What's in a game?

Clovis Eberhart Tom Hirschowitz

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA Chambéry, France

July 8, 2018

Teasing question: what's your shortest proof that 1 is a topos?

Motivation

- Lots of game models.
- Lots of flavours.
- Common pattern.
- Subtle definitions and proofs.

Contribution

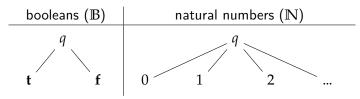
Abstract framework the construction of

- category of strategies
- subcategory of innocent strategies

in variants of HON, Tsukada-Ong, AJM.

HON Game Semantics: Games

A game Structures possible moves.

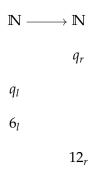


HON Game Semantics: Plays

Basically:

- sequence of moves
- interaction between program and environment

Example: $f = fun n \rightarrow 2 * n$

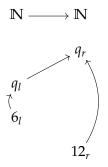


HON Game Semantics: Plays

Basically:

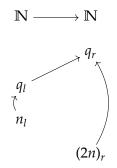
- sequence of moves
- interaction between program and environment

Example: $f = fun n \rightarrow 2 * n$

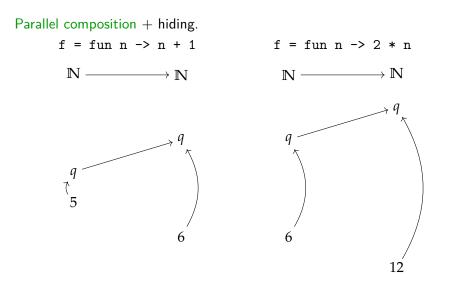


HON Game Semantics: Strategies

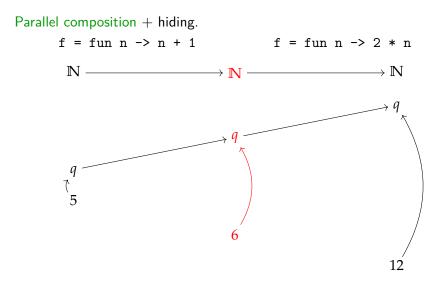
 $\label{eq:strategy} \begin{array}{l} {\sf Strategy} = {\sf prefix-closed set of accepted plays}. \\ {\sf Example: for f = fun n -> 2 * n, (roughly) all plays of the form} \end{array}$



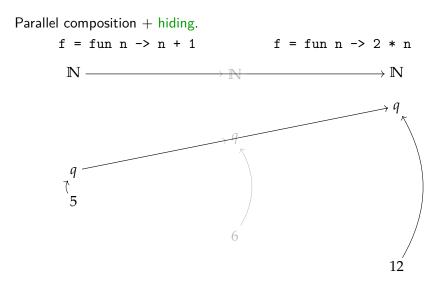
HON Game Semantics: Composition



HON Game Semantics: Composition



HON Game Semantics: Composition



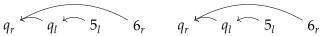
Innocence

Idea: characterise purely functional programs.

Innocent strategy: can only change its behaviour based on its view. View: certain type of play.

strategy of counter:

strategy of successor function:



Innocence: the strategy accepts a play iff it accepts all its views.

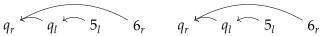
Innocence

Idea: characterise purely functional programs.

Innocent strategy: can only change its behaviour based on its view. View: certain type of play.

strategy of counter:

strategy of successor function:



Innocence: the strategy accepts a play iff it accepts all its views.

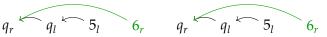
Innocence

Idea: characterise purely functional programs.

Innocent strategy: can only change its behaviour based on its view. View: certain type of play.

strategy of counter:

strategy of successor function:



Innocence: the strategy accepts a play iff it accepts all its views.

All views

Innocence

Play p accepted iff all its views are.

- Let v be any view of play p.
- Only rarely witnessed by a morphism v → p.

