An intensionally fully-abstract sheaf model for π

Clovis Eberhart Tom Hirschowitz CNRS and Université Savoie Mont Blanc Thomas Seiller CNRS and Université Paris 7

Issues raised by standard operational semantics

Main result

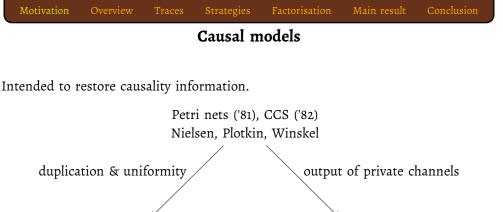
Standard operational semantics

Motivation

Execution traces = paths in labelled transition systems (LTSs).

As Castellan, Clairambault, and Winskel '15 argue: Different interleaving of independent actions \rightarrow different paths.

- State explosion problem in verification.
- Loss of causality information \sim difficult error diagnostics.



Linear logic ('03 - '07) Melliès

π-calculus ('12) Crafa et al.

- Castellan, Clairambault, Winskel ('15): as Melliès + concurrent strategies.
- All three extensions: very hard!

A different approach to causal models

- First main result published at Calco '13: intensional full abstraction for CCS.
- Here, extended to the π -calculus.

Construction of model

- Same pattern as for CCS.
- Difficulty: need to restrict traces to subconfigurations.
- Dealt with using factorisation systems.

Proof of intensional full abstraction

- New proof method required.
- Actually simpler than for CCS.

An important architectural difference

Standard denotational semantics:

- a large `ambient' category: event structures, concurrent games;
- interpretation of terms/programs in this ambient category.

Here:

- For each considered calculus, a playground \approx a notion of trace.
- Intuition: a playground gives the `rules of the game'.
- Denotations are then innocent presheaves on traces.

Hopefully: paves the way for studying relations between calculi.

Very intensional notion of trace

- Configurations X,Y,... ≈ network topologies:
 - Agents.
 - Communication channels between them.
- Traces $Y \rightarrow X$ describe each agent's actions leading from X to Y.

(Where bits of Y come from in X)

Naive strategies: presheaves on traces

- Each trace \mapsto possibly empty set of ways of accepting them.
- Cf. presheaf models (Joyal, Nielsen, Winskel '93).
- Deals at once with:
 - prefix-closedness,
 - permutation of independent actions,
 - channel renaming (cf. nominal sets).

Problem: too general

Agents may `communicate' without using the network.

Innocent strategies

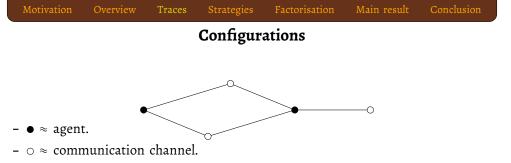
To rectify the deficiency, restrict to

Innocent strategies: sheaves on traces

- Accepting a trace should be `local'.

- I.e., determined only by each agent's `view' of the trace.

Each trace covered by its collection of views	Grothendieck topology
Ways of accepting trace $u \cong$ collections of ways of accepting u's views	Sheaf condition

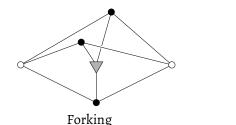


- Edges: agent knows channel.
- Now, traces:
 - Actions are not a mere binary relation (initial, final configuration).
 - Indeed, want to represent how one moves from initial to final configuration.
 - We use cospans: initial \rightarrow stuff \leftarrow final.
 - What stuff? A kind of higher-dimensional graph.
 - Formally: presheaves on a countable category $\mathbb{C},$ see paper.

Main result Generators for actions: particular presheaves on $\mathbb C$ Output Input

Synchronisation

Generators for actions: particular presheaves on $\ensuremath{\mathbb{C}}$



•••

Main result

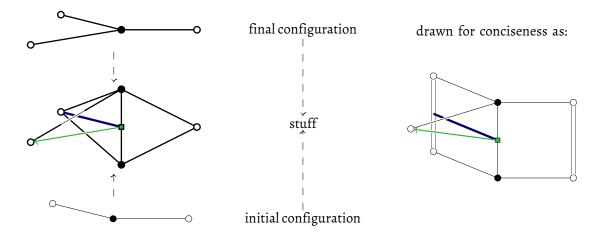
These presheaves vaguely look like actions. How to

- add temporal information (initial/final),
- put generators in context,
- compose them to get traces with more than one action?

