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Sheaf models

Sheaf models: a denotational semantics using ideas from

causal models (Nielsen, Plotkin and Winskel, early 80's),

presheaf models (Joyal, Nielsen and Winskel, early 90's),

game semantics (Abramsky et al., Hyland and Ong, early 90's).

Basic idea: innocent and concurrent strategies as sheaves on ad hoc sites.

Applied to CCS and �-calculus (with Pous and Seiller, '12 - '15), and to

non-deterministic �-calculus (Tsukada and Ong, '15).
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Goal

In our work on CCS and � : (innocent) strategies automatically derived from

algebraic gadget describing the game (a playground).

Playground theory � bisimilar transition systems for terms and strategies.

Tsukada and Ong do not use it (hence prove adequacy entirely by hand).

Ongoing work with Clovis: organise their game into a playground.

Non-trivial: techniques used for CCS and � subtly fail.
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Here: less ambitious goal

Common generalisation.
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Overview

Start from a natural deduction presentation of your preferred language:

Step 1 (reap): identify

Step 2 (sow): derive automatically

strategies,

innocent strategies as sets of views: innocent behaviours,

innocent strategies as sets of plays: innocent strategies,

translation: terms � innocent strategies,

{ (work in progress),

from Yoneda theory.
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Sequents + terms as typing derivation trees.
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Main idea

Terms are trees, standardly presented as pointed presheaves.

Innocent behaviours are also trees, presented as presheaves over branches.

Main technical tool: Yoneda theory, which is about presheaves.
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Heart of the matter

Connection between these two presheaf-based presentations of trees.
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Overview of the process

For any sequent S, Terms , Views , Plays , Paraterms .S S S S

Yoneda embedding, y : � � .

Innocent strategies: image of �.

Translation: composite ��� .
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Running example

Here, stripped down example:
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The division calculus

Terms:

� � � �T ::= 0 | T |
| T | T +
+T + recursion.1 n 1 n

��Con|gurations: |nite multisets of terms T , 
, T .1 n

Computation:

�� � � � �� �� �
, T 
 T +
 , 
 � 
,T , 
, T , 
 .1 n 1 n
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Natural deduction presentation

� 	Sequents = 
 .

For rules, omitting recursion and non-deterministic branching, one rule for each n :

T 
 T1 n � �� 	i � 1,
,n

T |
| T1 n
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Terms as znite pointed multigraphs (by example)

� � ��� �Consider let recX = 0 + X X 0 |0 inX.

Represent it as a derivation tree with loops:

with 
 the distinguished node.
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Terms � MGph (category of pointed multigraphs).
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Game interpretation: positions and plays

Position: |nite set n of players.

Move: player i � n divides itself into p new players.

(Initial position: n) � (Final position: n -1+ p)

Yields a directed graph with edges n n -1+ p.

Keeping track of which player has played and which players are created:

� � � � � � � �n � i -1 +1+ n - i � i -1 + p + n - i � n -1+ p .
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�p,i�
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Game interpretation: plays

Play: path in the graph of moves, up to permutation of independent steps.

Example: two players forking in parallel.

or graphically =

Running example

1
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+

Again!

Plays on one player are just |nite trees:

Plays � MGph .
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Game interpretation: strategies, views and innocence

Deterministic strategy: pre|x-closed set of plays.

Non-deterministic strategies on 
 (one player): .

Innocent strategy: each player decides on its own.

Example:

If both black parts are accepted then whole plays should be accepted at the

same time.

Intuition: y cannot }see~ whether x has played or not.

The }view~ of y is the le�t-hand black part.

Running example
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Views and innocence 2

Actual views � MGph .


� �Remark: Pointed morphism v � v = pre|x relation v � v.

Formal views actual views � MGph .
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De|nition 1.

Actual view: linear tree
si1 ss n{ in n i pp1 2 2

De|nition 2.

� � � � � �Formal view: sequence of pairs arity , input port n , i 
 n , i1 1 p p

with i � n for all j � p.j j

� �Form a category by the pre|x ordering: morphism v � v i�f v � v.

�0
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The setting

No surprise:

We can apply our construction to:

Now the fun begins.
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De|nition 3.

Paraterms = MGph .
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Multigraphs

Let us start by giving our precise representation for multigraphs.

Base category � :

Abuse of notation: morphisms should be indexed by n .

opCategory of presheaves, i.e., functors � � Set.

Morphisms = natural transformations.

Intuition: map vertices/edges to vertices/edges preserving sources and target.