Idea (Melliès, then reworked by P. Levy) Add new morphisms!

- Permutation equivalence ~.
- Morphisms: v ≤ p' ~ p (proof relevant!).

The cone from views

First reformulation of innocence

Play p accepted iff v is for all morphisms $v \rightarrow p$.

New definition of strategies

Equivariance

New natural constraint: if $p \sim q$ then $(p \in \sigma) \Leftrightarrow q \in \sigma$.

Definition

Strategy = equivariant, prefix-closed set of plays.

New definition of strategies

Proposition

(Equivariant, prefix-closed sets of plays) \simeq (Functors σ : *Plays*^{op} \rightarrow 2).

- $2 = (0 \rightarrow 1)$.
- $\sigma(p) = 1$ means accepted.
- Prefix-closedness: if q accepted, then

$$\sigma(p \leq q) = (\sigma(q) \leq \sigma(p)) = (1 \leq \sigma(p))$$

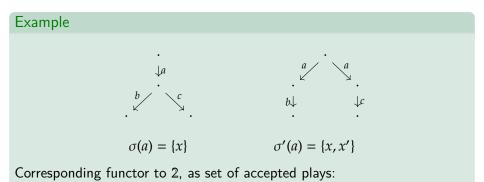
hence p accepted.

Equivariance: if p accepted, then

$$\sigma(p\sim q)=(\sigma(q)=\sigma(p)).$$

Nondeterminism for free!

- From functors $\mathbb{C}^{op} \rightarrow 2$, boolean presheaves,
- to functors $\mathbb{C}^{op} \to \text{Set}$, i.e., presheaves $\widehat{\mathbb{C}}$.



$$|\sigma| = |\sigma'| = \{\varepsilon, a, ab, ac\}.$$

Innocence as a sheaf condition

Definition

$$\sigma \in \widehat{\mathbb{P}_{A,B}}$$
 innocent iff sheaf for the topology induced by $\mathbb{V}_{A,B} \xrightarrow{\mathbf{i}_{A,B}} \mathbb{P}_{A,B}$.

Concretely:



- Boolean: $\sigma(p) = \sigma(v_1) \land \dots \land \sigma(v_n)$, 'all views accepted'.
- Proof-relevant: compatible family of proofs of acceptance.

Proposition

 σ innocent iff in essential image of $\prod_{\mathbf{i}_{AB}}$.

- Associativity of proof-relevant composition (+ units).
- Stability of innocence under composition (+ units).

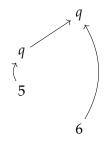
Abstracting away: recurring pattern

- Define games A, B, C, ...
- Define categories of plays $\mathbb{P}_{A,B}$.
- Define strategies $A \rightarrow B$ as prefix-closed sets of plays in $\mathbb{P}_{A,B}$.
- Composition = parallel composition + hiding.
- Identities = copycat strategies.
- Prove that this defines a category of games and strategies.
- Define a notion of innocence.
- Prove that innocent strategies form a subcategory.

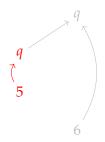
Abstracting away: recurring pattern

- Define games A, B, C, ... Assumed!
- Define categories of plays P_{A,B}. Assumed!
- Define strategies $A \rightarrow B$ as prefix-closed sets of plays in $\mathbb{P}_{A,B}$.
- Composition = parallel composition + hiding.
- Identities = copycat strategies.
- Prove that this defines a category of games and strategies.
- Define a notion of innocence. Assumed!
- Prove that innocent strategies form a subcategory.

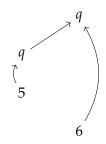
- Games A, B, C...
- Categories of plays \mathbb{P}_A , $\mathbb{P}_{A,B}$, $\mathbb{P}_{A,B,C}$...



- Games A, B, C...
- Categories of plays \mathbb{P}_A , $\mathbb{P}_{A,B}$, $\mathbb{P}_{A,B,C}$...
- Projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$.

