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Structure of the talk

Trajectory.

Bibliography (overview of contributions).

Focus on one chapter of manuscript: shapely monads.
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Early work

PhD thesis on modular programming.

Viewing programs as component assemblies.

Further work on component-oriented programming.

Modify modular structure at runtime.

Goal

Ensure safety!
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Mathematical description of programming languages

Basic method

Structural operational semantics (SOS).

Presenting execution of a programming language as an

inductively generated,

labelled,

binary

transition relation between programs.

Example (Synchronisation in the π-calculus)

P
ā〈m〉−−−→ P ′ Q

a(m)−−−→ Q ′

P|Q τ−→ P ′|Q ′
P sends message m on channel a,

Q receives m on a
=⇒ P|Q does a silent transition to P ′|Q ′.
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Behavioural equivalences

Important question in programming language research

When are two given programs equivalent?

Several answers: behavioural equivalences.

Important reasoning tool

Denotational semantics, a.k.a. models.

In a sense close to model theory: interpret the syntax.

E.g. (Scott), types as ordered sets, functions as monotone maps.

Difficulty: no general notion of model!
I fairly standard for purely functional languages,
I for ‘logical’ languages as well,
I hard work, e.g., for linear logic,
I currently debated for type theory,
I undefined in general.
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Need of general results

Mostly methods, little common theory.

Especially in the interplay between SOS and variable binding.

E.g., ∀x .A(x) = ∀y .A(y).

So started looking around, learnt bits of proof theory, linear logic, and
finally category theory.
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Existing approaches I

Syntactic frameworks for SOS1.

Description of inductive generation process:

basic rules  transition relation.

General results under hypotheses, e.g., some behavioural equivalence
(bisimilarity) is a congruence.

No general notion of model.

1GSOS, de Simone, tyft/tyxt, PANTH, . . .
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Existing approaches II

Outside SOS: graphical calculi.

Programs are (kind of) graphs.

Transitions given by local transformation rules.

Examples:
I Petri nets (Petri, 1962).
I Proof nets (Girard, 1987), interaction nets (Lafont, 1990).
I To a certain extent, bigraphs (Jensen and Milner, 2004).
I Wire calculus (Sobociński, 2009).

Description of (non-inductive) generation process.

No general notion of model.
E.g., took quite long to work out for proof netsa!

aBierman. On Intuitionistic Linear Logic. PhD thesis, Cambridge, 1993.
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Existing approaches III

Categorical frameworks (bialgebraic semantics (Fiore et al.), nominal logic
(Pitts et al.), . . . ).

Description of inductive generation process under hypotheses.

General results (as before).

Specification: automatic notion of model.

Confession: haven’t really managed to appropriate these.

Long-term motivation

Reconcile theory and practice on these matters.
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Difficulty

SOS is a wild territory.

Strategy: approach SOS from tamer settings.

Higher-order rewriting Models

SOS

Graphical calculi
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Approaching SOS I: higher-order rewriting

Higher-order rewriting Models

SOS

Graphical calculi
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Approaching SOS I

Higher-order rewriting (HOR):

≈ SOS for logic (vs. programming languages);

main interest: determinism (vs. behavioural equivalences).

HOR as a SOS fragment

No labels.

Transition relation is a congruence (transitions may occur anywhere in
the program).

Chapter 3, published in LMCS (2013)

Syntactic frameworks HOR

Description of inductive generation 3 3

General notion of model 7 3

Generated transition relation = initial model.
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Approaching SOS II: from models

Missing from syntactic frameworks and graphical calculi: general
notions of models.

Idea:
I start from existing notions of models (for instances of SOS);
I try to generalise them to fragments of SOS.

Higher-order rewriting Models

SOS

Graphical calculi
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Approaching SOS II

Game semantics

Interpret types as games and programs as innocent strategies.

