A few bridges between operational and denotational semantics of programming languages Soutenance d'habilitation à diriger les recherches

> Tom Hirschowitz November 17, 2017

Hirschowitz

Structure of the talk

- Trajectory.
- Bibliography (overview of contributions). ۲
- Focus on one chapter of manuscript: shapely monads.

1 Trajectory

- 2 Bibliography (summary of contributions)
- 3 Motivation
- 4 Preliminaries
- 5 Operads
- 6 Graphical operads
- 7 Shapely monads

• PhD thesis on modular programming.

Viewing programs as component assemblies.

Further work on component-oriented programming.

Modify modular structure at runtime.

Goal

Ensure safety!

Basic method

Structural operational semantics (SOS).

Presenting execution of a programming language as an

- inductively generated,
- labelled,
- binary

transition relation between programs.

Example (Synchronisation in the π -calculus)

 $\frac{P \xrightarrow{\bar{a}(m)} P' \quad Q \xrightarrow{a(m)} Q'}{P|Q \xrightarrow{\tau} P'|Q'} \qquad P \text{ sends message } m \text{ on channel } a, \\ Q \text{ receives } m \text{ on } a \\ \implies P|Q \text{ does a silent transition to } P'|Q'.$

Operads Graphical

Behavioural equivalences

Important question in programming language research When are two given programs equivalent?

Several answers: behavioural equivalences.

Important reasoning tool

Denotational semantics, a.k.a. models.

- In a sense close to model theory: interpret the syntax.
- E.g. (Scott), types as ordered sets, functions as monotone maps.
- Difficulty: no general notion of model!
 - fairly standard for purely functional languages,
 - for 'logical' languages as well,
 - hard work, e.g., for linear logic,
 - currently debated for type theory,
 - undefined in general.

Need of general results

- Mostly methods, little common theory.
- Especially in the interplay between SOS and variable binding.

E.g.,
$$\forall x.A(x) = \forall y.A(y).$$

• So started looking around, learnt bits of proof theory, linear logic, and finally category theory.

Syntactic frameworks for SOS¹.

• Description of inductive generation process:

basic rules \rightsquigarrow transition relation.

- General results under hypotheses, e.g., some behavioural equivalence (bisimilarity) is a congruence.
- No general notion of model.

¹GSOS, de Simone, tyft/tyxt, PANTH, ...

Outside SOS: graphical calculi.

- Programs are (kind of) graphs.
- Transitions given by local transformation rules.
- Examples:
 - Petri nets (Petri, 1962).
 - Proof nets (Girard, 1987), interaction nets (Lafont, 1990).
 - ► To a certain extent, bigraphs (Jensen and Milner, 2004).
 - Wire calculus (Sobociński, 2009).
- Description of (non-inductive) generation process.
- No general notion of model.

E.g., took quite long to work out for proof nets^a!

^aBierman. *On Intuitionistic Linear Logic*. PhD thesis, Cambridge, 1993.

Categorical frameworks (bialgebraic semantics (Fiore et al.), nominal logic (Pitts et al.), \dots).

- Description of inductive generation process under hypotheses.
- General results (as before).
- Specification: automatic notion of model.
- Confession: haven't really managed to appropriate these.

Long-term motivation

Reconcile theory and practice on these matters.

SOS is a wild territory.

Strategy: approach SOS from tamer settings.

1 Trajectory

2 Bibliography (summary of contributions)

- 3 Motivation
- 4 Preliminaries

5 Operads

6 Graphical operads

7 Shapely monads

Trajectory Bibliography Motivation Preliminaries Operads Graphical operads Shapely monads Conclusion Approaching SOS I: higher-order rewriting

Trajectory Bibliography Motivation Preliminaries Operads Graphical operads Shapely monads Conclusion
Approaching SOS I

Higher-order rewriting (HOR):

- \approx SOS for logic (vs. programming languages);
- main interest: determinism (vs. behavioural equivalences).

HOR as a SOS fragment

- No labels.
- Transition relation is a congruence (transitions may occur anywhere in the program).

Chapter 3, published in LMCS (2013)

	Syntactic frameworks	HOR
Description of inductive generation	\checkmark	1
General notion of model	×	 Image: A start of the start of

Generated transition relation = initial model.

- Missing from syntactic frameworks and graphical calculi: general notions of models.
- Idea:

Bibliography

- start from existing notions of models (for instances of SOS);
- try to generalise them to fragments of SOS.

Game semantics

Interpret types as games and programs as innocent strategies.

Chapter 5 (with Eberhart, Pous, Seiller)

Recasting of innocence as a sheaf condition.