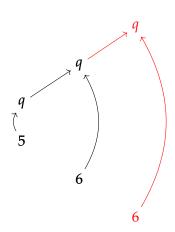


- Games A, B, C...
- Categories of plays \mathbb{P}_A , $\mathbb{P}_{A,B}$, $\mathbb{P}_{A,B,C}$...
- Projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$.

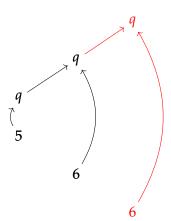


 $A \longrightarrow B \longrightarrow B$

- Games A, B, C...
- Categories of plays \mathbb{P}_A , $\mathbb{P}_{A,B}$, $\mathbb{P}_{A,B,C}$...
- Projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$.
- Insertions $\mathbb{P}_{A,B} \to \mathbb{P}_{A,B,B}$.



- Games A, B, C...
- Categories of plays \mathbb{P}_A , $\mathbb{P}_{A,B}$, $\mathbb{P}_{A,B,C}$...
- Projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$.
- Insertions $\mathbb{P}_{A,B} \to \mathbb{P}_{A,B,B}$.
- Compatibility between projections and insertions.



Simplicial description of categories of plays

Definition

Game setting:

- set A of games,
- functor $\mathbb{P}: (\Delta/\mathbb{A})^{op} \to \mathsf{Cat}.$

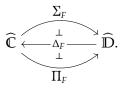
where Δ / \mathbb{A} has as

- objects: lists $L = A_1, ..., A_n$ of games,
- morphisms:
 - coprojections $A, C \rightarrow A, B, C$,
 - coinsertions $A, A, B \rightarrow A, B$.

Strategies $A \to B$: $\widehat{\mathbb{P}_{A,B}}$.

Polynomial functors

If $F : \mathbb{C} \to \mathbb{D}$, let Δ_F denote restriction along F^{op} . Well-known adjunction chain:



Polynomial functor: composite of Δ 's, \prod 's, and Σ 's.

Idea: parallel composition + hiding.

$$\mathbb{P}_{\overline{A,B}} + \mathbb{P}_{B,C} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \mathbb{P}_{A,\overline{B,C}} + \mathbb{P}_{A,B,C} \xrightarrow{\Pi_{\nabla}} \mathbb{P}_{A,B,C} \xrightarrow{\Sigma_{\delta_1}} \mathbb{P}_{A,C}$$

Idea: parallel composition + hiding.

$$\mathbb{P}_{A,B} + \mathbb{P}_{B,C} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C} \xrightarrow{\Pi_{\nabla}} \mathbb{P}_{A,B,C} \xrightarrow{\Sigma_{\delta_1}} \mathbb{P}_{A,C}$$

Idea: parallel composition + hiding.

$$\mathbb{P}_{\overline{A,B}} + \mathbb{P}_{B,C} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \mathbb{P}_{A,\overline{B,C}} + \mathbb{P}_{A,B,C} \xrightarrow{\Pi_{\nabla}} \mathbb{P}_{A,\overline{B,C}} \xrightarrow{\Sigma_{\delta_1}} \mathbb{P}_{A,C}$$

Idea: parallel composition + hiding.

$$\mathbb{P}_{A,B} + \mathbb{P}_{B,C} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C} \xrightarrow{\Pi_{\nabla}} \widehat{\mathbb{P}_{A,B,C}} \xrightarrow{\Sigma_{\delta_1}} \widehat{\mathbb{P}_{A,C}}$$

Justification:

 $\mathbf{m}_{A,B,C}(\sigma,\tau) \text{ accepts } p$ iff iff

Idea: parallel composition + hiding.

$$\mathbb{P}_{A,B} + \mathbb{P}_{B,C} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C} \xrightarrow{\Pi_{\nabla}} \mathbb{P}_{A,B,C} \xrightarrow{\Sigma_{\delta_1}} \mathbb{P}_{A,C}$$

Justification:

