Towards a theory of programming languages

Tom Hirschowitz

龙 LAMA, CNRS et Université de Savoie

- 1 The question
- 2 Lawvere theories
- 3 Generalising Lawvere theories
- 4 Perspectives

The ladder of abstraction (© Brett Victor): level 1

Formal reasoning over practical things like

The question

counting: integers, moving: transformations of the plane, exchanging: permutations.

The ladder of abstraction: level 2

Common properties of:

– integers,

The question

- rotations,
- translations,
- symmetries,
- isometric,transformations.
- permutations on a finite set...

Abstraction

Notion of group.

The ladder of abstraction: towards level 3

Neighbours

- Generalisation: monoids (e.g., all transformations of the plane).
- Specialisation: rings, modules, algebras, ...

Problem

- Numerous abstract notions.
- A lot in common:
 - free constructions (e.g., free monoid = words);
 - notions of morphisms;
 - downcasting (any ring is a group, at least).

The ladder of abstraction: level 3

Abstraction over abstraction!

Two proposals:

The question

- Lawvere theories;
- monads on sets.

Lawvere theories a little more general.

Programming language theory: still at level 2!

Level 1: calculi

The question

Programming languages ~> calculi:

- pure λ -calculus,
- λ -calculus in cbv, cbn, lazy, fully lazy, optimal, ...
- λ -calculus with let rec / refs / call/cc, ...
- ζ, λσ, λμμ, ...
- π , join, Ambients, Spy, ...

Analogy

Reasoning over integers \approx Reasoning over programs in language L.

And that's only the untyped tip of the iceberg!

Level 2: denotational semantics

- Denotational model of language L \approx mathematical structure supporting the operations of L.
- $L \approx$ `free' structure.

The question

Common use of denotational semantics

Disprove a property of programs by finding a counter-model.

Groups: integers, permutations, ...

Rings: integers, polynomials, ...

Models of simply-typed λ : cartesian closed categories, ...

Rk: not all calculi are at level 2 (i.e., equipped with a notion of model).

Groups: integers, permutations, ... Rings: integers, polynomials, ... Lawvere theories X-calculus: models of X, Lawvere theory?

No, for at least two reasons:

- variable binding ($\lambda x . x \equiv \lambda x' . x'$);
- dynamics $(\lambda x. M)N \rightsquigarrow M[x \mapsto N]$: need for `directed' equations.

Need to generalise Lawvere theories!

Hence the question

- What is a programming language?
- What is a translation between two programming languages?
- General results?

Let us start with a (fake) poll...

Fake poll: what is a programming language?

Low-level answer

- a language on a finite alphabet,
- a translation to x86 (...).
- Why definitely fix x86?
 - Low-level does evolve a lot (shit, it's amd64 already...).
 - Sometimes overkill, e.g., language of regular expressions.
 - Not canonical.
 - Limited: e.g., distributed computing.
- Not won at the level of high-level reasoning on programs.

Fake poll: what is a programming language?

Frequent answer by researchers in programming languages

One super complex language supposed to model all other languages.

– Illusory.

The question

- Adding features may change global properties: study of fragments.
- Eludes the crucial question of what morphisms should be. _

The question

Fake poll: what is a programming language?

Other frequent answer mostly in the UK

A structural operational semantics (Plotkin, 1981), in a certain format.

- Low-level notion of syntax with binding.
- Morphisms: only starting to be investigated.
- Far from mainstream mathematics.

Fake poll: what is a programming language?

Other frequent answer

The question

A higher-order rewrite system (Nipkow, 1991).

Close answer: a combinatory reduction system (Klop, 1980).

- Roughly, rewriting terms with variable binding.
- No notion of morphism, even google does not find anything.
- Far from mainstream mathematics.

About the last two,

- structural operational semantics (SOS) and
- higher-order rewriting (HOR).
 - General results, but on one language:
 - congruence of bisimilarity (SOS),
 - confluence, finite developments, etc (HOR).
 - Better, hints at level 3:
 - mathematical operational semantics (SOS, Turi and Plotkin),
 - cartesian closed 2-categories (HOR, main subject here).

Lawvere theories in 20 slides

Starters: introduction to category theory, then Lawvere theories.

The question	Lawvere theories	Generalising Lawvere theories	Perspectives			
Categories						
Definition						
Category: a	Category: a (directed, multi) graph equipped with					
– a compo	sition law on edges,					
– identitie	S.					
		×B.				
	f	g				
	A	¢				
		g∘f				

Examples

- The category Grp.
 - Vertices / objects: groups.
 - Edges / morphisms: morphisms of groups.
- Large category.
- Similar examples: monoids, rings, etc.
- Topological spaces and continuous functions: Top.
- Graphs: Gph.
- Even plain sets: Set.

Cartesian product (in any category!)

- Consider any objects A , B $\in {\mathfrak C};$
- $A \xleftarrow{\pi} C \xrightarrow{\pi'} B$ is a product of A and B iff

- Notation: $C = A \times B$ and $h = \langle f, g \rangle$.

