
 produ
tas well. 2Lemma 41 (Contra
tion simulated) If e 
e0, then JeKTOP�!+ Je0KTOP or JeKTOP = Je0KTOPand for any E , �(E [e℄) > �(E [e0℄).Proof By 
ase analysis on the applied rule.Beta. e = ((�x:f)v), and e0 = letre
inx = vf . Let JvKTOP = �v ` V . We have JeKTOP =�v + fl 7! (�x:JfK)g ` lV , whi
h redu
es by rule Beta to �v + fl 7! (�x:JfK)g ` ffx 7! V g.Let us now 
al
ulate TOP(x = v).� If Size(v) = [?℄, then �v ` V = ; ` V , and TOP(x = v) = ; ` (x 7! V; id ); soJx = vKTOP = ; ` 2[x 7! V ℄ = �v ` 2[x 7! V ℄.� Otherwise, �v ` V = �v ` l, and TOP(x = v) = �v ` (id ; x 7! l); so Jx = vKTOP =�v ` 2[x 7! l℄ = �v ` 2[x 7! V ℄.So, in both 
ases, we have Jx = vKTOP = �v ` 2[x 7! V ℄. Therefore, Jx = vKTOP redu
esto Jx = vKTOP[JfK℄, whi
h by lemma 39 redu
es to Jx = vKTOP[JfKTOP℄, whi
h is exa
tlyJe0KTOP.Proje
t. e = fsvg:X and e0 = sv(X). Let sv = (X1 = v1 : : : Xn = vn), X = Xi0 , and forea
h i, JviKTOP = �i ` Vi. We have JsvKTOP = ℄1�i�n�i ` (X1 = V1 : : :Xn = Vn), andJeKTOP = ℄1�i�n�i + fl 7! fX1 = V1 : : : Xn = Vngg ` l:X . By rule Proje
t, it redu
es to℄1�i�n�i+fl 7! fX1 = V1 : : :Xn = Vngg ` Vi0 , whi
h by rule GC redu
es to �i0 ` Vi0 , whi
his exa
tly Je0KTOP.Lift. e = L [let re
 b in f ℄ and e0 = let re
 b in L [f ℄.� If b is evaluated, then JeKTOP = JL KTOP Æ TOP(b)[JfKTOP℄. Let TOP(b) = � ` (2; �).In the 
ontext JL KTOP Æ TOP(b), the only substitution is �, whose domain is dom(b),whi
h by the side 
ondition to the Lift rule is disjoint from the free variables of L , sothe 
ontexts 
ommute, and JeKTOP = TOP(b) Æ JL KTOP[JfKTOP℄ = Je0KTOP.� If b is not evaluated, then b = bv; b0, with b0 non empty and not beginning with a value.We have JeKTOP = JL KTOP Æ TDum(b0) Æ TOP(bv) Æ TUp(b0)[; ` JfK℄. But as above,the 
ontext JL KTOP has not substitution and is not a�e
ted by the ones of TDum(b0),TOP(bv), and TUp(b0). So JeKTOP = TDum(b0)ÆTOP(bv)ÆTUp(b0)ÆJL KTOP[; ` JfK℄ =Je0KTOP.This is the only 
ase where the two translations are dire
tly equal. We thus have to showthat �d(e) > �d(e0). And indeed �d(e) = �d(L [let re
 b in f ℄) = 2 + 0, whereas �d(e0) =�d(let re
 b in L [f ℄) = 0. Con
lude by proposition 33.190



2There is a last diÆ
ulty lying in the way to the theorem of simulation, due to di�erent sharingproperties of the two 
al
uli. Consider the 
on�guration 
 = (x = fX = �y:yg ` (x:X)x). Itredu
es by rule Subst to 
0 = (x = fX = �y:yg ` (fX = �y:yg:X)x). By the TOP translation, 
is translated to a 
on�gurationC = � l1 7! �y:y;l2 7! fX = l1g � ` (l2:X)l2:By the same translation, 
0 is translated to a 
on�gurationC 0 =8>><>>: l1 7! �y:y;l2 7! fX = l1g;l3 7! �y:y;l4 7! fX = l3g 9>>=>>; ` (l4:X)l2:The heap �0 of C 0 
ontains an additional 
opy of the re
ord and the fun
tion. This phenomenonhappens at ea
h appli
ation of the Subst rule. But ex
ept in 
ase of a faulty 
on�guration (seebelow), su
h a redu
tion step is ne
essarily followed by a Beta or a Proje
t step. In our example,a Proje
t step o