 \rightsquigarrow New, analogous models for two concurrent languages (CCS and π). \rightsquigarrow Abstract framework (playgrounds):

- Covers the new models of CCS and π .
- Conjecture: also covers more standard models, e.g., of PCF.

Approaching SOS III: graphical calculi

Chapter 4 (with Garner): today's focus!

- Definition of 'graphical calculus'.
- Description of inductive generation process.
- General notion of model.
- Construction of initial model.
- Application to more standard mathematical structures:

Operads as the models of an adequate graphical calculus.

1 Trajectory

- Bibliography (summary of contributions)
- 3 Motivation
- 4) Preliminaries
- 5 Operads
- 6 Graphical operads
- 7 Shapely monads

Certain algebraic structures with

- obvious graphical intuition;
- tedious formal definition.

E.g., operads, properads, polycategories, PROPs, and variants.

Computer science motivation

Graphical calculi with

- obvious graphical intuition;
- tedious formal definition;
- involved or non-existent notion of model.

E.g., interaction nets, proof nets, bigraphs.

- Make graphical intuition rigorous thanks to presheaf theory.
- \rightsquigarrow Alternative definition of

maths: the algebraic structure in question comp. sci.: a notion of model for the graphical calculus in question.

• View old definition as economical characterisation:

	old definition	new definition
statement	hard	easy
construction	easy	hard

Motivation

presheaves
$$\rightarrow$$
 endofunctor $B \rightarrow$ monad $T \longrightarrow T$ -algebras
 $\langle \\ \rangle$
pictures
algebraic structures

Need to explain these terms, at least intuitively.

- Rightmost part: standard categorical approach to algebra.
- Just need to derive T from the pictures!

1 Trajectory

- Bibliography (summary of contributions)
- 3 Motivation

4 Preliminaries

- 5 Operads
- 6 Graphical operads

7 Shapely monads

Definition

Objects, and morphisms between them.

Example

	Objects	Morphisms
Set	Sets	Functions
Mon	Monoids	Monoid homomorphisms
Grp	Groups	Group homomorphisms

Definition

Functor = morphism of categories.

Example

• Action on objects:

$$L(X) = \sum_{n} X^{n}$$

- = sequences of elements of X,
- = free monoid on X.

Multiplication:

$$(x_1,\ldots,x_n),(x_{n+1},\ldots,x_p)\mapsto (x_1,\ldots,x_p).$$

• Action on morphisms:

$$\begin{array}{rcl} L(X \xrightarrow{f} Y) \colon L(X) & \to & L(Y) \\ (x_1, \ldots, x_n) & \mapsto & (f(x_1), \ldots, f(x_n)). \end{array}$$

• Other example: U(M) = |M|, carrier of M.

Definition

Monad = endofunctor + structure.

Example

- Composite $T = U \circ L$.
- T(X) = free monoid viewed as a set.
- T is a monad.

Crucial point I: algebraic structures = algebras for a monad

Example: previous T

- T(X) = free monoid viewed as a set.
- So *m* maps sequences (x_1, \ldots, x_n) to elements.
- Thought of as multiplication.

Example *T*-algebra: $m: T(\mathbb{N}) \rightarrow \mathbb{N}$ $(n_1, \dots, n_p) \mapsto \sum_i n_i.$

Morphisms of algebras

Morphisms of *T*-algebras

- $f(m(x_1,...,x_n)) = m'(f(x_1),...,f(x_n)).$
- $\bullet \ \ Morphism = structure-preserving \ map.$

Proposition (in the monoids example)

T-algebras form a category T-Alg, equivalent to Mon.

Moral (standard, but very important!)

Algebraic structure (monoids) \leftarrow monad T.

T describes 'free' algebraic structures.

Preliminaries

Operads Graphical

Other examples on sets

Algebraic structure	T(X)
Monoids	$\sum_{n} X^{n}$
Commutative monoids	$\sum_{n} X^{n} / \mathfrak{S}_{n}$
Rings, modules, algebras,	
Complete semi-lattices	$\mathcal{P}(X)$

Non-example: fields, as there are no free fields over a set.

