Full abstraction for fair testing in CCS

Tom Hirschowitz CNRS and Université de Savoie

> CALCO = 2013

Motivation

Reasoning on programming languages:

- until now, mostly methods,
- we would like a theory.

We would like to be able to say:

"By Theorem T, the morphism f from language L to language L' preserves and reflects such observational equivalence".

Leads to stupid questions like:

- What is a programming language?
- What is an observational equivalence?
- What is a compilation?

Motivation : a theory of programming languages

Other attempts

- Plotkin, Turi, et al. Categorical approach to operational semantics.
- Montanari et al. Tile model: double-categorical approach.
- Plotkin and Power. Lawvere theories.
- Ciancia. dialgebras.
- Hirscho. 2-categorical approach to higher-order rewriting.
- ... (I thought of two of the above only yesterday, guess which) ?

Playground for CCS Stra

Fair testing

A starting point: Kleene coalgebra

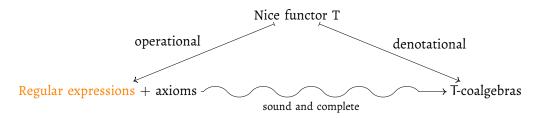
- Most other attempts organise syntax and reductions into some algebraic structure.
- Idea from automata theory:

Overview

Kleene coalgebra [Bonchi,Bonsangue,Rutten,Silva,...]

Start from a nice functor, and derive syntax and axioms.

- The functor encapsulates the `rule of the game'.

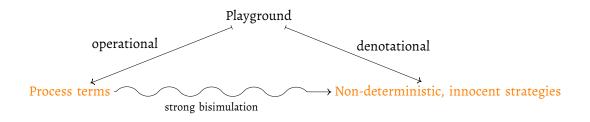


A starting point: Kleene coalgebra

This work may be seen as an attempt to adapt Kleene coalgebra to the world of programming languages.

What is missing?	
In game semantical terms, Kleene coalgebra seems to only account for	or
`one-player' games.	
→ Replace the functor with something else.	

Rule of the game = playground



Innocent, non-deterministic strategies

- In game semantics, they are known to be problematic (Harmer).
- Solution from presheaf semantics (Joyal, Nielsen, Winskel):

Change definition of strategies:

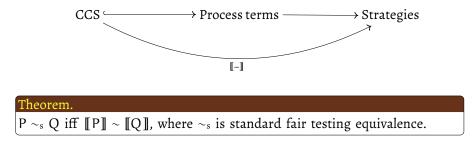
- prefix-closed sets of plays;
- functors Plays^{op} \rightarrow 2, where 2 is the poset $0 \leq 1$;
- functors $Plays^{op} \rightarrow sets$.
- Then incorporate innocence.

Slogan	
Innocent, non-deterministic strategies = innocent presheaves!	

We'll see what that means in a moment.

Application

- A playground for Milner's CCS.
- Simple categorical tools \rightsquigarrow fair testing, denotationally: S \sim T.
- Translation of CCS processes:

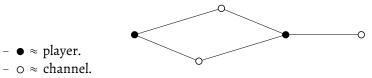


Open question: can any of this be derived in the general setting?

This talk

- 1. The playground for CCS.
- 2. Innocent, non-deterministic strategies.
- 3. Semantic fair testing.
- 4. Idea of the translation CCS \rightarrow Strategies.

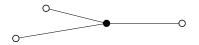
Positions



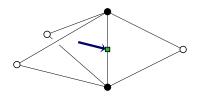
- Edges : `player knows channel'.

Example move: input

Initial and final positions are the same, e.g.

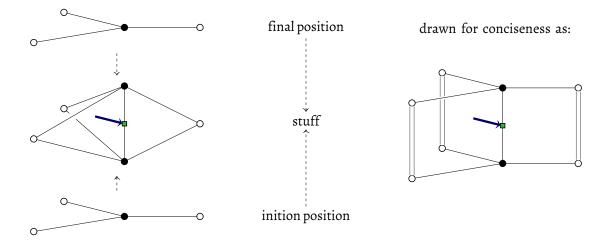


- But: moves are not a mere binary relation (initial position, final position).
- Instead: cospans initial \rightarrow stuff \leftarrow final.
- What stuff? A kind of higher-dimensional graph.



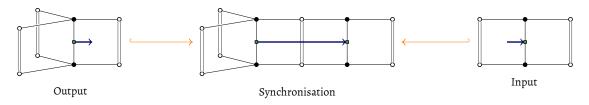
- The arrow indicates on which channel the input occurs.
- One such graph for each arity (here 3).
- Formal definition: see (long version of) paper.