 $\begin{array}{l} \mathbf{m}_{A,B,C}(\sigma,\tau) \text{ accepts } p \\ \text{iff} & \text{there exists an interaction sequence } u \in \mathbb{P}_{A,B,C} \\ \text{that is accepted and projects to } p \\ \text{iff} \\ \text{iff} \end{array}$

Idea: parallel composition + hiding.

$$\mathbb{P}_{A,B} + \mathbb{P}_{B,C} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C} \xrightarrow{\Pi_{\nabla}} \mathbb{P}_{A,B,C} \xrightarrow{\Sigma_{\delta_1}} \mathbb{P}_{A,C}$$

Justification:

 $\begin{array}{l} \mathbf{m}_{A,B,C}(\sigma,\tau) \text{ accepts } p \\ \text{iff} & \text{there exists an interaction sequence } u \in \mathbb{P}_{A,B,C} \\ \text{that is accepted and projects to } p \\ \text{iff} & \text{both } \operatorname{inl} u \text{ and } \operatorname{inr} u \text{ are accepted} \\ \text{iff} \end{array}$

Idea: parallel composition + hiding.

$$\mathbb{P}_{A,B} + \mathbb{P}_{B,C} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C} \xrightarrow{\Pi_{\nabla}} \mathbb{P}_{A,B,C} \xrightarrow{\Sigma_{\delta_1}} \mathbb{P}_{A,C}$$

Justification:

 $\mathbf{m}_{A,B,C}(\sigma,\tau)$ accepts p

- iff there exists an interaction sequence $u \in \mathbb{P}_{A,B,C}$ that is accepted and projects to p
- iff both $\operatorname{inl} u$ and $\operatorname{inr} u$ are accepted
- iff σ accepts $\delta_2(u)$ and τ accepts $\delta_0(u)$.

Idea: parallel composition + hiding.

$$\mathbb{P}_{A,B} + \mathbb{P}_{B,C} \xrightarrow{\Delta_{\delta_2 + \delta_0}} \mathbb{P}_{A,B,C} + \mathbb{P}_{A,B,C} \xrightarrow{\Pi_{\nabla}} \mathbb{P}_{A,B,C} \xrightarrow{\Sigma_{\delta_1}} \mathbb{P}_{A,C}$$

Justification:

 $\begin{array}{l} \mathbf{m}_{A,B,C}(\sigma,\tau) \text{ accepts } p \\ \text{iff} \quad \text{there exists an interaction sequence } u \in \mathbb{P}_{A,B,C} \\ \text{that is accepted and projects to } p \\ \text{iff} \quad \text{both } \ln l u \text{ and } \ln r u \text{ are accepted} \\ \text{iff} \quad \sigma \text{ accepts } \delta_2(u) \text{ and } \tau \text{ accepts } \delta_0(u). \end{array}$

Actually: proof-relevant version.

Copycat strategies

$$\mathbb{1} \cong \widehat{\varnothing} \xrightarrow{\prod_{!}} \widehat{\mathbb{P}_{A}} \xrightarrow{\Sigma_{\iota_{0}}} \widehat{\mathbb{P}_{A,A}}$$

$\begin{array}{c} \text{Justification:} \\ & \texttt{cc}_A \text{ accepts } p \\ \text{iff} \end{array}$

iff

Copycat strategies

$$\mathbb{1} \cong \widehat{\varnothing} \xrightarrow{\prod_{!}} \widehat{\mathbb{P}_{A}} \xrightarrow{\Sigma_{\iota_{0}}} \widehat{\mathbb{P}_{A,A}}$$

Justification:

```
cc_A accepts p
```

iff there exists a sequence $s \in \mathbb{P}_A$ that is accepted and mapped to p

iff

Copycat strategies

$$\mathbb{1} \cong \widehat{\varnothing} \xrightarrow{\prod_{!}} \widehat{\mathbb{P}_{A}} \xrightarrow{\Sigma_{\iota_{0}}} \widehat{\mathbb{P}_{A,A}}$$

Justification:

 \mathfrak{C}_A accepts p

- iff there exists a sequence $s \in \mathbb{P}_A$ that is accepted and mapped to p
- iff there is an s that is mapped to p.