Chapter 5 (with Eberhart, Pous, Seiller)

Recasting of innocence as a sheaf condition.
 New, analogous models for two concurrent languages (CCS and π).
 Abstract framework (playgrounds):

playground

‘SOS’ transition relation innocent strategies.
interpretation

Covers the new models of CCS and π.

Conjecture: also covers more standard models, e.g., of PCF.
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Approaching SOS III: graphical calculi

Higher-order rewriting Models

SOS

Graphical calculi

Chapter 4 (with Garner): today’s focus!

Definition of ‘graphical calculus’.

Description of inductive generation process.

General notion of model.

Construction of initial model.

Application to more standard mathematical structures:

Operads as the models of an adequate graphical calculus.
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Mathematical motivation

Certain algebraic structures with

obvious graphical intuition;

tedious formal definition.

E.g., operads, properads, polycategories, PROPs, and
variants.
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Computer science motivation

Graphical calculi with

obvious graphical intuition;

tedious formal definition;

involved or non-existent notion of model.

E.g., interaction nets, proof nets, bigraphs.
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Contributions (with Garner)

Make graphical intuition rigorous thanks to presheaf theory.

 Alternative definition of

maths: the algebraic structure in question
comp. sci.: a notion of model for the graphical calculus in question.

View old definition as economical characterisation:

old definition new definition

statement hard easy
construction easy hard
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Posing the problem categorically

presheaves endofunctor B monad T T -algebras

pictures algebraic structures

Need to explain these terms, at least intuitively.

Rightmost part: standard categorical approach to algebra.

Just need to derive T from the pictures!
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Categories

Definition

Objects, and morphisms between them.

Example

Objects Morphisms

Set Sets Functions
Mon Monoids Monoid homomorphisms
Grp Groups Group homomorphisms
. . .
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Functors

Definition

Functor = morphism of categories.

Example

Set Mon
L

U

Action on objects:
L(X ) =

∑
n X

n

= sequences of elements of X ,
= free monoid on X .
Multiplication:
(x1, . . . , xn), (xn+1, . . . , xp) 7→ (x1, . . . , xp).

Action on morphisms:

L(X
f−→ Y ) : L(X ) → L(Y )
(x1, . . . , xn) 7→ (f (x1), . . . , f (xn)).

Other example:
U(M) = |M|, carrier of M.
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Monads

Definition

Monad = endofunctor + structure.

Example

Set Mon
L

U

T
Composite T = U ◦ L.

T (X ) = free monoid viewed as
a set.

T is a monad.

Hirschowitz Bridges between operational and denotational 26 / 60



Trajectory Bibliography Motivation Preliminaries Operads Graphical operads Shapely monads Conclusion

Crucial point I: algebraic structures = algebras for a monad

T -algebra

T -algebra = morphism
T (X )

X

m with easy conditions.

Example: previous T

T (X ) = free monoid viewed as a set.

So m maps sequences (x1, . . . , xn) to elements.

Thought of as multiplication.

Example T -algebra: m : T (N) → N
(n1, . . . , np) 7→

∑
i ni .
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Morphisms of algebras

Morphisms of T -algebras

T (X ) T (Y )

X Y

T (f )

m

f

m′
f (m(x1, . . . , xn)) = m′(f (x1), . . . , f (xn)).

Morphism = structure-preserving map.

Proposition (in the monoids example)

T -algebras form a category T -Alg, equivalent to Mon.

Moral (standard, but very important!)

Algebraic structure (monoids) ⇐ monad T .

T describes ‘free’ algebraic structures.
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Other examples on sets

Algebraic structure T (X )

Monoids
∑

n X
n

Commutative monoids
∑

n X
n/Sn

Rings, modules, algebras, . . . . . .
Complete semi-lattices P(X )

Non-example: fields, as there are no free fields over a set.
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From pictures to presheaves

Running example: (nonsymmetric, coloured) operads.

Well-known case: T already known!

