What is an inference rule?

André Hirschowitz, Tom Hirschowitz, and Ambroise Lafont

LIMD seminar, Feb 15, 2024

Type theory

- Invented around 1910 by Russell and Whitehead.
- Way of avoiding paradoxes in naive set theory.
- Use today:
 - in programming language theory: programming languages described as specific type theories,
 - in mechanised mathematics: most mainstream proof assistants use some type theory as their foundation.
- In mechanised mathematics, mostly dependent type theory, our focus today.

Dependent type theory

Feature of proof assistants based on dependent type theory:

dependent sum and product types.

- Dependent sum $\coprod_{x:A} B(x) \approx \exists x : A, B$.
 - Example: $\coprod_{n:\mathbb{N}} \operatorname{vec}(n)$, pairs of some $n \in \mathbb{N}$ and a vector of length n.
 - Example: ∐_{x:X} paths(x, x), pairs of a point x in some space X and a loop around x.
- Dependent product $\prod_{x:A} B(x) \approx \forall x: A, B$.
 - Example: $\prod_{x:X} T(x)$, sections of a (tangent?) bundle T.

Example: the axiom of choice in type theory

For any relation $R \subseteq A \times B$:

$$\prod_{a:A} \bigsqcup_{b:B} R(a,b) \to \bigsqcup_{f:A \to B} \prod_{a:A} R(a,f(a)).$$

Current practice

- Define type theories by inference rules.
- Rarely need to say anything about substitution, beyond "such variable is binding in such term".

What does such an inference rule really mean, mathematically?

Interpreting inference rules

$\frac{\Gamma \vdash A : \mathbf{type} \qquad \Gamma, a : A \vdash B : \mathbf{type} \qquad \Gamma \vdash M : \prod_{a:A} B \qquad \Gamma \vdash N : A}{\Gamma \vdash M \ N : B[a \mapsto N]}$

• Extrinsic (aka old-school) approach.

- Nearly algebraic approaches.
- Fancy approaches.

Extrinsic approach

Two layers:

• Untyped version terms and types. Example:

• Typing rules as a relation on types and terms.

Issues

- Would like only well-typed terms to exist.
- Unclear notion of model.

Nearly algebraic approaches

A bunch of roughly equivalent formalisms:

- Finite limit sketches (Ehresmann, 1968).
- Essentially algebraic theories (Freyd, 1972).
- Generalised algebraic theories (Cartmell, 1978).
- Inside type theory: fancy inductive types (e.g., inductive-recursive types).

Assessment

- General-purpose.
- Substitution must be defined by hand.

Fancy approaches

Uemura (2019), Gratzer and Sterling (2020), Coraglia and Di Liberti (2021).

- Manage to infer substitution.
- Sophisticated, e.g.,
 - Gratzer and Sterling rely on generalised sketches over the 2-monad of locally cartesian closed categories,
 - Di Liberti and Osmond are currently developing a 2-categorical extension of locally presentable categories for justifying Coraglia and Di Liberti's framework.

A sweet spot?

Our approach:

- Infer substitution.
- Initial-algebra semantics (Goguen, 1974):
 - Define a whole category of models.
 - The desired type theory is the initial one¹.
 - Initiality \approx recursion principle.
 - This is like an implicit definition:
 - we know the desired object exists without constructing it,
 - it has the properties we need.
- Relatively basic category theory: locally presentable categories.

If we prove that the category of models is locally presentable, then it has an initial object: the desired type theory.

¹Explain initial objects on the board!

Categorical interlude

• F is a functor: it maps sets to sets and functions to functions;

• α is a natural transformation: for all sets X, we have a map $\alpha_X \colon F(X) \to X$, "naturally" in X.

Example: $F(X) = X \times X$

F-algebra structure = binary operation $\alpha_X \colon X^2 \to X$. Ex: α_X = first projection.

