Yoneda meets concurrent game semantics

Clovis Eberhart and Tom Hirschowitz

Sheaf models

- Sheaf models: a denotational semantics using ideas from
 - causal models (Nielsen, Plotkin and Winskel, early 80's),
 - presheaf models (Joyal, Nielsen and Winskel, early 90's),
 - game semantics (Abramsky et al., Hyland and Ong, early 90's).
- Basic idea: innocent and concurrent strategies as sheaves on ad hoc sites. -
- Applied to CCS and π -calculus (with Pous and Seiller, '12 '15), and to non-deterministic λ -calculus (Tsukada and Ong, '15).

- In our work on CCS and π : (innocent) strategies automatically derived from algebraic gadget describing the game (a playground).
- Playground theory \rightsquigarrow bisimilar transition systems for terms and strategies.
- Tsukada and Ong do not use it (hence prove adequacy entirely by hand).
- Ongoing work with Clovis: organise their game into a playground.
- Non-trivial: techniques used for CCS and $\boldsymbol{\pi}$ subtly fail.

Here: less ambitious goal

Common generalisation.

- Start from a natural deduction presentation of your preferred language:

Sequents + terms as typing derivation trees.

- Step 1 (reap): identify

- Step 2 (sow): derive automatically
 - strategies,
 - innocent strategies as sets of views: innocent behaviours,
 - innocent strategies as sets of plays: innocent strategies,
 - translation: terms \rightarrow innocent strategies,
 - ... (work in progress),

from Yoneda theory.

- Terms are trees, standardly presented as pointed presheaves.
- Innocent behaviours are also trees, presented as presheaves over branches.

Heart of the matter

Connection between these two presheaf-based presentations of trees.

Main technical tool: Yoneda theory, which is about presheaves.

Introduction Running example Multigraphs Yoneda meets games Conclusion

Overview of the process

- For any sequent S, Terms_S, Views_S, Plays_S, Paraterms_S.
- Yoneda embedding, $\mathbf{y}:\mathscr{C}
 ightarrow \widehat{\mathscr{C}}.$

- Innocent strategies: image of S.
- Translation: composite $S \circ U$.

Running example

Here, stripped down example:

Natural deduction presentation

Sequents = $\{\star\}$.

For rules, omitting recursion and non-deterministic branching, one rule for each n:

$$\frac{T_1 \dots T_n}{T_1 | \dots | T_n} (i \in \{1, \dots, n\})$$

Terms as finite pointed multigraphs (by example)

Consider let rec X = 0 + (X | X | (0 | 0)) in X.

Represent it as a derivation tree with loops:

with • the distinguished node.

 $Terms_{\star} \hookrightarrow MGph_{\star}$ (category of pointed multigraphs).

Game interpretation: positions and plays

- Position: finite set n of players.
- Move: player $i \in n$ divides itself into p new players.

- Keeping track of which player has played and which players are created:

$$n \cong (i-1)+1+(n-i) \rightarrow (i-1)+p+(n-i) \cong n-1+p.$$

Introduction Running example Multigraphs Yoneda meets games Conclusion

Game interpretation: plays

- Play: path in the graph of moves, up to permutation of independent steps. Example: two players forking in parallel.

Game interpretation: strategies, views and innocence

- Deterministic strategy: prefix-closed set of plays.
- Non-deterministic strategies on \star (one player): $\widehat{\text{Plays}_{\star}}$.
- Innocent strategy: each player decides on its own.
- Example:

- If both black parts are accepted then whole plays should be accepted at the same time.
- Intuition: y cannot 'see' whether x has played or not.
- The 'view' of y is the left-hand black part.

Views and innocence 2

- Actual views \hookrightarrow MGph₊.
- Remark: Pointed morphism $\nu \rightarrow \nu' =$ prefix relation $\nu \leq \nu'$. -

Definition 2.

- Formal view: sequence of pairs (arity, input port) $(n_1, i_1)...(n_p, i_p)$ with $i_i \in n_i$ for all $j \in p$.
- Form a category by the prefix ordering: morphism $v \rightarrow v'$ iff $v \leq v'$.

Formal views $\xrightarrow{\mathbf{R}_0}$ actual views \hookrightarrow MGph₊.

No surprise:

Definition 3.	
$Paraterms_{\star} = MGph_{\star}.$	

We can apply our construction to:

Now the fun begins.

Multigraphs

Let us start by giving our precise representation for multigraphs. Base category \mathbb{M} :

Abuse of notation: morphisms should be indexed by n.

- Category of presheaves, i.e., functors $\mathbb{M}^{op} \to Set$.
- Morphisms = natural transformations.

Intuition: map vertices/edges to vertices/edges preserving sources and target.

A multigraph X is thus a diagram in Set:

- X[n] is the set of n-ary multiedges, and so on.
- $\sigma_i:X[n] \to X(\bigstar)$ gives the ith source of each such multiedge.
- $\tau:X[n] \to X(\bigstar)$ gives the target of each such multiedge.
- $\sigma_i(e) = e \cdot s_i$, action of s_i .
- Similarly, e·t.

An example

- $X(\star) = \{a, b, c, d, e\},\$
- $X[2] = {x, y},$
- $X[n] = \emptyset$ otherwise,

-
$$\mathbf{x} \cdot \mathbf{s}_1 = \mathbf{a}$$
, $\mathbf{x} \cdot \mathbf{s}_2 = \mathbf{b}$, $\mathbf{x} \cdot \mathbf{t} = \mathbf{c}$, $\mathbf{y} \cdot \mathbf{t} = \mathbf{c}$, $\mathbf{y} \cdot \mathbf{s}_1 = \mathbf{d}$, $\mathbf{y} \cdot \mathbf{s}_2 = \mathbf{e}$.