The input move



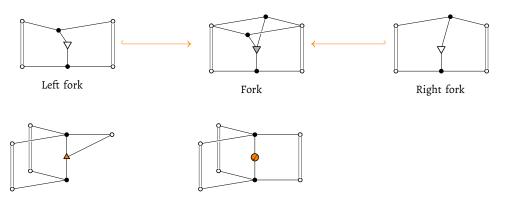
Moves: input/output

Using the previous convention:



Orange arrows: cospan morphisms.

Moves, continued



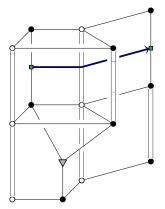
Channel creation

Tick

Local vs. global moves

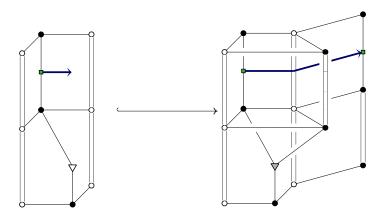
- Until now, moves were local: only involved players were shown.
- Global moves obtained by embedding into larger positions.
- E.g.:

Obtained by piling up global moves:



Feature a certain amount of concurrency.

Category of plays over position X: P_X



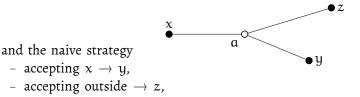
- Plus prefix inclusion.
- Possibly several morphisms between two plays.
- Otherwise, close to configuration posets of event structures.

Naive, non-deterministic strategies over position X

Definition 1. Strategy over X

Presheaf $P_X^{op} \rightarrow sets$.

Too general: consider the position

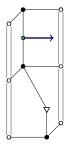


- but refusing $x \rightarrow z$.

Players x and z should not be allowed to choose with whom they synchronise.

Non-deterministic, innocent strategies

Views: let $V_X \subseteq P_X$ consist of histories of exactly one player. Example:



Definition 2. Innocent strategies

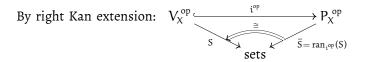
Presheaf $V_X^{op} \rightarrow$ sets.

Problem: no obvious inclusion innocent \subseteq naive.

Fair testing: overview

- Global behaviour: essentially, innocent \rightarrow naive.
- Interaction.
- Fair testing.

Global behaviour



Explicit formula
- General :
$$\overline{S}(p) = \int_{v \in V_{X}} S(v)^{P_{X}(v, p)}$$
.
- Boolean case; p accepted iff all its views are : $\overline{S}(p) = \bigwedge_{\{(v \xrightarrow{\alpha} \rightarrow p) \in P_{X}\}} S(v)$.

Global behaviour

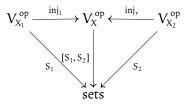
By restricting to closed-world plays: $S \mapsto \overline{S}$

Interaction

- Split the players of position X into two teams.
- Obtain two subpositions $X_1 \hookrightarrow X \leftrightarrow X_2$ sharing no player.
- We have

$$V_X \simeq V_{X_1} + V_{X_2}.$$

– Let S_1 play against S_2 by copairing :



Fair testing

- Successful play: one with at least one 🥥.
- S \perp T: all unsuccessful executions of [S,T] extend to successful ones.

Definition 3. Semantic fair testing equivalence

 $S \sim S' \text{ iff } \forall T, S \perp T \Leftrightarrow S' \perp T.$

A syntax for strategies

- Derivable from any playground.
- Idea:

A strategy = what remains of it after each atomic view b.

- For CCS:

where $b: n_b \rightarrow n$, for all b.

The translation

$$\begin{array}{cccc} \mathsf{P}|\mathsf{Q} & \mapsto & \boxed{\langle & \pi_n^{\mathsf{l}} \mapsto \llbracket \mathsf{P} \rrbracket} \\ & \pi_n^{\mathsf{r}} \mapsto \llbracket \mathsf{Q} \rrbracket \\ & - \mapsto & \emptyset & \rangle \end{array}$$
$$\boldsymbol{\nu} \mathfrak{a} . \mathsf{P} & \mapsto & \boxed{\langle & \boldsymbol{\nu}_n \mapsto \llbracket \mathsf{P} \rrbracket} \\ & - \mapsto & \emptyset & \rangle \end{array}$$
$$\boldsymbol{a} . \mathsf{P} & \mapsto & \boxed{\langle & \boldsymbol{\iota}_{n,a} \mapsto \llbracket \mathsf{P} \rrbracket} \\ & - \mapsto & \emptyset & \rangle \end{array}$$

•••

Main result

Theorem.

$$\mathsf{P}\sim_{s} Q \text{ iff } \llbracket \mathsf{P} \rrbracket \sim \llbracket Q \rrbracket.$$

Future work

- Scale the approach to π (almost), Join, λ ,...
- Tools for generating playgrounds (with Clovis Eberhart).
- Investigate morphisms of playgrounds.
- Link with exotic settings like cellular automata.
- `Double category of elements' \rightsquigarrow new notion of abstract rewriting system.