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Type theory

• Invented around 1910 by Russell and Whitehead.

• Way of avoiding paradoxes in naive set theory.
• Use today:

• in programming language theory: programming languages described as
specific type theories,

• in mechanised mathematics: most mainstream proof assistants use
some type theory as their foundation.

• In mechanised mathematics, mostly dependent type theory, our focus
today.
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Dependent type theory

Feature of proof assistants based on dependent type theory:

dependent sum and product types.

• Dependent sum
∐

𝑥:𝐴 𝐵(𝑥) ≈ ∃𝑥 : 𝐴, 𝐵.
• Example:

∐
𝑛:N vec(𝑛), pairs of some 𝑛 ∈ N and a vector of length 𝑛.

• Example:
∐

𝑥:𝑋 paths(𝑥, 𝑥), pairs of a point 𝑥 in some space 𝑋 and a
loop around 𝑥.

• Dependent product
∏

𝑥:𝐴 𝐵(𝑥) ≈ ∀𝑥 : 𝐴, 𝐵.
• Example:

∏
𝑥:𝑋 𝑇 (𝑥), sections of a (tangent?) bundle 𝑇 .

A. and T. Hirschowitz, A. Lafont What is an inference rule? February 2024 3 / 42



Introduction Exploiting substitution as indexing Naive inference rules Inference rules Conclusion

Example: the axiom of choice in type theory

For any relation 𝑅 ⊆ 𝐴 × 𝐵:∏
𝑎:𝐴

∐
𝑏:𝐵

𝑅(𝑎, 𝑏) →
∐

𝑓 :𝐴→𝐵

∏
𝑎:𝐴

𝑅(𝑎, 𝑓 (𝑎)).
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Current practice

• Define type theories by inference rules.

• Rarely need to say anything about substitution, beyond “such variable
is binding in such term”.

Example: dependent application

Γ ⊢ 𝐴 : type Γ, 𝑎 : 𝐴 ⊢ 𝐵 : type Γ ⊢ 𝑀 :
∏
𝑎:𝐴

𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 𝑁 : 𝐵[𝑎 ↦→ 𝑁]

What does such an inference rule really mean, mathematically?
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Interpreting inference rules

Γ ⊢ 𝐴 : type Γ, 𝑎 : 𝐴 ⊢ 𝐵 : type Γ ⊢ 𝑀 :
∏
𝑎:𝐴

𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 𝑁 : 𝐵[𝑎 ↦→ 𝑁]

• Extrinsic (aka old-school) approach.

• Nearly algebraic approaches.

• Fancy approaches.
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Extrinsic approach

Two layers:

• Untyped version terms and types.
Example:

𝐴 : type 𝐵 : type∏
𝑎:𝐴

𝐵 : type

𝑀 : term 𝑁 : term

𝑀 𝑁 : term

• Typing rules as a relation on types and terms.

Issues
• Would like only well-typed terms to exist.

• Unclear notion of model.
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Nearly algebraic approaches

A bunch of roughly equivalent formalisms:

• Finite limit sketches (Ehresmann, 1968).

• Essentially algebraic theories (Freyd, 1972).

• Generalised algebraic theories (Cartmell, 1978).

• Inside type theory: fancy inductive types (e.g., inductive-recursive
types).

Assessment
• General-purpose.

• Substitution must be defined by hand.
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Fancy approaches

Uemura (2019), Gratzer and Sterling (2020), Coraglia and Di Liberti
(2021).

• Manage to infer substitution.
• Sophisticated, e.g.,

• Gratzer and Sterling rely on generalised sketches over the 2-monad of
locally cartesian closed categories,

• Di Liberti and Osmond are currently developing a 2-categorical
extension of locally presentable categories for justifying Coraglia and Di
Liberti’s framework.
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A sweet spot?

Our approach:

• Infer substitution.
• Initial-algebra semantics (Goguen, 1974):

• Define a whole category of models.
• The desired type theory is the initial one1.
• Initiality ≈ recursion principle.

This is like an implicit definition:
• we know the desired object exists without constructing it,
• it has the properties we need.

• Relatively basic category theory: locally presentable categories.

If we prove that the category of models is locally presentable,
then it has an initial object: the desired type theory.

1Explain initial objects on the board!
A. and T. Hirschowitz, A. Lafont What is an inference rule? February 2024 10 / 42



Introduction Exploiting substitution as indexing Naive inference rules Inference rules Conclusion

Categorical interlude

Natural transformations, set-based example

Set Set

𝐹

id

𝛼

• 𝐹 is a functor: it maps sets to sets and functions to functions;

• 𝛼 is a natural transformation: for all sets 𝑋, we have a map
𝛼𝑋 : 𝐹 (𝑋) → 𝑋, “naturally” in 𝑋.