urs, that destroys the 
opied re
ord: 
0 redu
es to 
00 = (x = fX = �y:yg `(�y:y)x). This redu
tion step destroys the 
opied re
ord immediately after it has been 
opied.Similarly, when a fun
tion is 
opied, it is immediately destroyed by a Beta redu
tion step. Inboth 
ases, the translated 
on�guration redu
es in one step, by the same rule (Proje
t or Beta).As a 
onsequen
e, our simulation theorem takes this possibility into a

ount, and allows a 
oupleof su

essive redu
tions steps to be simulated by a single one.But this is not yet suÆ
ient. Indeed, in the 
ase of the Proje
t rule, not only the re
ord isdupli
ated, but also the values it 
ontains. In our example, the fun
tion �y:y is 
opied. And evenafter applying the Proje
t rule, it remains, as shown by the translation of 
00:C 00 =8<: l1 7! �y:y;l2 7! fX = l1g;l3 7! �y:y 9=; ` l3l2:Our solution to this problem 
onsists in only 
onsidering expressions where all the re
ord �eldsare variables, whi
h we 
all R-normal expressions. Any expression 
an be transformed into anR-normal one, by applying the following NameFields rule, in any 
ontext.9i; ei =2 Vars 8i; j; xi =2 FV(ej)fX1 = e1 : : : Xn = eng R�! let re
 x1 = e1 : : : xn = en in fX1 = x1 : : :Xn = xng (NameFields)This pro
ess ne
essarily terminates sin
e the number of re
ords not 
ontaining only variables stri
lyde
reases. The redu
tion rules of �Æ obviously preserve the R-normality. This way, after a sequen
eof a Subst step followed by a Proje
t step, no dupli
ation has been made: an expression of theshape x:X has been repla
ed with another variable.We 
an now state our �nal theorem. A �Æ 
on�guration is said stu
k on a free variable when itis of the shape E [N [x℄℄ and E (x) is unde�ned. This de�nition is extended to �allo
 
on�gurations(repla
e E with 	). We say that a 
on�guration is faulty if it is in normal form and is not a validanswer and is not stu
k on a free variable. Roughly, the theorem states that if a 
on�guration 
redu
es to another one 
0, then� either 
0 is faulty and so is the translation of 
,� or the translation of 
 redu
es to the one of 
0,191



� or 
0 itself redu
es to 
00, su
h that the translation of 
 redu
es to the one of 
00,� or 
 and 
0 are translated to the same 
on�guration, but �(
) > �(
0).This 
ompli
ated result is due to the fa
t that �Æ �rst needs to dupli
ate a fun
tion before to applyit, and to dupli
ate a re
ord before to sele
t a 
omponent from it, and to the fa
t that the TOPtranslation identi�es some 
on�gurations, by performing some lifting and merging steps by itself.Theorem 5 (Small steps en
oding) For all R-normal 
on�guration 
, if 
�!
0 and J
KTOP =C, then one of the four situations below holds:1. Either 
0 is faulty, and then C is faultytoo ; 
 //JK
��


0 = //C = //2. or there exists C 0 su
h that Je0K = C 0and C �!+ C 0 ; 
 //JK
��


0JK
��C + // C 03. or there exists 
00, C 0 su
h that J
00K =C 0 and C �!+ C 0 ; 
 //JK

��


0 // 
00JK
��C + // C 04. or J
0K = C dire
tly, and �(
) > �(
0) 
 �& //JK

��


0JK����
��

��
�CProof By 
ase analysis on the applied rule.Context. By lemma 41.IM. By proposition 32, noting that the number of let re
 nodes de
reases by one when applyingthe rule.EM. 
 = bv ` let re
 b in e and 
0 = bv; b ` e. Let us now de�ne C1 by ; ` JeK if b is not evaluated,and JeKTOP otherwise. Then J
KTOP = TOP(bv)ÆJbKTOP[C1℄. Let b = bv 0; b0, where b0 does notbegin with a value. We have J
KTOP = TOP(bv)ÆTDum(b0)ÆTOP(bv 0)ÆTUp(b0)[C1℄. But thesubstitution of the 
ontext TDum(b0) does not a�e
t TOP(bv) and 
onversely the substitutionof TOP(bv) does not a�e
t TDum(b0), so the two 
ontexts 
ommute. But then TOP(bv) isnext to TOP(bv 0). Let � be the substitution of TDum(bv 0). It does not a�e
t TOP(bv), bythe side 
ondition to the EM rule, so TOP(bv) ÆTOP(bv 0) = � ÆTOP(bv) ÆTOP(bv 0), whi
hby 
orollary 10 is equal to TOP(bv; bv 0). Therefore, J
KTOP = TDum(b0) Æ TOP(bv; bv 0) ÆTUp(b0)[C1℄ = Jbv ; bKTOP[C1℄. The number of let re
 nodes again de
reases by one.Subst. 
 = E [N [x℄℄, 
0 = E [N [v℄℄, and E (x) = v. Let 	 = JE KTOP = � ` �[�℄.� If v is a variable y, then JvKTOP = ; ` y, and by proposition 31, �(x) = yf�g, soJ
KTOP = J
0KTOP. But, the depth of the binder of the hot variable, from the depth ofx = y in E , be
omes either an upper y = v0 de�nition, or the depth 0, if y is not de�nedby E , so �(
) > �(
0).� If 
0 is faulty, i.e. either N = 2v0 and v is a re
ord, or N = 2:X and v is a fun
tion ora re
ord with no X �eld, then C is faulty too.192