Multigraphs

�
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De|nition 4.

MGph = � .
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Multigraphs

A multigraph X is thus a diagram in Set:

��X n is the set of n-ary multiedges, and so on.

� ���� : X n � X 
 gives the ith source of each such multiedge.i

� ���� : X n � X 
 gives the target of each such multiedge.

� �� e = e�s , action of s .i i i

Similarly, e�t .

Multigraphs

�
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0�X �1�X 
 �n�X 
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�
�1 ��
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An example

� � � 	X 
 = a , b , c, d , e ,

�� � 	X 2 = x, y ,

��X n = � otherwise,

x�s = a , x�s = b, x�t = c, y�t = c, y�s = d , y�s = e.1 2 1 2

Graphically:

Multigraphs

x
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First ingredient of Yoneda theory: the Yoneda embedding

In our case:

y = single vertex.


y = the }typical~ n-ary multiedge .��n

y : y � y embeds single vertex as ith source of n-ary multiedge.��s 
 ni
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Yoneda embedding

y : � � � .

...
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Example application of the Yoneda embedding

Previous example = pushout:

Intuition: glue two binary multiedges along their targets.

Multigraphs

y

x
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Second ingredient of Yoneda theory: co-Yoneda lemma

This generalises to:

Morally: a multigraph is a gluing of its multiedges and vertices.

Elément de langage:
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Any presheaf is canonically a colimit of its elements.

Coends
c

� �X ��X c � yc

where

c ranges over all objects,

A�Y � Y+
+Y (A times),

� �� X c � y would put elements side by side,cc
c � �� X c � y is a quotient ê that's where the gluing occurs.c
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The mother of all Yoneda situations
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Set up

� = base category for simplicial sets.

Objects = natural numbers a.k.a. |nite ordinals.

Morphisms = monotone maps.

Top = topological spaces + continuous maps.
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The mother of all Yoneda situations

��� n = the n-simplex.0

c c
 �� � � � � � � �� X = � � X c � y = � X c �� c (using co-Yoneda)c 0

� � � �Glue realisations of X 's elements ê x � X c being realised as � c .0

� � � �� �� �� U n = Top � n , U0

� and � form an adjunction (in this case even a Quillen equivalence) though

we won't need this here.
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The magic diagram

y� �
�

�0 �
Top
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General Yoneda situation

c c
 �� � � � � � � �� X = � � X c � y = � X c �� c .c 0

� � � � � � � �� E c = � � c , E0

� and � form an adjunction.
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For � small and � cocomplete:
y� �

�
�0 �

�
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Yoneda situation for pointed multigraphs (= paraterms)

Recall that Paraterms = MGph (= 
/ ).
 


�� � � ��� n , i , 
, n , i is1 1 p p0

.

Yoneda meets games

�
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Yoneda situation for pointed multigraphs

y
Views Views
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Example

��� }unfolds~ its argument.

Let G denote (root underlined).

� � ��with � � G :

Yoneda meets games
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Two combined Yoneda situations

��� maps terms to innocent strategies (translation).

���� maps naive strategies to innocent strategies (innocentisation).
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De|nition 5.

Innocent strategy: one in the image of �.
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When does the innocent strategy associated to term T accept play P?

Yoneda meets games

�
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P

Ways of accepting P � ways of mapping each branch of P into T.

���T����
��T��,�P���sweiV 
� )�fo.nfed(

��v��T��,�v��P����
sweiV 
�v� )tes-mohsnaem�B,A�;sdne=sofsnart.tan(

��T,�v��0�,�P,�v��0���
sweiV 
�v� )�fo.nfed(

�T,�v��0��P,�v��0���
sweiV 
�v� )�C,B�A�=C

B�A��C
B� A

=��C,B�,A�(

�T,�v��0��P,�v��0�� sweiV 
�v�� )�B,A v�w��B
A v�

v�B
A v�

v
��B,A v��

v
(

�T,��P������ )�fo.nfed(

.�T,�P�gnidlofnu�=
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Summary

On a simplistic example:

Step 1: notion of paraterm � terms, plays, views.

Step 2: two combined Yoneda situations.

�

Automatic de|nition of innocent behaviours and (innocent) strategies

and various links between the involved notions:

translation terms � strategies,

adjunction innocent behaviours � strategies.
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Next steps

Extend to CCS, � , and � and recover desired constructions.

Does playground theory generalise?

Not shown: transition system on strategies.

Construct one for paraterms (� GoI).

When is the translation a bisimulation?
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Thanks for your attention!
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