Result specialises to: characterisation of T as a free shapely monad.

family of
presheaves endofunctor B monad T T -algebras

pictures algebraic structures

Hirschowitz Bridges between operational and denotational 31 / 60



Trajectory Bibliography Motivation Preliminaries Operads Graphical operads Shapely monads Conclusion

From pictures to presheaves

Running example: (nonsymmetric, coloured) operads.

Well-known case: T already known!

Result specialises to: characterisation of T as a free shapely monad.

family of
multigraphs endofunctor B monad T T -algebras

pictures algebraic structures
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Multigraphs

Multigraph X ≈ graph whose edges may have several sources.

Diagram

X0 X1 . . . Xn . . .

X?
t0

s1
1

t1
sn,1

sn,n
tn

...

X?: vertices;

Xn: edges with n sources;

sn,i (e): ith source of n-ary e;

tn(e): target of e.
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Example multigraph

c

a

b

d e

x

y

X? = {a, b, c, d , e},
X2 = {x , y},
Xn = ∅ otherwise,

t2(x) = x · t = a (notation!),

x · s1 = b, x · s2 = c , y · t = c ,
y · s1 = d , y · s2 = e.
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Category of multigraphs

Morphism = map preserving target and sources.

Proposition

Multigraphs form a category MGph.
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Intuitive definition

A (nonsymmetric, coloured) operad (in sets) O is a multigraph O with
‘plugging’, e.g., for all x ∈ O2 and y ∈ O3 with y · t = x · s1, one may form

b

a

c

d
e

f

x

y

in O4.

Notation

Denoted by x ◦2,3
1 y .
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Intuitive definition (cont’d)

Plugging should satisfy obvious graphical axioms, e.g.,

x

y

z

=

x

z

y
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Dreadful glimpses of standard definition

Definition

A (nonsymmetric, coloured) operad (in sets) is

a multigraph O, together with

for all m, n, i , x ∈ Om and y ∈ On such that x · si = y · t, an element

x ◦m,ni y ∈ Om+n−1;

for all a ∈ O?, an element ida ∈ O1;

satisfying axioms like

(x◦m,ni y)◦m+n−1,p
j z =

{
(x ◦m,pj z) ◦m+p−1,n

i+p−1 y (if j < i)

x ◦m,n+p−1
i (y ◦n,pj−i+1 z) (if i ≤ j < i + n)

for all x ∈ Om, y ∈ On, z ∈ Op.
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Endofunctors from multigraphs

family of
multigraphs endofunctor B monad T T -algebras

pictures algebraic structures
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Crucial point II:
arguments for composition = multigraph morphisms

Recall the picture for composition in O, on the right.

View it as a multigraph, say X .

(Morphisms X → O) ⇔ (choices of (x , y)):

x ∈ O2 and y ∈ O3,

such that x · s1 = y · t.

= potential arguments for ◦2,3
1 if it existed.
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Arities

Definition (Basic arities)

X is the arity of ◦2,3
1 .

Obvious generalisation: Xm,n
i is the arity of ◦m,ni .

Similarly, arity of id : multigraph with just one vertex (wire).
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Making sense of hX -algebras

Recall our example multigraph X on the right.

Consider the functor hX : MGph→ MGph defined by:
I hX (Y )? = Y?,
I hX (Y )4 = MGph(X ,Y ), the set of multigraph

morphisms from X to Y ,
I hX (Y )n = ∅ for n 6= 4.

So hX (Y )4 = {(x ′, y ′) ∈ Y2 × Y3 | x ′ · s1 = y ′ · t}.
An algebra hX (Y )→ Y is determined by:

I a multigraph Y ,
I plus a map hX (Y )4 → Y4, i.e.,
I an interpretation of ◦2,3

1 !

b

a

c

d
e

f

x

y

Summary

Multigraph X  functor which specifies an operation of arity X .

I.e., algebras have such an operation.
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The monad from derived arities

family of
multigraphs endofunctor B monad T T -algebras

pictures algebraic structures
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Graphical definition of operads

Need to define arities for all derived operations:

Definition

Let Tn denote the class of planar trees with n leaves.