Core infrastructure: algebras as inserters

Starting from $F: \mathbf{Set} \to \mathbf{Set}$ as before, consider a category \mathbf{A} with a functor $U: \mathbf{A} \to \mathbf{Set}$. Giving a natural transformation

is equipping each U(a) with F-algebra structure

 $F(U(a)) \xrightarrow{\alpha_a} U(a).$

The category *F*-alg of *F*-algebras is the universal such $U: \mathbf{A} \rightarrow \mathbf{Set}$.

The category *F*-alg of *F*-algebras is the universal such $U: \mathbf{A} \rightarrow \mathbf{Set}$.

This is called an inserter of F and id.

(It "inserts" a 2-cell α between F and id.)

Locally presentable magic

Well-known, not recalled here, please believe me:

- Notions of locally presentable category and accessible functor.
- Notion of continuous functor (preserves limits).

Theorem (Essentially in Adamek and Rosicky, 1994)

For any

- locally presentable ${f C}$ and ${f D}$ and
- accessible $F, G: \mathbf{C} \to \mathbf{D}$,

if G is continuous, then the inserter $U \colon \mathbf{A} \to \mathbf{C}$ of F and G is accessible and \mathbf{A} is locally presentable.

Example: when G = id, F-alg is locally presentable \rightarrow initial object.

Summary thus far

- Category of algebras as an inserter.
- General result: inserters of locally presentable categories are again locally presentable (roughly).

Next question: how to deal with substitution automatically?

Familial interlude

Well-known equivalence:

- families of sets indexed by some fixed set X,
- pairs of a set Y and a map $Y \to X$.

A well-known axiomatisation of substitution

Contexts form a category $\mathbb{C}:$

- objects are contexts Γ,
- morphisms are assignments $\Gamma \vdash \sigma : \Delta$, i.e.,

$$\Gamma \vdash (M_1,\ldots,M_n) : (x_1:A_1,\ldots,x_n:A_n)$$

where, for all i, $\Gamma \vdash M_i : A_i$.

Simply-typed case, but also works with dependent types. Composition of

$$\Gamma \xrightarrow{\sigma} \Delta \xrightarrow{(M_1,\ldots,M_n)} (x_1:A_1,\ldots,x_n:A_n)$$

is

$$\Gamma \xrightarrow{(M_1[\sigma],...,M_n[\sigma])} (x_1:A_1,\ldots,x_n:A_n)$$

A well-known axiomatisation of substitution

• For each context $\Gamma,$ we have a family $\mathbb{T}(\Gamma)$ given by

 $\operatorname{Terms}(\Gamma) \to \operatorname{Types}(\Gamma).$

- A set Types(Γ) of types. Example: for $\Gamma = (n : \mathbb{N})$, vec n.
- For each type A, a set $Terms(\Gamma)_A$ of terms of type A.
- For each assignment $\sigma \colon \Gamma \to \Delta$, substitution gives maps

$$\begin{split} \operatorname{Types}(\Delta) &\to \operatorname{Types}(\Gamma) & \operatorname{Terms}(\Delta)_A \to \operatorname{Terms}(\Gamma)_{A[\sigma]} \\ A &\mapsto A[\sigma] & M \mapsto M[\sigma], \end{split}$$

i.e., a morphism $\mathbb{T}(\sigma) \colon \mathbb{T}(\Delta) \to \mathbb{T}(\Gamma)$.

Substitution as indexing

In summary, we have a functor

 $\mathbb{T}\colon \mathbb{C}^{op} \to \mathbf{Fam}$

from contexts to families of sets.

Notation

 \mathbb{T} = (Types, Terms, . . .), \mathbb{U} = (Types', Terms', . . .), ... hopefully clear from context.

This is how we think of type theories:

- a category $\mathbb C$ and
- a functor $\mathbb{C}^{op} \to \mathbf{Fam}$.

Actually, forget the $-^{op}$, just take \mathbb{C}^{op} instead of \mathbb{C} as base category!