1 Trajectory

- ② Bibliography (summary of contributions)
- 3 Motivation
- 4 Preliminaries
- 5 Operads
- 6 Graphical operads

7 Shapely monads

- Running example: (nonsymmetric, coloured) operads.
- Well-known case: T already known!
- Result specialises to: characterisation of T as a free shapely monad.

```
family of
               \rightarrow endofunctor B \rightarrow monad T \rightarrow T-algebras
presheaves
                                                          algebraic structures
 pictures
```

From pictures to presheaves

- Running example: (nonsymmetric, coloured) operads.
- Well-known case: T already known!
- Result specialises to: characterisation of T as a free shapely monad.

```
family of
multigraphs \rightarrow endofunctor B \rightarrow monad T \rightarrow T-algebras
                                                         algebraic structures
pictures
```


Multigraph $X \approx$ graph whose edges may have several sources. Diagram

- X_{\star} : vertices;
- X_n: edges with *n* sources;

- $s_{n,i}(e)$: *i*th source of *n*-ary *e*;
- $t_n(e)$: target of e.

- $X_{\star} = \{a, b, c, d, e\},\$
- $X_2 = \{x, y\},\$
- $X_n = \emptyset$ otherwise,
- $t_2(x) = x \cdot t = a$ (notation!),
- $x \cdot s_1 = b$, $x \cdot s_2 = c$, $y \cdot t = c$, $v \cdot s_1 = d$, $v \cdot s_2 = e$.

Morphism = map preserving target and sources.

Proposition Multigraphs form a category MGph. A (nonsymmetric, coloured) operad (in sets) \mathcal{O} is a multigraph \mathcal{O} with 'plugging', e.g., for all $x \in \mathcal{O}_2$ and $y \in \mathcal{O}_3$ with $y \cdot t = x \cdot s_1$, one may form

in \mathcal{O}_4 .

Notation

Denoted by
$$x \circ_1^{2,3} y$$
.

Plugging should satisfy obvious graphical axioms, e.g.,

Dreadful glimpses of standard definition

Definition

A (nonsymmetric, coloured) operad (in sets) is

- a multigraph \mathcal{O} , together with
- for all $m, n, i, x \in \mathcal{O}_m$ and $y \in \mathcal{O}_n$ such that $x \cdot s_i = y \cdot t$, an element

$$x \circ_i^{m,n} y \in \mathcal{O}_{m+n-1};$$

- for all $a \in \mathcal{O}_{\star}$, an element $id_a \in \mathcal{O}_1$;
- satisfying axioms like

$$(x \circ_{i}^{m,n} y) \circ_{j}^{m+n-1,p} z = \begin{cases} (x \circ_{j}^{m,p} z) \circ_{i+p-1}^{m+p-1,n} y & \text{(if } j < i) \\ x \circ_{i}^{m,n+p-1} (y \circ_{j-i+1}^{n,p} z) & \text{(if } i \le j < i+n) \end{cases}$$

for all $x \in \mathcal{O}_m$, $y \in \mathcal{O}_n$, $z \in \mathcal{O}_p$.

1 Trajectory

- ② Bibliography (summary of contributions)
- 3 Motivation
- 4 Preliminaries
- 5 Operads
- 6 Graphical operads
- 7 Shapely monads

Trajectory Bibliography Motivation Preliminaries Operads Graphical operads Shapely monads Conclusion

Endofunctors from multigraphs

Crucial point II: arguments for composition = multigraph morphisms

Graphical operads

- \bullet Recall the picture for composition in $\mathcal{O},$ on the right.
- View it as a multigraph, say X.

(Morphisms $X \to \mathcal{O}$) \Leftrightarrow (choices of (x, y)):

- $x \in \mathcal{O}_2$ and $y \in \mathcal{O}_3$,
- such that $x \cdot s_1 = y \cdot t$.
- = potential arguments for $\circ_1^{2,3}$ if it existed.

Definition (Basic arities)

- X is the arity of $\circ_1^{2,3}$.
- Obvious generalisation: $X_i^{m,n}$ is the arity of $\circ_i^{m,n}$.
- Similarly, arity of *id*: multigraph with just one vertex (wire).

rajectory Bibliography Motivation Preliminaries Op

Operads Graphical operads

Making sense of h_X -algebras

- Recall our example multigraph X on the right.
- Consider the functor $h_X : \mathsf{MGph} \to \mathsf{MGph}$ defined by:
 - $h_X(Y)_{\star} = Y_{\star},$
 - $h_X(Y)_4 = \mathsf{MGph}(X, Y)$, the set of multigraph morphisms from X to Y,
 - $h_X(Y)_n = \emptyset$ for $n \neq 4$.
- So $h_X(Y)_4 = \{(x',y') \in Y_2 \times Y_3 \mid x' \cdot s_1 = y' \cdot t\}.$
- An algebra $h_X(Y) \to Y$ is determined by:
 - a multigraph Y,
 - ▶ plus a map $h_X(Y)_4 \rightarrow Y_4$, i.e.,
 - an interpretation of $\circ_1^{2,3}$!