Graphically:

First ingredient of Yoneda theory: the Yoneda embedding

 $\mathbf{y}:\mathbb{M}\,\rightarrow\,\widehat{\mathbb{M}}.$

In our case:

- $\mathbf{y}_{\star} = \text{single vertex.}$
- $\mathbf{y}_{[n]}$ = the 'typical' n-ary multiedge \bigvee .
- $\boldsymbol{y}_{s_i}:\boldsymbol{y_\star}\to\boldsymbol{y}_{[n]}$ embeds single vertex as ith source of n-ary multiedge.

Example application of the Yoneda embedding

Previous example = pushout:

Intuition: glue two binary multiedges along their targets.

Second ingredient of Yoneda theory: co-Yoneda lemma

This generalises to:

Any presheaf is canonically a colimit of its elements.

- Morally: a multigraph is a gluing of its multiedges and vertices.
- Elément de langage:

The mother of all Yoneda situations

The mother of all Yoneda situations

- $\mathbf{R}_0[\mathbf{n}] = \text{the } \mathbf{n}\text{-simplex}$.
- $\mathbf{R}(X) = \mathbf{R}(\int_{-\infty}^{c} X(c) \cdot \mathbf{y}_{c}) = \int_{-\infty}^{c} X(c) \cdot \mathbf{R}_{0}(c)$ (using <u>co-Yoneda</u>) Glue realisations of X's elements — $x \in X(c)$ being realised as $\mathbf{R}_{0}(c)$. - $\mathbf{S}(\mathbf{U})[\mathbf{n}] = \text{Top}(\mathbf{R}_{0}[\mathbf{n}], \mathbf{U})$
- **R** and **S** form an adjunction (in this case even a Quillen equivalence) though we won't need this here.

General Yoneda situation

-
$$\mathbf{R}(X) = \mathbf{R}\left(\underline{\int^{c} X(c) \cdot \mathbf{y}_{c}}\right) = \int^{c} X(c) \cdot \mathbf{R}_{0}(c).$$

- $S(E)(c) = \mathscr{E}(R_0(c), E)$
- R and S form an adjunction.

Yoneda situation for pointed multigraphs (= paraterms)

Recall that Paraterms $\star = MGph_{\star} (= \star / \widehat{\mathbb{M}}).$

 $\mathbf{R}_{0}((n_{1}, i_{1}), ..., (n_{p}, i_{p}))$ is

 $R \circ U$ 'unfolds' its argument.

- Let G denote
$$vert$$
 (root underlined).
- U(G): Views $_{\star}^{op} \rightarrow Set$ with R(U(G)):
 $\varepsilon \mapsto \{\rho\}$
((2,1)) $\mapsto \{\rho \rho\}$
((2,1)⁺ $\mapsto \{\rho ... \rho\}$
((2,1)⁺ $\mapsto \{\rho ... \rho r\}$
((2,1)⁺, (2,2)) $\mapsto \{\rho ... \rho r\}$
 $- \mapsto \phi$

- $S \circ U$ maps terms to innocent strategies (translation).
- $S \circ R'$ maps naive strategies to innocent strategies (innocentisation).

When does the innocent strategy associated to term T accept play P?

Yoneda meets games

Running example Multigraphs

Introduction

S(U(T))(P) $\cong \widehat{\text{Views}}(\mathbf{U}(P), \mathbf{U}(T))$ (defn. of S) $\cong \int_{v \in \text{Views}} [\mathbf{U}(P)(v), \mathbf{U}(T)(v)]$ (nat. transfos = ends; [A, B] means hom-set) $\cong \int_{v \in \text{Views}} [[\mathbf{R}_0(v), \mathbf{P}], [\mathbf{R}_0(v), \mathbf{T}]] \text{ (defn. of } \mathbf{U})$ $([A, [B, C]] = (C^B)^A \cong C^{A \cdot B} = [A \cdot B, C])$ $\cong \int_{v \in \text{Views}} \left[\left[\mathbf{R}_{0}(v), \mathbf{P} \right] \cdot \mathbf{R}_{0}(v), \mathbf{T} \right] \right]$ $\cong \left[\int_{\nu}^{\nu \in \text{Views}_{\star}} [\mathbf{R}_{0}(\nu), \mathsf{P}] \cdot \mathbf{R}_{0}(\nu), \mathsf{T} \right] \quad \left(\int_{\nu} [A_{\nu}, \mathsf{B}] \approx \prod_{\nu} \mathsf{B}^{A_{\nu}} \cong \mathsf{B}^{\sum_{\nu} A_{\nu}} \approx [\int_{\nu}^{w} A_{\nu}, \mathsf{B}] \right)$ \cong [**R**(**U**(**P**)),**T**] $(defn. of \mathbf{R})$ = [unfolding (P), T].

Ways of accepting $P \cong$ ways of mapping each branch of P into T.

Summary

On a simplistic example:

- Step 1: notion of paraterm \supseteq terms, plays, views.
- Step 2: two combined Yoneda situations.

\sim

- Automatic definition of innocent behaviours and (innocent) strategies
- and various links between the involved notions:
 - translation terms \rightarrow strategies,
 - adjunction innocent behaviours \leftrightarrow strategies.

Next steps

- Extend to CCS, π , and λ and recover desired constructions.
- Does playground theory generalise?
 - Not shown: transition system on strategies.
 - Construct one for paraterms (\approx GoI).
 - When is the translation a bisimulation?

Thanks for your attention!