Morphism between type theories

- A functor F between categories of contexts.
- For all contexts $\Gamma \in \mathbb{C}$, maps

$$\begin{aligned} \alpha_{\Gamma}^{0} \colon \operatorname{Types}(\Gamma) \to \operatorname{Types}'(F(\Gamma)) \\ \alpha_{\Gamma,A}^{1} \colon \operatorname{Terms}(\Gamma)_{A} \to \operatorname{Terms}'(F(\Gamma))_{\alpha_{\Gamma}^{0}(A)}. \end{aligned}$$

We obtain a category Cat//Fam.

A (large) category of type theories

Definition

A type theory is an object $(\mathbb{C}, \mathbb{T}) \in \mathbf{Cat} / / \mathbf{Fam}$ with context extension, which I won't explain today unless asked for it.

Type theories form a large category \mathbf{CwF} , for (small) categories with families.

A first, naive notion of inference rule

Replacing Fam with Set, we get a category Cat//Set.

Example naive inference rule

 $\Gamma \vdash M : A \qquad \Gamma \vdash N : B$

 $\Gamma \vdash (M,N) : A \times B$

Our functors $S, T: \mathbf{CwF}_{\times} \to \mathbf{Cat}/\!/\mathbf{Set}$ keep the same base category, e.g.,

$$F(\mathbb{C},\mathbb{T}) = (\mathbb{C},F' \colon \mathbb{C} \to \mathbf{Set}),$$

with

- $S'(\mathbb{C}, \mathbb{T})(\Gamma) = \coprod_{A,B \in \mathrm{Types}(\Gamma)} \mathrm{Terms}(\Gamma)_A \times \mathrm{Terms}(\Gamma)_B$ and
- $T'(\mathbb{C}, \mathbb{T})(\Gamma) = \coprod_{A,B \in \operatorname{Types}(\Gamma)} \operatorname{Terms}(\Gamma)_{A \times B}.$

Remark

Action on morphisms $\Gamma \to \Delta$ will impose the behaviour of substitution.

A. and T. Hirschowitz, A. Lafont

Models of a naive inference rule

Definition

Let R = (S,T) be any inference rule. Its category of models is the inserter of S and T.

When S and T keep the same base category, a model is a type theory (\mathbb{C}, \mathbb{T}) with a coherent family of morphisms

 $S'(\mathbb{C},\mathbb{T})(\Gamma) \to T'(\mathbb{C},\mathbb{T})(\Gamma).$

Inadequacy of inference rules

Naive inference rules are insufficient, e.g., for dependent application.

$$\frac{\Gamma \vdash A : \mathbf{type} \qquad \Gamma, a : A \vdash B : \mathbf{type} \qquad \Gamma \vdash M : \prod_{a:A} B \qquad \Gamma \vdash N : A}{\Gamma \vdash M : N : P[a \vdash N]}$$

 $\Gamma \vdash M \ N : B[a \mapsto N]$

Models are type theories (\mathbb{C},\mathbb{T}) with morphisms

$$\coprod_{A,B} \operatorname{Terms}(\Gamma)_{\prod_{a:A}B} \times \operatorname{Terms}(\Gamma)_A \to \coprod_{A,B} \coprod_{N \in \operatorname{Terms}(\Gamma)_A} \operatorname{Terms}(\Gamma)_{B[a \mapsto N]}.$$

Nothing imposes that A and B remain the same.

Inference rules

In order to express preservation of data between source and target, we refine our definition:

- In fact, works for any locally presentable category instead of $\operatorname{Cat}/\!/\operatorname{Set}!$
- Enables iteration.