Example: 𝐹 (𝑋) = 𝑋 × 𝑋

𝐹-algebra structure = binary operation 𝛼𝑋 : 𝑋
2 → 𝑋.

Ex: 𝛼𝑋 = first projection.
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Core infrastructure: algebras as inserters

Starting from 𝐹 : Set → Set as before, consider a category A with a
functor 𝑈 : A → Set.
Giving a natural transformation

A Set

𝐹◦𝑈

𝑈

𝛼

is equipping each 𝑈 (𝑎) with 𝐹-algebra structure

𝐹 (𝑈 (𝑎)) 𝛼𝑎−−→𝑈 (𝑎).

The category 𝐹-alg of 𝐹-algebras is the universal such 𝑈 : A → Set.

A. and T. Hirschowitz, A. Lafont What is an inference rule? February 2024 12 / 42



Introduction Exploiting substitution as indexing Naive inference rules Inference rules Conclusion

Inserters

The category 𝐹-alg of 𝐹-algebras is the universal such 𝑈 : A → Set.

This is called an inserter of 𝐹 and id .

𝐹-alg Set Set
𝑈

𝐹

𝐹◦𝑈

𝑈

𝛼

(It “inserts” a 2-cell 𝛼 between 𝐹 and id .)
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Locally presentable magic

Well-known, not recalled here, please believe me:

• Notions of locally presentable category and accessible functor.

• Notion of continuous functor (preserves limits).

Theorem (Essentially in Adamek and Rosicky, 1994)

For any

• locally presentable C and D and

• accessible 𝐹, 𝐺 : C → D,

if 𝐺 is continuous, then the inserter 𝑈 : A → C of 𝐹 and 𝐺 is
accessible and A is locally presentable.

Example: when 𝐺 = id , 𝐹-alg is locally presentable { initial object.
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Summary thus far

• Category of algebras as an inserter.

• General result: inserters of locally presentable categories are again
locally presentable (roughly).

Next question: how to deal with substitution automatically?
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Familial interlude

Well-known equivalence:

• families of sets indexed by some fixed set 𝑋,

• pairs of a set 𝑌 and a map 𝑌 → 𝑋.
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A well-known axiomatisation of substitution

Contexts form a category C:

• objects are contexts Γ,

• morphisms are assignments Γ ⊢ 𝜎 : Δ, i.e.,

Γ ⊢ (𝑀1, . . . , 𝑀𝑛) : (𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛)

where, for all 𝑖, Γ ⊢ 𝑀𝑖 : 𝐴𝑖.

Simply-typed case, but also works with dependent types.
Composition of

Γ
𝜎−→ Δ

(𝑀1,...,𝑀𝑛 )−−−−−−−−−−→ (𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛)

is

Γ
(𝑀1 [𝜎 ],...,𝑀𝑛 [𝜎 ] )
−−−−−−−−−−−−−−−−→ (𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛).
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A well-known axiomatisation of substitution

• For each context Γ, we have a family T(Γ) given by

Terms(Γ) → Types(Γ).

• A set Types(Γ) of types.
Example: for Γ = (𝑛 : N), vec 𝑛.

• For each type 𝐴, a set Terms(Γ)𝐴 of terms of type 𝐴.

• For each assignment 𝜎 : Γ → Δ, substitution gives maps

Types(Δ) → Types(Γ) Terms(Δ)𝐴 → Terms(Γ)𝐴[𝜎 ]

𝐴 ↦→ 𝐴[𝜎] 𝑀 ↦→ 𝑀 [𝜎],

i.e., a morphism T(𝜎) : T(Δ) → T(Γ).
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Substitution as indexing

In summary, we have a functor

T : Cop → Fam

from contexts to families of sets.

Notation

T = (Types,Terms, . . .), U = (Types′,Terms′, . . .), ... hopefully
clear from context.

This is how we think of type theories:

• a category C and

• a functor Cop → Fam.

Actually, forget the −op , just take Cop instead of C as base category!
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Morphism between type theories

C D

Fam

𝐹

T U

𝛼

• A functor 𝐹 between categories of contexts.

• For all contexts Γ ∈ C, maps

𝛼0
Γ : Types(Γ) → Types′(𝐹 (Γ))

𝛼1
Γ,𝐴 : Terms(Γ)𝐴 → Terms′(𝐹 (Γ))𝛼0

Γ
(𝐴) .

We obtain a category Cat//Fam.
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A (large) category of type theories

Definition

A type theory is an object (C,T) ∈ Cat//Fam with context extension,
which I won’t explain today unless asked for it.