� If v = �y:e and N = 2v0, then 
0 �! 
00 = E [let re
 y = v0 in e℄.Let Jv0KTOP = �0v ` V 0. Let � = �0v ` 2[id ℄. We have C = 	 Æ �[lV 0℄.But by proposition 31, the lo
ation l = �(x) is su
h that �(l) = �y:JeK. Therefore, Credu
es by rule Context (Beta) to 	 Æ �[JeKfy 7! V 0g℄. By lemma 39, this redu
es to	 Æ �[JeKTOPfy 7! V 0g℄.Let now �0 = � Æ fy 7! V 0g. The obtained 
on�guration 
an be written 	 Æ �0[JeKTOP℄.But TOP(y = v0) = �0v ` 2[y 7! V 0℄ = �0, so Jlet re
 y = v0 in eKTOP = �0[JeKTOP℄,and the obtained term 
an also be written JE KTOP[Jlet re
 y = v0 in eKTOP℄, whi
h byproposition 29, redu
es to JE [let re
 y = v0 in e℄KTOP, whi
h is exa
tly J
00KTOP.� If v = fsvg, N = 2:X , with X 2 dom(sv), then 
0 �! 
00 = E [sv(X)℄.By hypothesis, 
 is in R-normal form, so there exist names X1 : : :Xn and variablesx1 : : : xn su
h that sv = (X1 = x1 : : : Xn = xn). Then, sv 
an be viewed as a re
ord of�allo
 , and JvKTOP = fl 7! fsvgg ` l.By proposition 31, we have �(x) = l and �(l) = fsvg. We have J
KTOP = 	[x:X ℄ =	[l:X ℄. As 
 redu
es to 
0, there exists an index i0 su
h that X = Xi0 . So, J
KTOPredu
es in one Proje
t step to 	[xi0 ℄, whi
h is JE KTOP[Jxi0 KTOP℄, so by lemma 39, itredu
es to JE [xi0 ℄KTOP, whi
h is exa
tly the translation of 
00.2Eventually, we state a less pre
ise theorem, more like what we would obtain with big step semanti
s.Theorem 6 (Big steps en
oding)1. For all expression e, if ; ` e�!� a, then ; ` JeK�!� JaKTOP.2. For all expression e, if e goes wrong, i.e. ; ` e redu
es to a faulty 
on�guration, then JeKalso goes wrong.3. For all expression e, if e loops, i.e. there exists an in�nite redu
tion sequen
e starting from; ` e, then JeK also loops.4. For all expression e, if e gets stu
k on a free variable, then so does JeK.Proof For items 1 and 2, noti
e that ; ` JeK redu
es to JeKTOP, and then reason by indu
tionon the length of the redu
tion sequen
e. For item 3, by 
ontrapositive: we know that there is aredu
tion sequen
e in �allo
 simulating the one in �Æ, but it 
ould be of phantom steps, i.e. thesame 
on�guration 
ould be a translation for all steps. However this would 
ontradi
t the stri
tde
reasing of the measure, whi
h is of 
ourse bounded by 0. For item 4, the redu
tion leading tothe 
on�guration stu
k on a free variable is simulated, and the rea
hed 
on�guration being thetranslation of a stu
k 
on�guration is also stu
k. 2The initial goal here was to prove the 
orre
tness of our 
ompilation s
heme, but in fa
t we havea 
ompleteness result for free.Theorem 7 (Big steps 
ompleteness)1. If ; ` JeK�!� A, then there exists a su
h that ; ` e�!� a and JaKTOP = A.2. If JeK goes wrong, then e also goes wrong.3. If JeK loops, then e also loops.4. If JeK gets stu
k on a free variable, then so does e.193