Summary

Multigraph $X \rightsquigarrow$ functor which specifies an operation of arity X.

I.e., algebras have such an operation.

Graphical definition of operads

Need to define arities for all derived operations:

Definition

Let T_n denote the class of planar trees with n leaves.

Define $T: \mathsf{MGph} \to \mathsf{MGph}$ by:

•
$$T(Y)_{\star} = Y_{\star}$$

T(Y)_n = ∑_{X∈T_n} MGph(X, Y), the set of multigraph morphisms from some *n*-ary tree X to Y.

Lemma

The functor T is a monad on MGph.

Theorem

Operads are equivalent to T-algebras.

1 Trajectory

- 2 Bibliography (summary of contributions)
- 3 Motivation
- 4 Preliminaries
- 5 Operads
- 6 Graphical operads

⑦ Shapely monads

• Goal: generate *T* automatically from basic arities.

- Compositions $X_i^{n,m}$.
- Identities I_a.

Signature for operads

Definition

Let \mathcal{B}_n denote the set of basic arities with *n* leaves.

Intuition: filiform trees of depth 2.

Define $B: MGph \rightarrow MGph$ by:

- $B(Y)_{\star} = Y_{\star}$,
- B(Y)_n = ∑_{X∈B_n} MGph(X, Y), the set of multigraph morphisms from some *n*-ary basic arity X to Y.

Question: how to generate T from B?

Well-known correspondence

 $\mathcal{M}(B)$ -algebras do not satisfy any of the axioms!

Which monads do enforce them? Shapely ones!

Subcategory

 $\mathsf{Framed}(\mathsf{MGph}) \subseteq \mathsf{Cell}(\mathsf{MGph}) \subseteq \mathsf{Analytic}(\mathsf{MGph}) \subseteq \mathsf{Endo}(\mathsf{MGph}).$

Stable under composition.

• Has a terminal object \top , automatically a monad.

Definition

```
Shapely = subfunctor of \top in Framed(MGph).
Graphical calculus = shapely monad.
```

Intuition: at most one operation of each arity.

Theorem

 $T = \bigcup_n (id \cup B)^{\cdot n}$ is the free shapely monad over B.

 $B \cdot B$ denotes the image of $B \circ B$: $B \circ B \twoheadrightarrow B \cdot B \hookrightarrow \top$.

• Consider any presheaf category with a subterminal object \top .

At most one morphism from any object to \top .

- Consider \top -analytic functors, i.e., analytic functors with a map to \top .
- Suppose they are stable under composition.
- Example: framed endofunctors.

Definition

Shapely functor = subfunctor of \top .

Theorem

The free shapely monad on a shapely endofunctor B is $\bigcup_n (id \cup B)^{\cdot n}$.

- Characterisation of the monads for polycategories, properads, PROPs, etc, as free shapely monads.
- Definition of free shapely monads for interation nets and fragments of proof nets.

- Sketched several approaches to mathematising programming language research.
- Rather diverse contributions.
- Still lots of work to do to reconcile theory and practice!

- Restrict to functors with at most one operation per arity.
- There should be one 'full' such functor ⊤, with one operation for each possible arity.
- This functor \top should be a monad.
- Selecting basic arities \Leftrightarrow picking a subfunctor $B \subseteq \top$.
- Generating $T \approx \bigcup_n (id \cup B)^{\cdot n}$, the smallest submonad of \top containing B.

Find a subcategory C of Endo(MGph)

- stable under composition and
- having a terminal object \top .

I.e., such that $\forall C \in C, \exists! \text{ morphism } C \to \top$.

Indeed:

- \top automatically a monad *via* $\top \circ \top \rightarrow \top$;
- can then generate $\bigcup_n B^n$ amongst subfunctors of \top .

Subcategory Analytic(MGph) \subseteq Endo(MGph) of functors s.t.

$$T(Y)_n = \sum_{x \in T(1)_n} \mathsf{MGph}(A(x), Y) / G(x)$$

where

- A(x) is the arity of x,
- $G(x) \triangleleft \mathfrak{S}_{A(x)}$ is a subgroup of the automorphism group of A(x).
- Generalisation of Joyal's analytic endofunctors on sets.

Miss again!

- Does have a terminal object.
- Not stable under composition.

Conclusion

Subcategory $Cell(MGph) \subseteq Analytic(MGph) \subseteq Endo(MGph)$.

Miss again!

- Stable under composition.
- No terminal object!

Conclusion