Full abstraction for fair testing in CCS

Tom Hirschowitz
CNRS and Université de Savoie

1/2.8

Overview

Motivation

Reasoning on programming languages:
- until now, mostly methods,
- we would like a theory.

We would like to be able to say:

“By Theorem T, the morphism f from language L to language I preserves
and reflects such observational equivalence”.

Leads to stupid questions like:
- What is a programming language?
- What is an observational equivalence?
- What is a compilation?

2/28

Overview

Motivation : a theory of programming languages

Other attempts
- Plotkin,Turi, et al. Categorical approach to operational semantics.
- Montanari et al. Tile model: double-categorical approach.

Plotkin and Power. Lawvere theories.

Ciancia. dialgebras.

Hirscho. 2-categorical approach to higher-order rewriting.

... (I thought of two of the above only yesterday, guess which) ?

3/28

Overview

A starting point: Kleene coalgebra

- Most other attempts organise syntax and reductions into some algebraic structure.
- Idea from automata theory:

Kleene coalgebra [Bonchi,Bonsangue,Rutten,Silva,...]

Start from a nice functor, and derive syntax and axioms.

- The functor encapsulates the “rule of the game'.

Nice functor T

Regular expressions + axioms -~ N__~ N__~ __~ __~ >—— T-coalgebras

sound and complete

4/28

Overview

A starting point: Kleene coalgebra

This work may be seen as an attempt to adapt Kleene coalgebra to the world of
programming languages.

What is missing?

In game semantical terms, Kleene coalgebra seems to only account for
“one-player' games.
~> Replace the functor with something else.

5/28

Overview

Rule of the game = playground

Playground

Process terms -~ _" _~_ _~ _~ — Non-deterministic, innocent strategies

strong bisimulation

6/28

Overview

Innocent, non-deterministic strategies

- In game semantics, they are known to be problematic (Harmer).
- Solution from presheaf semantics (Joyal, Nielsen, Winskel):

Change definition of strategies:

- prefix-closed sets of plays;
- functors Plays® — 2, where 2 is the poset 0 < 1;
- functors Plays® — sets.

- Then incorporate innocence.

Slogan
Innocent, non-deterministic strategies = innocent presheaves!

We'll see what that means in a moment.

7/28

Overview

Application

- A playground for Milner's CCS.
- Simple categorical tools ~» fair testing, denotationally: S ~ T.
- Translation of CCS processes:

CCS ——— > Process terms ———— > Strategies

[-1

P ~s Q iff [P] ~ [Q], where ~s is standard fair testing equivalence.

Open question: can any of this be derived in the general setting?

8/28

Overview

This talk

The playground for CCS.

Innocent, non-deterministic strategies.
Semantic fair testing.

Idea of the translation CCS — Strategies.

oW d

9/28

Playground for CCS

Positions

- @ ~ player.
- O ~ channel.
- Edges : “player knows channel'.

10/2.8

Playground for CCS

Example move: input

Initial and final positions are the same, e.g.

o

- But: moves are not a mere binary relation (initial position, final position).
- Instead: cospans initial — stuff « final.
- What stuff? A kind of higher-dimensional graph.

11/2.8

Playground for CCS

Higher-dimensional graph for the input move

- The arrow indicates on which channel the input occurs.
- One such graph for each arity (here 3).
- Formal definition: see (long version of) paper.

12./2.8

Playground for CCS

The input move

O>—O final position drawn for conciseness as:

|

|

‘ |
|

| |

v |

|

|

|

|

|

|
stuff ‘ ‘

O>0—0 inition position

13/2.8

Playground for CCS

Moves: input/output

Using the previous convention:

p—O p— O—¢— O oO—@——O0
‘ ‘ l | ‘ ‘ |
—— O b— O0— &— O
o Input
Output Synchronisation

Orange arrows: cospan morphisms.

14/2.8

Playground for CCS

Moves, continued

REESEaE

Left fork Fork Right fork
Channel creation Tick

15/2.8

Playground for CCS

Local vs. global moves

- Until now, moves were local: only involved players were shown.
- Global moves obtained by embedding into larger positions.

- E.g.:

=
|

p—— O

—

16/2.8

Playground for CCS

Plays

Obtained by piling up global moves:

Q

O

Feature a certain amount of concurrency.

17/2.8

Playground for CCS

Category of plays over position X: Py

O

- Plus prefix inclusion.
- Possibly several morphisms between two plays.
- Otherwise, close to configuration posets of event structures.

18/28

Strategies

Naive, non-deterministic strategies over position X

Definition 1. Strategy over X

Presheaf Py? — sets.

Too general: consider the position

x

and the naive strategy
- accepting x — vy,
- accepting outside — z,
- but refusing x — z.

[Players x and z should not be allowed to choose with whom they synchronise.}

19/2.8

Strategies

Non-deterministic, innocent strategies

Views: let Vi C Py consist of histories of exactly one player.
Example:

Definition 2. Innocent strategies

Presheaf V,* — sets.

Problem: no obvious inclusion innocent C naive.

20/2.8

Strategies

Fair testing: overview

- Global behaviour: essentially, innocent — naive.
- Interaction.
- Fair testing.

21/28

Strategies

Global behaviour

By right Kan extension: Vy* ' PP

S S= ran;op(S)

Explicit formula

- General : g(p) :J S(V)PX(V‘p?

veVy

- Boolean case; p accepted iff all its views are : g(p) = /\{() }S(v).
v-%p) e Py

Global behaviour

By restricting to closed-world plays: S — S

22/2.8

Fair testing

Interaction

- Split the players of position X into two teams.
- Obtain two subpositions X; — X < X, sharing no player.

- We have
VX >~ VX] +VX2'

- Let S; play against S, by copairing :

inj;

op op op
Vxi Vx Vx,
[S1,5,]
S S
sets

23/28

Fair testing

Fair testing

- Successful play: one with at least one @.
- S L T: all unsuccessful executions of [S,T]extend to successful ones.

Definition 3. Semantic fair testing equivalence
S~SiFVT,SIT& ST

24/2.8

Translation

A syntax for strategies

- Derivable from any playground.

- Idea:
[A strategy = what remains of it after each atomic view b.]
- For CCS:
Ny = Sb *** Definite strategies n FD Di’ " Plain strategies
D.
nFD<(Sb)b> nk @iep E

where b : n, — n, for all b.

25/28

Translation

The translation

PIQ — | (x — [P]
m, — [Q]
-= @)

va.P = | { Vo = [P]

=@)

a.P = | (tn,a = [P]

=@)

26/28

Translation

Main result

P ~s Q ift [P] ~ [Q].

27/28

Future work

- Scale the approach to 7 (almost), Join, A,...

- Tools for generating playgrounds (with Clovis Eberhart).

- Investigate morphisms of playgrounds.

- Link with exotic settings like cellular automata.

- "Double category of elements' ~» new notion of abstract rewriting system.

2.8/2.8

	
	
	Overview
	Motivation
	Motivation : a theory of programming languages
	A starting point: Kleene coalgebra
	A starting point: Kleene coalgebra
	Rule of the game
	Innocent, non-deterministic strategies
	Application
	This talk

	Playground for CCS
	Positions
	Example move: input
	Higher-dimensional graph for the input move
	The input move
	Moves: input/output
	Moves, continued
	Local vs. global moves
	Plays
	Category of plays over position :

	Strategies
	Naive, non-deterministic strategies over position
	Non-deterministic, innocent strategies
	Fair testing: overview
	Global behaviour

	Fair testing
	Interaction
	Fair testing

	Translation
	A syntax for strategies
	The translation
	Main result

	Future work
	Future work