Game settings

Additional condition for \sum_{δ_1} and \sum_{ι_0} to behave well Projection $\delta_1 \colon \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and insertion $\iota_0 \colon \mathbb{P}_A \to \mathbb{P}_{A,A}$ should be discrete fibrations.

Associativity of composition

Theorem (Composition is associative):

$$\begin{array}{c}
\mathbb{P}_{A,B} + \widehat{\mathbb{P}_{B,C}} + \mathbb{P}_{C,D} & \xrightarrow{\mathbf{m}_{A,B,C} + \mathbb{P}_{C,D}} \mathbb{P}_{A,C} + \mathbb{P}_{C,D} \\
\mathbb{P}_{A,B} + \mathbf{m}_{B,C,D} & & \downarrow^{\mathbf{m}_{A,C,D}} \\
\mathbb{P}_{A,B} + \mathbb{P}_{B,D} & \xrightarrow{\mathbf{m}_{A,B,D}} & \xrightarrow{\mathbb{P}_{A,D}} \end{array}$$

commutes if

$$\begin{array}{ccc} \mathbb{P}_{A,B,C,D} \longrightarrow \mathbb{P}_{A,B,D} \\ & \downarrow & & \downarrow \\ \mathbb{P}_{B,C,D} \longrightarrow \mathbb{P}_{B,D} \end{array}$$
 and

$$\begin{array}{ccc} \mathbb{P}_{A,B,C,D} \longrightarrow \mathbb{P}_{A,C,D} \\ & \downarrow & \downarrow \\ \mathbb{P}_{A,B,C} \longrightarrow \mathbb{P}_{A,C} \end{array}$$

are pullbacks (*zipping lemma*). Similar story for unitality of copycats.

Applications

Applications:

- HON,
- variants,
- AJM,
- TO.

May all be expressed as game settings, abstract composition agrees with traditional composition.

Innocent game settings

Add full subcategory views
$$\mathbb{V}_{A,B} \xrightarrow{\mathbf{i}_{A,B}} \mathbb{P}_{A,B}$$
 to the framework.

Definition

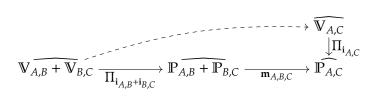
Innocent strategy: sheaf for the topology induced by $i_{A,B}$.

Equivalently: in essential image of
$$\widehat{\mathbb{V}_{A,B}} \xrightarrow{\Pi_{i_{A,B}}} \widehat{\mathbb{P}_{A,B}}$$
.

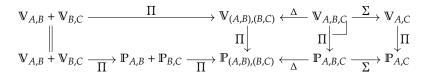
Stating preservation of innocence

The composite of any two innocent strategies is innocent.

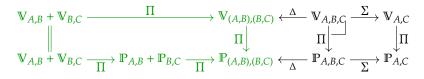
(I.e., in the image of $\prod_{i_{A,C}}$.)



Goal: composition of innocent strategies is again innocent. Using alternative definition composition:



Goal: composition of innocent strategies is again innocent. Using alternative definition composition:



Simple commutation.

Goal: composition of innocent strategies is again innocent. Using alternative definition composition:

- Simple commutation.
- Exact square (Guitart), modulo hypothesis (view-analyticity).

Goal: composition of innocent strategies is again innocent. Using alternative definition composition:

$$\begin{array}{c|c} \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & & \Pi & & \mathbb{V}_{(A,B),(B,C)} \xleftarrow{\Delta} \mathbb{V}_{A,B,C} & \xrightarrow{\Sigma} \mathbb{V}_{A,C} \\ & & \parallel & & \Pi & & \Pi \\ & & & \Pi & & \Pi \\ \mathbb{V}_{A,B} + \mathbb{V}_{B,C} & & & \Pi \\ \end{array}$$

- Simple commutation.
- Exact square (Guitart), modulo hypothesis (view-analyticity).
- Distributive square, modulo hypothesis (locality).
- Cf. distributive law in Harmer-Hyland-Melliès (LICS '07).