Example

- Set, Grp, Top,...
- Graphs.

Terminal object

- A is a terminal object in C iff $\forall B \xrightarrow{\exists !f} A$.
- Notation: A = 1, f = !B.

Example

- Sets: singleton.
- Graphs: what would you guess?

Finite products = products + terminal objects

Definition

Category with finite products:

- a product $(A \times B, \pi, \pi')$ for all A, B,
- a terminal object 1.

First insight of Lawvere theories

Observation

Any model of an algebraic theory `is' a category with finite products.

I.e.,

- Any monoid is a category with finite products.
- Any ring is a category with finite products.

- ...

First insight of Lawvere theories

Observation

Any model of an algebraic theory `is' a category with finite products.

Example

Category $\mathfrak{C}_{\mathbb{N}}$ for the monoid of natural numbers and +:

- objects are finite `powers' of $\mathbb N$, e.g., $\mathbb N{\times}\mathbb N{\times}\mathbb N;$
- morphisms are functions generated by
 - addition $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$,
 - zero 1 \rightarrow $\mathbb N$ (the map picking 0),

- identities and composition,

- pairing $\langle f_1, ..., f_n \rangle : \mathbb{N}^p \to \mathbb{N}^n$,
- projections $\pi_{n,i}: \mathbb{N}^n \to \mathbb{N}$,
- the unique map $\mathbb{N}^p \to \mathbb{1}$.

This is a subcategory of Set.

he question

The category $\mathcal{C}_{\mathbb{N}}$ (looking closer)

- Any morphism $f : \mathbb{N}^p \to \mathbb{N}^n$ decomposes as $\langle f_1, ..., f_n \rangle$.
- Example morphism $\text{plus} \circ \langle \pi, \text{plus} \circ \langle \pi', (\text{zero} \circ !(\mathbb{N}^2)) \rangle \rangle : \mathbb{N}^2 \to \mathbb{N}.$
- A.k.a. plus (x, (plus (y, zero))).

≈ circuits with sharing restricted to inputs.- Variables: dealt with by projections.

Any monoid X `is' a category \mathcal{C}_X with finite products

General construction

Category \mathcal{C}_X for the monoid (X, m, e): - objects are finite `powers' of X, e.g., $X \times X \times X$; - morphisms are functions generated by - $m : X \times X \to X$, - $e : 1 \to X$ (the map picking e), - identities and composition, - pairing $\langle f_1, ..., f_n \rangle : X^p \to X^n$, - projections $\pi_{n,i} : X^n \to X$, - the unique map $X^p \to 1$.

Again a subcategory of Set.

The Lawvere theory for monoids

Definition The category L_{monoid} defined by: Objects: one object, say t, and its formal finite powers t×...×t. Morphisms t×...×t → t: terms generated by binary m, constant e,

- in n (ordered) variables,

up to a few equations.

- Morphisms $t^n \to t^p\!\!\!: p$ -tuples of terms.
- Composition = simultaneous substitution.

Not directly a subcategory of sets.

The Lawvere theory for monoids

In $\mathcal{L}_{\text{monoid}}$, example morphism

Generalised monoids

Definition

A generalised monoid is

- a category $\mathcal C$ with finite products,
- an object $X \in \mathfrak{C}$,
- morphisms comp : $X{\times}X$ \rightarrow X and unit : 1 \rightarrow X,
- satisfying the obvious associativity and unitality equations.

Example

- C_ℕ,
- \mathcal{C}_X , for any monoid X,

-
$$\mathcal{L}_{\text{monoid}}$$
.

– A bigger one: Set with, e.g., $\ensuremath{\mathbb{N}}$ and addition.

The question	Lawvere theories	Generalising Lawvere theories	Perspectives
Morphisms			
Definition			
A morphism	n of generalised mor	noids is	
– a functo	or $F: \mathfrak{C} \to \mathfrak{D}$ betwee	en underlying categories,	J

Wait wait, what's a functor?

Functors

Definition

- A functor $\mathfrak{C} \to \mathfrak{D}$ is a `morphism of categories':
 - a map from objects of ${\mathfrak C}$ to objects of ${\mathfrak D}\!,$
 - a map between morphisms (preserving source and target),

preserving composition and identities.

Example

Morphisms

Definition

A morphism of generalised monoids is

- a functor $F:\mathfrak{C}\to\mathfrak{D}$ between underlying categories,
- preserving products: $F(A \times B) = F(A) \times F(B)$ (subtlety here, who can guess?),
- mapping X, comp, and unit in \mathfrak{C} to their counterparts in \mathfrak{D} .

Example

Again, the functor
$$\mathcal{L}_{monoid} \rightarrow \mathfrak{C}_{\mathbb{N}}$$
 determined by

The Lawvere theory for monoids

Proposition
Generalised monoids
~
categories ${\mathfrak C}$ with a finite-product preserving functor ${\mathcal L}_{{ m monoid}} o {\mathfrak C}.$

Intuitively, \mathcal{L}_{monoid} serves as a definition of monoids.