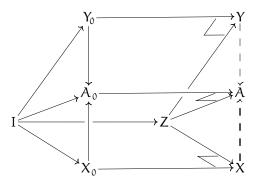
Temporal (initial/final) information through cospans

Main result

Cospan for the input action:



Definition Interface of the cospan for a generator: channels shared between initial and final.



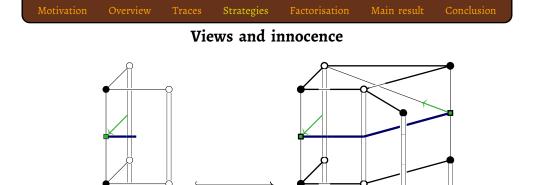
Intuition: glue Z and initial configuration (resp. action, final) along I.

Sequential composition of traces

Main result

- By composition in $Cospan(\widehat{\mathbb{C}})!$
- Retains causality, not syntactic ordering.
- \rightarrow a category \mathscr{T}_X of traces over X.

- Naive strategies over X: $\widehat{\mathscr{T}}_{\chi} = [\mathscr{T}_{\chi}^{op}, sets].$



Strategies on a configuration X = sheaves on $\mathscr{T}_X \simeq$ presheaves on \mathscr{V}_X .

റ

- Everything works as in previous work on CCS.
- Except:

Needed for the machinery to work

A way of restricting traces over X to any subconfiguration $Y \hookrightarrow X$.

Motivation Overview Traces Strategies Factorisation Main result Conclusion The basic idea

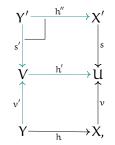
Given any cospan (s, v) as on the right

we compute its restriction along $Y \xrightarrow{h} X$ by:

1. factorising $v \circ h$ as $h' \circ v'$, where

 ν' does as many actions as it can;

2. then taking the pullback of s and h'.



What does it mean to `do as many actions as one can'?

Factorisation system!

Motivation Overview Traces Strategies Factorisation Main result Conclusion Generating cofibrations

Factorisation system generated from a set of so-called cofibrations.

Consider the set \mathscr{V}_0 of inclusions $X \xrightarrow{t} A$

- of the initial configuration of a generator
- into the generator itself ($\in \widehat{\mathbb{C}}$).

Motivation Overview Traces Strategies Factorisation Main result Conclusion Horizontal maps

- Consider now maps g right-orthogonal to \mathscr{V}_0 , i.e., for all commuting squares

with $t\in \mathscr{V}_0,$ there exists a unique filler h making both triangles commute.

- Idea: g may not add new actions from C.
- Indeed: any added action was already in C.

Notation

$$\mathbf{t} \perp \mathbf{g}, \mathscr{V}_0 \perp \mathbf{g}, \text{ or } \mathbf{g} \in \mathscr{V}_0^{\perp}.$$

Motivation Overview Traces Strategies Factorisation Main result Conclusion A factorisation system

Theorem (Bousfield) Any morphism $A \to B$ factors as $A \xrightarrow{\nu} C \xrightarrow{h} D$ with $\nu \in \stackrel{\perp}{(\mathscr{V}_0^{\perp})}$ and $h \in \mathscr{V}_0^{\perp}$.

Not quite there yet: need to prove the obtained (v', s') is again a trace!

Theorem Traces are stable under restriction. Motivation Overview Traces Strategies Factorisation Main result Conclusion
Main result

- We define a translation $\llbracket \rrbracket$: Pi \longrightarrow Strategies.
- Compositional \rightsquigarrow easy to define semantic counterparts to testing equivalences.
- Idea: P passes the test T iff P|T satisfies some property.

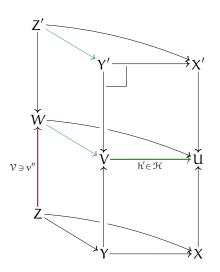
(e.g., eventually `ticks')

- Notation: $P | T \in \bot$.
- $P \sim Q$ iff $\forall T$, $(P | T \in \bot) \iff (Q | T \in \bot)$.

For any testing equivalence (with mild hypotheses):

```
Theorem (intensional full abstraction)
The translation induces a bijection on quotients:
Pi/\sim \xrightarrow{\simeq} Strategies/\sim.
```

- Notably left out of this talk:
 - Proper definition of \mathbb{C} .
 - Proof that traces are stable under restriction.
 - New approach to proving intensional full abstraction.
- Future work:
 - more complex calculi (functional, then functional & concurrent);
 - applying notion of trace (see EI talk);
 - study morphisms between calculi.



From presheaves on views to sheaves on traces

Use right Kan extension : for any configuration X, consider