Type theories form a large category CwF, for (small) categories with
families.
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A first, naive notion of inference rule

Replacing Fam with Set, we get a category Cat//Set.
Definition

A naive inference rule is a pair of functors

C Cat//Set

𝑆

𝑇

satisfying local presentability hypotheses, notably 𝑇 is continuous.
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Example naive inference rule

Γ ⊢ 𝑀 : 𝐴 Γ ⊢ 𝑁 : 𝐵

Γ ⊢ (𝑀, 𝑁) : 𝐴 × 𝐵

Our functors 𝑆, 𝑇 : CwF× → Cat//Set keep the same base category, e.g.,

𝐹 (C,T) = (C, 𝐹′ : C → Set),

with

• 𝑆′(C,T) (Γ) = ∐
𝐴,𝐵∈Types(Γ) Terms(Γ)𝐴 × Terms(Γ)𝐵 and

• 𝑇 ′(C,T) (Γ) = ∐
𝐴,𝐵∈Types(Γ) Terms(Γ)𝐴×𝐵.

Remark

Action on morphisms Γ → Δ will impose the behaviour of
substitution.
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Models of a naive inference rule

Definition

Let 𝑅 = (𝑆, 𝑇) be any inference rule. Its category of models is the
inserter of 𝑆 and 𝑇 .

When 𝑆 and 𝑇 keep the same base category, a model is a type theory
(C,T) with a coherent family of morphisms

𝑆′(C,T) (Γ) → 𝑇 ′(C,T) (Γ).
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Inadequacy of inference rules

Naive inference rules are insufficient, e.g., for dependent application.

Γ ⊢ 𝐴 : type Γ, 𝑎 : 𝐴 ⊢ 𝐵 : type Γ ⊢ 𝑀 :
∏
𝑎:𝐴

𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 𝑁 : 𝐵[𝑎 ↦→ 𝑁]

Models are type theories (C,T) with morphisms∐
𝐴,𝐵

Terms(Γ)∏
𝑎:𝐴 𝐵 × Terms(Γ)𝐴 →

∐
𝐴,𝐵

∐
𝑁 ∈Terms(Γ)𝐴

Terms(Γ)𝐵[𝑎 ↦→𝑁 ] .

Nothing imposes that 𝐴 and 𝐵 remain the same.
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Inference rules

In order to express preservation of data between source and target, we
refine our definition:

Definition

An inference rule consists of three functors and two natural
transformations as in

C Cat//Set,

𝑆

𝑉

𝑇

𝑠

𝑡

with 𝑇 and 𝑉 continuous.

• In fact, works for any locally presentable category instead of Cat//Set!
• Enables iteration.

A. and T. Hirschowitz, A. Lafont What is an inference rule? February 2024 26 / 42



Introduction Exploiting substitution as indexing Naive inference rules Inference rules Conclusion

Example: dependent application

Γ ⊢ 𝐴 : type Γ, 𝑎 : 𝐴 ⊢ 𝐵 : type Γ ⊢ 𝑀 :
∏
𝑎:𝐴

𝐵 Γ ⊢ 𝑁 : 𝐴

Γ ⊢ 𝑀 𝑁 : 𝐵[𝑎 ↦→ 𝑁]

• C := CwF∏,

• 𝑉 ′(C,T) (Γ) = ∐
𝐴,𝐵 Terms(Γ)𝐴,

• 𝑆′(C,T) (Γ) = ∐
𝐴,𝐵,𝑁 ∈𝑉 ′ (C,T) (Γ) Terms(Γ)∏

𝑎:𝐴 𝐵,

• 𝑇 ′(C,T) (Γ) = ∐
𝐴,𝐵,𝑁 ∈𝑉 ′ (C,T) (Γ) Terms(Γ)𝐵[𝑎 ↦→𝑁 ] .
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Models

We enforce data preservation in the definition of models:

Definition

A model of 𝑅 = (𝑉, 𝑆, 𝑇, 𝑠, 𝑡) is a type theory (C,T) with a morphism
𝑎 making the following diagram commute.

𝑆(C,T)

𝑉 (C,T)

𝑇 (C,T)

𝑠C,T 𝑡C,T

𝑎
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Example: dependent application

𝑆(C,T)

𝑉 (C,T)

𝑇 (C,T)

(𝐴, 𝐵, 𝑁, 𝑀)

(𝐴, 𝐵, 𝑁)

(𝐴, 𝐵, 𝑁, 𝑀𝑁)

𝑠C,T 𝑡C,T

𝑎
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Local presentability of models

Proposition

For any

C D

𝑆

𝑉

𝑇

𝑠

𝑡

with

• C and D locally presentable,

• 𝑆, 𝑇 , and 𝑉 accessible, and

• 𝑇 and 𝑉 continuous,

the category of models is again locally presentable, and the forgetful
functor to C is accessible and creates limits.
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Conclusion

• General, rigorous notion of inference rule.