Further example

What should be the Lawvere theory $\mathcal{L}_{\text{rings}}$ for rings?

- Objects: one object, say t, and its formal finite powers t \times ... \times t.
- Morphisms $t{\times}...{\times}t$ \rightarrow t: terms generated by
 - binary mult and add,
 - constants one and zero,
 - in n (ordered) variables,

up to a few equations.

- Morphisms $t^n \to t^p\!\!\!: p$ -tuples of terms.
- Composition = simultaneous substitution.

Lawvere theories: definition

Definition

Lawvere theory: a category with

- finite products,
- objects formally generated by a set of `sorts'.

E.g., $t \times u \times t$, for sorts t and u.

The question Lawvere theories Generalising Lawvere theories Perspectiv

What has been gained (quick summary)

- Signature + equations, i.e., theory \mapsto category of models

There are more general notions of morphisms...

- A notion of morphism between Lawvere theories: functors preserving finite-products; e.g.,

$$\mathcal{L}_{\text{monoid}} \hookrightarrow \mathcal{L}_{\text{ring}}$$

What is missing?

- Variable binding ($\lambda x . x \equiv \lambda x' . x'$).
- Dynamics $(\lambda x. M)N \rightsquigarrow M[x \mapsto N]$.

Need to generalise Lawvere theories!

Variable binding

We defined products by a property.

– Consider any objects $A\,,\,B\in \mathfrak{C}$ with finite products;

 $C \times A \xrightarrow{ev} B$ is an exponential of A and B iff $\forall D \in C$,

- Notation:
$$C = B^A$$
 and $h = \lambda f$.

- Intuition: B^A = function space, λf = currying of f.

Variable binding

We defined products by a property.

- Consider any objects A, $B \in C$ with finite products; $B^A \times A \xrightarrow{ev} B$ is an exponential of A and B iff $\forall D \in C$,

- Notation: $C = B^A$ and $h = \lambda f$.
- Intuition: B^A = function space, λf = currying of f.

Examples

- Set: B^A = set of functions $A \rightarrow B$.
- Gph, graphs: some convoluted construction of rare use (to my knowledge).
- Not Top! Have to restrict to compactly generated spaces.
- Scott domains. Particular posets, important in denotational semantics.

Cartesian closed categories = products + terminal object + exponentials

Definition

Cartesian closed category (CCC):

- a product $(A \times B, \pi, \pi')$ for all A, B,
- a terminal object 1,
- an exponential (B^A, ev) for all A, B.

Variable binding

Synopsis

Models of theories with binding `are' cartesian closed categories.

Example

The syntax for the pure λ -calculus yields a cartesian closed category \mathcal{L}_{λ} :

- objects are formal powers and exponentials of t, e.g., $t^t \times t$, $(t \times t \times t)^{t \times t^t}$,...
- morphisms are formally generated by
 - lam : $t^t \rightarrow t$ and app : $t {\times} t \rightarrow t$,
 - stuff needed for \mathcal{L}_λ to be a CCC.
- Remark: \mathcal{L}_{λ} contains more than the usual notion of syntax.
- Morphisms = simply-typed λ -terms up to $\beta\eta$ -conversion.
- E.g., $\lambda x \cdot M$ is here modelled as lam $(\lambda x : t \cdot \llbracket M \rrbracket)$.

To model

$$\lambda x. M$$
 $N \rightsquigarrow M[x \mapsto N]$

we could add an equation

 $app \langle lam(\lambda x:t.\ M), N\rangle = (\lambda x:t.\ M)N.$

We prefer adding a 2-cell:

 \sim Cartesian closed 2-categories!

The question Lawvere theories Generalising Lawvere theories Perspectives

Example reduction

- In pure λ , if $M \rightsquigarrow M'$ then $M N \rightsquigarrow M' N$.
- Here, assuming $\alpha : M \Rightarrow N$, derive

$\begin{array}{l} \mbox{Syntactically} \\ \mbox{app} \left< \alpha \, ; \, id_{N} \right> : \, \mbox{app} \left< M \, ; \, N \right> \, \Rightarrow \, \mbox{app} \left< M' ; \, N \right>. \end{array}$

- In pure λ , if $M \rightsquigarrow M'$ then $\lambda x . M \rightsquigarrow \lambda x . M'$.

Generalising Lawvere theories

The question	Lawvere theories	Generalising Lawvere theories	Perspectives
Proposition	n		
	2-0	cells $M \Rightarrow N$	
		≅	
reductions	up to permutation eq	quivalence (Lévy, late 70's; Brug	gink, 2003).

Possible perspectives

- More involved examples.
- Dynamic properties of 2CCCs (following Hilken).
- Dynamic properties of morphisms.
- Formal links with other approaches.
- Extensions, e.g., dependent types.
- Coq library?