Local pushforward squares

Local pushforward square = pullback square

with

- 1. U fully faithful,
- 2. T a discrete fibration,
- 3. and $T \cong \prod_U (S)$.

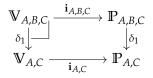
Or (3'): T corresponds to a sheaf for the topology induced by U.

Lemma

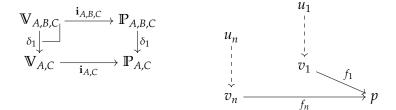
Local pushforward squares are distributive.

Introduction

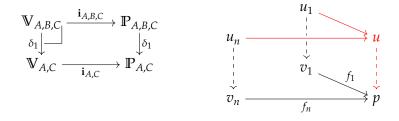
An important local pushforward square



An important local pushforward square



An important local pushforward square



- Locality hypothesis: δ_1 is a sheaf.
- Already noticed by Tsukada and Ong.

Summary

Contributions:

- Game settings: games, plays, interaction sequences, projections,...
- Abstract construction of categories of games and strategies.
- Subcategory of innocent strategies.
- Applications.

Not discussed here:

• Transfer between boolean and general presheaves.

Perspectives

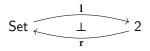
- Structure on the category of strategies (monoidal, closed, etc).
- Generalisation (e.g., AJM saturated strategies).
- More exotic models (e.g., based on event structures).
- Categorification: bicategory of games and strategies.
- Game models → game semantics.
- Better understand distributive squares.

Thank you.

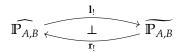
And now, what's your shortest proof that 1 is a topos?

Result Transfer

Adjunction:

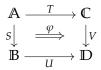


Result transfer:



$$\mathbb{P}_{A,B} + \mathbb{P}_{B,C} \xrightarrow{\mathbf{m}_{A,B,C}} \widehat{\mathbb{P}_{A,C}} \\
 \underbrace{\mathbf{l}_{l}}_{\mathbf{l}_{A,B}} + \mathbb{P}_{B,C} \xrightarrow{\mathbf{m}_{A,B,C}} \widetilde{\mathbb{P}_{A,C}} \\
 \end{array}$$

Exact Squares

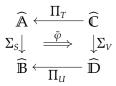


Mates:

Exact square: \sum_{φ} (equivalently \prod_{φ}) is an isomorphism. Guitart: conditions for square to be exact.

Distributive Squares

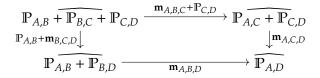
Conditions for



to commute.

Composition

Associativity of composition:



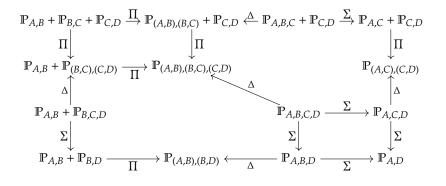
Associativity of Composition

$$\begin{array}{c|c} \mathbb{P}_{A,B} & \overbrace{\mathbb{P}_{B,C} + \mathbb{P}_{C,D}} \xrightarrow{\Pi} \mathbb{P}_{(A,B),(B,C)} + \mathbb{P}_{C,D} \xrightarrow{\Delta} \mathbb{P}_{A,B,C} + \mathbb{P}_{C,D} \xrightarrow{\Sigma} \mathbb{P}_{A,C} + \mathbb{P}_{C,D} \\ & \Pi & & & & \\ \mathbb{P}_{A,B} & \overbrace{\mathbb{P}_{B,C,D}} & & & & \\ \mathbb{P}_{A,B} & \overbrace{\mathbb{P}_{B,C,D}} & & & & \\ \mathbb{P}_{A,B} & \overbrace{\mathbb{P}_{B,D}} & & & & \\ \mathbb{P}_{A,B} & \overbrace{\mathbb{P}_{A,B,D}} & \xrightarrow{\Sigma} & & \\ \mathbb{P}_{A,D} & & & & \\ \mathbb{P}_{A,B} & \xrightarrow{\mathbb{P}_{A,D}} \end{array}$$