• Proof that models form a locally presentable category.

Not shown, in progress:

• tools to automatically infer that 𝑇 and 𝑉 are continuous in practice
(cf. technical part.);

• application to quantitative type theory (Atkey, ’18).
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Thanks for your attention

1 Introduction

2 Exploiting substitution as indexing

3 Naive inference rules

4 Inference rules

5 Conclusion

Any questions?
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Styles

Our example functors
CwF∏ → Cat//Set

preserve the base categoy.

CwF∏ Cat//Set

Cat

𝑉,𝑆,𝑇
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Alternative presentation

Observation: Cat//Set =
∮
P, where

P : Catop → CAT

C ↦→ [C, Set] .
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Alternative presentation

Base-preserving functors CwF∏ → Cat//Set are in 1-1 correspondence
with lax global sections 𝑆 of P𝑈:

CwF∏op 𝑈−→ Catop
P−→ CAT,i.e.,

• for all 𝑐 = (C, 𝑋,∏) ∈ CwF∏, a functor 𝑆(𝑐) : C → Set,

• for all (𝐹, 𝛼) : (C, 𝑋,∏) → (C′, 𝑋 ′,
∏′) = 𝑐′, a natural transformation

C C′

Set

𝐹

𝑆 (𝑐) 𝑆 (𝑐′ )

𝑆 (𝐹,𝛼)

compatible with composition in CwF∏.
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Consequence

Proving that some base-preserving functor is continuous
⇐⇒ proving that the corresponding lax global section of P𝑈 is continuous.

{ attempt to understand the structure of (continuous) lax global sections.
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A CwF of presheaves

Not so well known (variants in Hofmann and Streicher; Harper and Licata;
Coraglia and Di Liberti):

• contexts = (small) categories and functors;

• types over C = functors C → Set;

• terms of type 𝐴 : C → Set = global elements 1 → 𝐴;

• substitution of types and terms = precomposition.

C

Set

B

𝐴

𝜎

𝐴[𝜎 ]:=𝐴◦𝜎

C

Set1

B

𝐴
!

1

𝜎

!
𝑀

(a global element of 𝐴[𝜎])
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Categorical interlude: the category of elements as a
comma category

Comma category of 𝐹 and 𝐺:

A C

B𝐹/𝐺

𝐹

𝐺𝑝

𝑞

_
Concretely:

𝐹𝑎

𝐺𝑏

𝐹𝑎′

𝐺𝑏′

𝑥 𝑥′

𝐹𝑢

𝐺𝑣

Transfo _ given at 𝑥 : 𝐹𝑎 → 𝐺𝑏 by... 𝑥 itself!
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Application: category of elements

C

Set1

{𝐴} :=1/𝐴

𝐴

1

𝜕1
𝐴

! 𝜕2
𝐴

Concretely:

1

𝐴(𝑐)

1

𝐴(𝑑)

𝑥 𝑦

𝐴( 𝑓 )
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Categorical interlude: the category of elements as a
comma category

Universal property of the comma category:

A C

B𝐹/𝐺

X
⟨𝑢,𝑣⟩

𝐹

𝐺𝑝

𝑞

𝑢

𝑣

_

𝛼

Define ⟨𝑢, 𝑣⟩(𝑥) := 𝛼𝑥 : 𝐹 (𝑢(𝑥)) → 𝐺 (𝑣(𝑦)).
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Context extension as category of elements

C

Set1

{𝐴}

𝐴

1

𝜕1
𝐴

! 𝜕2
𝐴

cf.

T(Γ.𝐴)

T(Γ)y[0]

y[1]

T(𝜕1
𝐴
)

𝐴

𝜕2
𝐴

y𝑠
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Universal properties

1 Set

C{𝐴}

B

⟨𝜎,𝑀 ⟩

1

𝐴!

𝜕1
𝐴

!

𝜎

𝜕2
𝐴

𝑀

Δ ⊢ 𝜎 : Γ Γ ⊢ 𝐴 : type Δ ⊢ 𝑀 : 𝐴[𝜎]
Δ ⊢ ⟨𝜎, 𝑀⟩ : Γ.𝐴

By construction ⟨𝜎, 𝑀⟩(𝑏) = 𝑀𝑏 ∈ 𝐴(𝜎(𝑏)) = 𝐴[𝜎] (𝑏).
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