Define T : MGph→ MGph by:

T (Y )? = Y?,

T (Y )n =
∑

X∈Tn MGph(X ,Y ), the set of multigraph morphisms from
some n-ary tree X to Y .

Lemma

The functor T is a monad on MGph.

Theorem

Operads are equivalent to T -algebras.
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Generating monads

family of
multigraphs endofunctor B monad T T -algebras

pictures algebraic structures

Goal: generate T automatically from basic arities.

I Compositions X n,m
i .

I Identities Ia.
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Signature for operads

Definition

Let Bn denote the set of basic arities with n leaves.

Intuition: filiform trees of depth 2.

Define B : MGph→ MGph by:

B(Y )? = Y?,

B(Y )n =
∑

X∈Bn MGph(X ,Y ), the set of multigraph morphisms from
some n-ary basic arity X to Y .

Question: how to generate T from B?
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Naive attempt

Well-known correspondence

Endofunctors on MGph Monads on MGph.
M

U

Miss!

M(B) 6∼= T .
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Reason

M(B)-algebras do not satisfy any of the axioms!

x

y

z

6=

x

z

y

Which monads do enforce them? Shapely ones!
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Shapely monads

Subcategory

Framed(MGph) ⊆ Cell(MGph) ⊆ Analytic(MGph) ⊆ Endo(MGph).

Stable under composition.

Has a terminal object >, automatically a monad.

Definition

Shapely = subfunctor of > in Framed(MGph).
Graphical calculus = shapely monad.

Intuition: at most one operation of each arity.
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Generation result

Theorem

T =
⋃

n(id ∪ B)·n is the free shapely monad over B.

B · B denotes the image of B ◦ B: B ◦ B � B · B ↪→ >.
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Illustration of B · B

B ◦ B � B · B

7→
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General result

Consider any presheaf category with a subterminal object >.

At most one morphism from any object to >.

Consider >-analytic functors, i.e., analytic functors with a map to >.

Suppose they are stable under composition.

Example: framed endofunctors.

Definition

Shapely functor = subfunctor of >.

Theorem

The free shapely monad on a shapely endofunctor B is
⋃

n(id ∪ B)·n.
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Applications

Characterisation of the monads for polycategories, properads, PROPs,
etc, as free shapely monads.

Definition of free shapely monads for interation nets and fragments of
proof nets.
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Conclusion

Sketched several approaches to mathematising programming language
research.

Rather diverse contributions.

Still lots of work to do to reconcile theory and practice!
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Thanks!
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Shapely functors: intuition

Restrict to functors with at most one operation per arity.

There should be one ‘full’ such functor >, with one operation for each
possible arity.

This functor > should be a monad.

Selecting basic arities ⇔ picking a subfunctor B ⊆ >.

Generating T ≈
⋃

n(id ∪ B)·n, the smallest submonad of >
containing B.
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Shapely functors: strategy

Find a subcategory C of Endo(MGph)

stable under composition and

having a terminal object >.

I.e., such that ∀C ∈ C, ∃! morphism C → >.

Indeed:

> automatically a monad via > ◦ > → >;

can then generate
⋃

n B
n amongst subfunctors of >.
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Towards shapely functors I: analytic functors

Subcategory Analytic(MGph) ⊆ Endo(MGph) of functors s.t.

T (Y )n =
∑

x∈T (1)n

MGph(A(x),Y )/G (x)

where

A(x) is the arity of x ,

G (x) /SA(x) is a subgroup of the automorphism group of A(x).

Generalisation of Joyal’s analytic endofunctors on sets.

Miss again!

Does have a terminal object.

Not stable under composition.

Hirschowitz Bridges between operational and denotational 59 / 60



Trajectory Bibliography Motivation Preliminaries Operads Graphical operads Shapely monads Conclusion

Towards shapely functors II: cellular functors

Subcategory Cell(MGph) ⊆ Analytic(MGph) ⊆ Endo(MGph).

Miss again!

Stable under composition.

No terminal object!
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