Proof There are four possible �nal states for a 
on�guration: it 
an redu
e to a value, or it 
anget stu
k on a free variable, or it 
an go wrong, or it 
an loop. We know that if a 
on�guration; ` e rea
hes a �nal state, then so does J; ` eKTOP. But the four possible �nal states are mutuallyex
lusive. Therefore, if the translation of an expression rea
hes a �nal state, then the original
on�guration ne
essarily rea
hes the same one. 2Remark 3 (Free variables) Free variables do not appear during redu
tion, and the 
ases wherethe evaluation gets stu
k on a free variable do not o

ur if the initial expression is 
losed.7.6 Related workCy
li
 expli
it substitutions In [64℄, Rose de�nes a 
al
ulus with mutually re
ursive de�-nitions, where the dedi
ated 
onstru
t for re
ursion is presented as expli
it 
y
li
 substitution,referring to the expli
it substitutions of L�evy et al. [2℄. Instead of lifting re
ursive bindings to thetop of terms as we do, the 
al
ulus pushes them inside terms, as usual with expli
it substitutions.This results in the loss of sharing information. Any term is allowed in re
ursive bindings, butinside a re
ursive binding, when 
omputing a de�nition, it is not possible to use the value of anyde�nition from the same binding. In �Æ, the rule for substitution Subst allows this, in 
onjun
tionwith the internal a

ess rule IA. In Rose's 
al
ulus, 
orre
t 
all by value redu
tion requires that inany binding, re
ursive de�nitions redu
e to values, without really using ea
h other. In this respe
t,it is less powerful than �Æ. Besides, it does not impose size 
onstraints on de�nitions, but is alsonot 
on
erned with data representation.Les
anne et al. [9℄ study sharing and di�erent evaluation strategies, with a slightly di�erent notionof 
y
li
 expli
it substitution. Any term is a

epted in a re
ursive de�nition, but instead of goingwrong when the re
ursive value is really needed, as in our system, the system of [9℄ loops. The fo
usof the paper is on the 
omparison between �-graph redu
tion and environment based evaluation,and di�erent evaluation strategies. No emphasis is put on data representation either.Equational theories of the �-
al
ulus with expli
it re
ursion Ariola et al. [7℄ study a�-
al
ulus with expli
it re
ursion. Its semanti
s is given by sour
e-to-sour
e rewrite rules, wherelet re
 is lifted to the top of terms, and de�nitions in a binding may use ea
h other, as in �Æ.The semanti
s of our sour
e language �Æ is largely inspired by their 
all-by-value 
al
ulus, as aquite straightforward spe
ialization of it. Thus, our work 
an be seen as importing the internalsubstitution rule IA from equational theory to language design. Nevertheless, the 
on
erns aredi�erent: we deal with implementation and data representation, while Ariola et al. rather examine
on
uen
e, sharing and di�erent evaluation strategies, in
luding strong redu
tion (redu
tion under�-abstra
tion).let re
 for obje
ts and mixin modules Boudol's 
onstru
t [12℄, or Hirs
howitz and Leroy's[45℄, are di�erent from the one of �Æ in several aspe
ts. First, they a

ept stri
tly more expressionsas re
ursive de�nitions. For instan
e, Boudol's semanti
s of obje
ts makes an extensive use ofre
ursive de�nitions su
h as let re
 o = generator(o) in e. Su
h de�nitions are impossible in �Æ.However, �Æ allows to de�ne in the same binding some re
ursive values, followed by 
omputationsusing these values. The semanti
s of mixin modules [47℄ requires 
omplex sequen
es of alternatere
ursive and non-re
ursive bindings, whi
h are trivial to write in �Æ. On the whole, the loss of
exibility for valid re
ursive de�nitions allows to improve eÆ
ien
y, thanks to the loss of additionalindire
tions.We believe that it is possible to 
ombine the ideas of [12℄ and [47℄. Consider a language where are
ursive de�nition 
an be of any shape, and 
an now be synta
ti
ally annotated with integersrepresenting its expe
ted size. This language 
an be 
ompiled exa
tly as �Æ, but it features a more194



powerful let re
 
onstru
t. The idea should be seen as a 
ompilation te
hnique for Boudol's obje
tsand Hirs
howitz and Leroy's mixin modules, where the ne
essary size informations are stati
allyavailable.
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