A. and T. Hirschowitz, A. Lafont

Example: dependent application

$\frac{\Gamma \vdash A : \mathbf{type} \qquad \Gamma, a : A \vdash B : \mathbf{type} \qquad \Gamma \vdash M : \prod_{a:A} B \qquad \Gamma \vdash N : A}{\sum_{a:A} P [a : A \vdash N]}$

$\Gamma \vdash M \ N : B[a \mapsto N]$

- $\mathbf{C} := \mathbf{C}\mathbf{w}\mathbf{F}_{\prod}$,
- $V'(\mathbb{C}, \mathbb{T})(\Gamma) = \coprod_{A,B} \operatorname{Terms}(\Gamma)_A$,
- $S'(\mathbb{C}, \mathbb{T})(\Gamma) = \coprod_{A,B,N \in V'(\mathbb{C},\mathbb{T})(\Gamma)} \operatorname{Terms}(\Gamma)_{\prod_{a:A} B}$,
- $T'(\mathbb{C}, \mathbb{T})(\Gamma) = \coprod_{A,B,N \in V'(\mathbb{C},\mathbb{T})(\Gamma)} \operatorname{Terms}(\Gamma)_{B[a \mapsto N]}.$

		Inference rules	
Models			

We enforce data preservation in the definition of models:

Example: dependent application

Local presentability of models

Conclusion

- General, rigorous notion of inference rule.
- Proof that models form a locally presentable category.

Not shown, in progress:

- tools to automatically infer that T and V are continuous in practice (cf. technical part.);
- application to quantitative type theory (Atkey, '18).

Thanks for your attention

$\widehat{1}$ Introduction

- 2 Exploiting substitution as indexing
- 3 Naive inference rules
- (4) Inference rules
- 5 Conclusion

Any questions?

Our example functors

$$\mathbf{CwF}_{\prod} \to \mathbf{Cat}/\!/\mathbf{Set}$$

preserve the base categoy.

Alternative presentation

Observation: $Cat//Set = \oint \mathcal{P}$, where

$$\mathcal{P} \colon \mathbf{Cat}^{op} \to \mathbf{CAT}$$
$$\mathbb{C} \mapsto [\mathbb{C}, \mathbf{Set}].$$

Alternative presentation

Base-preserving functors $\mathbf{CwF}_{\Pi} \rightarrow \mathbf{Cat}//\mathbf{Set}$ are in 1-1 correspondence with lax global sections S of \mathcal{P}_U :

$$\operatorname{CwF}_{\prod}^{op} \xrightarrow{U} \operatorname{Cat}^{op} \xrightarrow{\varphi} \operatorname{CAT}, \text{ i.e.,}$$

• for all $c = (\mathbb{C}, X, \prod) \in \mathbf{CwF}_{\prod}$, a functor $S(c) \colon \mathbb{C} \to \mathbf{Set}$,

• for all $(F, \alpha) \colon (\mathbb{C}, X, \prod) \to (\mathbb{C}', X', \prod') = c'$, a natural transformation

compatible with composition in $\mathbf{Cw}\mathbf{F}_{\Pi}.$

Consequence

 $\label{eq:proving that some base-preserving functor is continuous \\ \Longleftrightarrow \mbox{proving that the corresponding lax global section of \mathcal{P}_U is continuous.}$

 \sim attempt to understand the structure of (continuous) lax global sections.

A CwF of presheaves

Not so well known (variants in Hofmann and Streicher; Harper and Licata; Coraglia and Di Liberti):

- contexts = (small) categories and functors;
- types over \mathbb{C} = functors $\mathbb{C} \to \mathbf{Set}$;
- terms of type $A: \mathbb{C} \to \mathbf{Set} = \mathsf{global}$ elements $1 \to A$;
- substitution of types and terms = precomposition.

Categorical interlude: the category of elements as a comma category

Comma category of F and G:

Transfo λ given at $x \colon Fa \to Gb$ by... x itself!

Application: category of elements

Categorical interlude: the category of elements as a comma category

Universal property of the comma category:

Define $\langle u, v \rangle(x) := \alpha_x \colon F(u(x)) \to G(v(y)).$

Context extension as category of elements

Universal properties

By construction $\langle \sigma, M \rangle(b) = M_b \in A(\sigma(b)) = A[\sigma](b)$.