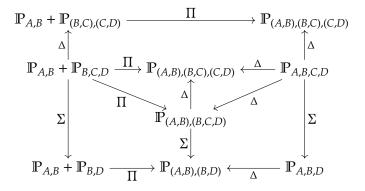
Proof: Associativity of Composition

$$\begin{array}{c|c} \mathbb{P}_{A,B} + \mathbb{P}_{B,C} + \mathbb{P}_{C,D} \xrightarrow{\Pi} \mathbb{P}_{(A,B),(B,C)} + \mathbb{P}_{C,D} \xleftarrow{\Delta} \mathbb{P}_{A,B,C} + \mathbb{P}_{C,D} \xrightarrow{\Sigma} \mathbb{P}_{A,C} + \mathbb{P}_{C,D} \\ & \Pi \\ & & & & & \\ \mathbb{P}_{A,B} + \mathbb{P}_{(B,C),(C,D)} & & & & \\ & & & & & \\ \mathbb{P}_{A,B} + \mathbb{P}_{B,C,D} & & & & \\ & & & & \\ & & & & \\ \mathbb{P}_{A,B} + \mathbb{P}_{B,D} \xrightarrow{\Pi} \mathbb{P}_{(A,B),(B,D)} \xleftarrow{\Delta} \mathbb{P}_{A,B,D} \xrightarrow{\Sigma} \mathbb{P}_{A,D} \end{array}$$

Proof: Associativity of Composition



Proof: Associativity of Composition (cont.)



Applications

Applications: HON, variants, AJM, TO.

May all be expressed as game settings, abstract composition agrees with traditional composition.

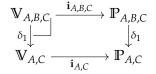
Subtleties:

- HON: liberal definition of \mathbb{P}_A (for projections $\mathbb{P}_{A,B} \to \mathbb{P}_A$ to exist)
- AJM: slightly different definition of $\mathbb{P}_{A,B,C}$ (projection $\mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ should be a discrete fibration)

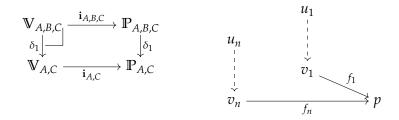
Blass games: composition known to be non-associative. Cannot be expressed as a game setting (zipping fails).

Locality: $\delta_1 \colon \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0 \colon \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.

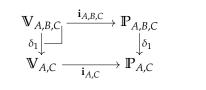
Locality: $\delta_1 \colon \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0 \colon \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.

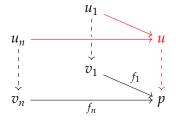


Locality: $\delta_1 \colon \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0 \colon \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.

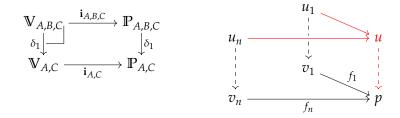


Locality: $\delta_1 \colon \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0 \colon \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.



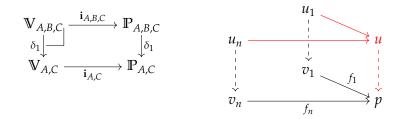


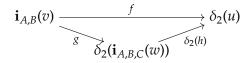
Locality: $\delta_1 \colon \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0 \colon \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.



$$\mathbf{i}_{A,B}(v) \xrightarrow{f} \delta_2(u)$$

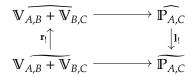
Locality: $\delta_1 \colon \mathbb{P}_{A,B,C} \to \mathbb{P}_{A,C}$ and $\iota_0 \colon \mathbb{P}_A \to \mathbb{P}_{A,A}$ are sheaves.





Boolean Innocent Strategies

But (non-deterministic) innocent strategies should not compose! Answer:



does not commute.

- concurrent innocent strategies compose
- traditional innocent strategies do not