Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Contraction-free proofs and games for Linear Logic

André Hirschowitz ¹ Michel Hirschowitz ² Tom Hirschowitz ³

¹CNRS, UNS ²CEA - LIST ³CNRS, Université de Savoie

MFPS, Oxford, UK April 2009

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Long term goals

Very unreasonable, hardly confess-able:

Logic: better understand mathematical existence (cf. AC by Coquand-Berardi-Bezem);

Proof theory: general cut elimination;

Programming languages: correctness of compilation and program transformations.

Through graphical games?

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Progression

In logic:

- Multiplicative Additive fragment of Linear Logic (MALL);
- In Today: a hack on exponentials.
- One day: quantifiers, AC, etc.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Related work

Game models of LL:

- Abramsky-Jagadeesan-Malacaria, Hyland-Ong, Nickau.
- Abramsky-Melliès, Melliès.
- Girard.
- Delande-Miller.
- Melliès-Mimram.

Contraction elimination:

- Dyckhoff.
- Kashima.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Formulae

MALL formulae with units, but without atoms.

- De Morgan duality (vertically): $A^{\perp\perp} = A$.
- Sidedness: $(\Gamma \vdash A, \Delta) \approx (\Gamma, A^{\perp} \vdash \Delta).$

Hirschowitz

Introduction

MALL

Positions Moves

Validity

Exponentials

Sequent calculus The Game Finitude Conclusions Understand a sequent ⊢ A₁,..., A_n as the neighbourhood of • in the labeled graph:

• Sidedness: identify

Sequents as graphs

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

The cut rule

• The rule:

$$\frac{\Gamma\vdash A \qquad A\vdash \Delta}{\Gamma\vdash \Delta}$$

This leads to taking as positions of our game

Hirschowitz

Introduction

MALL

Positions Moves

Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Hypersequents

Definition

A hypersequent is:

- a directed graph
- labeled in formulae,
- whose underlying undirected graph is acyclic.

Hirschowitz

Introduction

MALL

Positions

Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Positions

Definition

A *position* is a hypersequent with a partition of its vertices into Proponents (\triangle) and Opponents (\triangle).

Notation: • means either Proponent or Opponent.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

• Teams after the move: by inverse image.

Active vertex: •.

Tensor move

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Unit move

 $\vdash \Gamma$

<u>1</u>⊢Γ

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Plus moves

Corresponding rules:

$\vdash \Gamma, A$	$\vdash \Gamma, B$	$A\vdash \Delta$	$B \vdash \Delta$
$\vdash \Gamma, A \oplus B$	$\overline{\vdash \Gamma, A \oplus B}$	$A \oplus B \vdash \Delta$	

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Remark

Bijections between:

- moves,
- positive rules,
- premises of negative rules.
- In particular:
 - no positive rule (or move) for **0**;
 - no premise for the \top rule.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Summary of the rest for MALL (1)

- Plays and strategies, roughly as usual (asynchronous).
- To win, keep a negative formula. Example:

- Results:
 - Cut-free plays are finite.
 - Consistency (at least one team loses).
 - Soundness.
 - Incompleteness $(\bot \otimes \bot)$.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials Sequent calculus

The Game Finitude Conclusions

Summary of the rest for MALL (2)

And more:

• Restrict strategies to be *local* to recover completeness:

Local (winning) strategies form a sheaf.

• Parallel composition and hiding (i.e., cut elimination), using a *factorisation system* on the category of positions.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

- MALL introduction rules are symmetric and decreasing.
- Exponential rules are dissymmetric and increasing (contraction).

Challenge

The problem

Reveal the hidden symmetry and control expansion.

Our solution applies to sequent calculus.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

A new sequent calculus: NLL

For exponentials:

- One positive rule per negative premise per move.
- Guess how many moves?
- NEWBANG has a *reversible* flavor.
- No more contraction, but weakening and dereliction are still there.
- Proof = finite depth tree of rule applications.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions NLL

And for tensor:

$$\frac{\Gamma, ?\Theta, A}{\vdash \Gamma, \Delta, ?\Theta, A \otimes B} \text{ NewTens.}$$

Thanks to this rule:

- Prove $|A \multimap (|A \otimes |A)$.
- Consequence: LL-provable implies NLL-provable (not cut-free).
- Better, the NLL proof may be chosen bounded.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Contraction through cut in NLL

Duplicator: a formula δ_{A} starting with ? and such that both rules

$$\frac{\Gamma, ?A, ?A}{\Gamma, ?A, \delta_{A}} \text{ DUP } \qquad \overline{\delta_{A}^{\perp}}$$

are derivable in NLL without cuts.

Contracting A consumes a δ_A .

For instance,

$$\delta_{\mathcal{A}} = ?(!\mathcal{A}^{\perp} \otimes (?\mathcal{A}^{\mathfrak{B}}?\mathcal{A})).$$

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

You don't want to see

 $\frac{\frac{\Gamma,?A,?A}{\Gamma,?A \stackrel{\mathcal{R}}{\mathcal{R}}?A} \frac{\overline{\mathcal{R}},!A^{\perp}}{\mathcal{R},?A,!A^{\perp} \otimes (?A \stackrel{\mathcal{R}}{\mathcal{R}}?A)}}{\Gamma,?A,?(!A^{\perp} \otimes (?A \stackrel{\mathcal{R}}{\mathcal{R}}?A))} \qquad \frac{\frac{?A,!A^{\perp} \quad ?A,!A^{\perp}}{?A,!A^{\perp} \otimes !A^{\perp}}}{\frac{!A^{\perp} - \circ (!A^{\perp} \otimes !A^{\perp})}{!(!A^{\perp} - \circ (!A^{\perp} \otimes !A^{\perp})),}}$

the right-hand one working thanks to rule NewTens.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Cut anticipation

Definition

A proof in NLL is bounded when it is either cut-free, or of the form

$$\frac{\pi_1}{A} \qquad \frac{\pi_2}{A^{\perp}, \Gamma}$$

with π_1 and π_2 cut-free.

Theorem

Each provable sequent in *LL* admits a bounded proof in *NLL*.

The converse does not hold.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

The new move for tensor

Duplicates a lot!

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Moves for exponentials

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

An infinite play

Start from any position of the shape

for some position U. Break a tensor:

Boom.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Restricting the game

Restrict the game as follows:

- Mark one vertex with a *token*.
- The only vertex to play is the one holding the token.
- The token may be passed along a negative edge (see example below).

Who holds the token first?

For any formula, it does not matter!

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

Last but not least: finiteness

Theorem

Plays are finite in the game with a token.

Chambéry-style proof

Thanks to René David and Karim Nour.

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions To validate or refute A:

The new symmetry

• Proponents want to find P and, $\forall O$, win:

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions Summary

- Validity in our game is consistent, and sound for MAELL provability.
- But incomplete.
- Cut anticipation in proofs ~> finite plays.

Will this hack make it to a full-fledged, game-based logic?

Hirschowitz

Introduction

MALL

Positions Moves Validity

Exponentials

Sequent calculus The Game Finitude Conclusions

- Proof theory, i.e., full completeness (through understanding *innocent* strategies in our setting).
- Quantifiers.
- Programming languages, calculi (λ , π ...?).

Perspectives